Abada KA (1994) Fungi causing damping-off and root-rot on sugar-beet and their biological control with Trichoderma harzianum. Agric Ecosyst Environ 51:333–337
Abd El Lateef E, Abd El-Salam M, Farrag A, Gehan A (2019) Fertilizer inputs impact of different bio-solid sources on sugar beet yield in sandy soil. Int J Agric For Life Sci 3:106–114
Afify AH, El-Sayed AB, El-Pana SE (2018) Biological Control of Rhizoctonia solani Causing Sugar Beet Damping-Off. J Food Dairy Sci 2018:123–127
Al-Fadhal FA, AL-Abedy AN, Alkhafije DA (2019) Isolation and molecular identification of Rhizoctonia solani and Fusarium solani isolated from cucumber (Cucumis sativus L.) and their control feasibility by Pseudomonas fluorescens and Bacillus subtilis. Egypt J Biol Pest Control 29:47. https://doi.org/10.1186/s41938-019-0145-5
Anees M, Edel-Hermann V, Steinberg C (2010) Build up of patches caused by Rhizoctonia solani. Soil Biol Biochem 42:1661–1672
Arabiat S, Khan MF (2016) Sensitivity of Rhizoctonia s olani AG-2-2 from Sugar Beet to Fungicides. Plant Dis 100:2427–2433
Avan M, Palacıoğlu G, Aksoy C, et al (2021) Characterization and Pathogenicity of Rhizoctonia Species Causing Root Rot and Damping-off on Sugar Beet in Turkey. Curr Microbiol 78:1939–1948
Bahadou SA, Ouijja A, Boukhari MA, Tahiri A (2017) Development of field strategies for fire blight control integrating biocontrol agents and plant defense activators in Morocco. J Plant Pathol 51–58
Bartholomäus A, Mittler S, Märländer B, Varrelmann M (2017) Control of Rhizoctonia solani in Sugar Beet and Effect of Fungicide Application and Plant Cultivar on Inoculum Potential in the Soil. Plant Dis 101:941–947. https://doi.org/10.1094/PDIS-09-16-1221-RE
Benigni M, Bompeix G (2010) Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest Manag Sci 66:1332–1336
Buddemeyer J, Märländer B (2005) Genotypic reaction of sugar beet to Rhizoctonia solani root and crown rot–susceptibility, yield and quality at different levels of infestation/Sortentypische Reaktion von Zuckerrüben gegenüber der Späten Rübenfäule (Rhizoctonia solanl)–Anfälligkeit, Ertrag und Qualität bei unterschiedlicher Befallsintensität. Z Für Pflanzenkrankh PflanzenschutzJournal Plant Dis Prot 105–117
Buttner G, Pfahler B, Marlander B (2004) Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breed 123:158–166. https://doi.org/10.1046/j.1439-0523.2003.00967.x
Cao Y, Xu Z, Ling N, et al (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39
Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50
Chenaoui M, Amar M, Benkhemmar O, et al (2017) Isolation and characterization of fungi from sugar beet roots samples collected from Morocco. 6
Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513
Datta S, Dey P, Sarkar A, et al (2016) Comparison among four triazole fungicides on growth and development of sheath blight of rice pathogen Rhizoctonia solani Kühn AG1-1A. Arch Phytopathol Plant Prot 49:239–251
Djébali N, Elkahoui S, Taamalli W, et al (2014) Tunisian Rhizoctonia solani AG3 strains affect potato shoot macronutrients content, infect faba bean plants and show in vitro resistance to azoxystrobin. Australas Plant Pathol 43:347–358
DOYLE J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
El-Desouky HK, Bahaa E a. E, El-Sheshtawi M (2018) Preliminary Tests on the Biological Control of some Root Rot Fungal Pathogens in Sugar Beet In Vitro. J Plant Prot Pathol 9:519–524. https://doi.org/10.21608/jppp.2018.43746
El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75
FAOSTAT 2021 https://www.fao.org/faostat/en/#data/QC
Farhaoui A, Adadi A, Tahiri A, et al (2022) Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiol Mol Plant Pathol 101829. https://doi.org/10.1016/j.pmpp.2022.101829
Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359
Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog 3:17
Gilligan CA, Kleczkowski A (1997) Population dynamics of botanical epidemics involving primary and secondary infection. Philos Trans R Soc Lond B Biol Sci 352:591–608
Gisi U (1996) Synergistic interaction of fungicides in mixtures. Phytopathology 86:1273–1279
Gonzalez M, Pujol M, METRAUX J-P, et al (2011) Tobacco leaf spot and root rot caused by Rhizoctonia solani Kühn. Mol Plant Pathol 12:209–216
Grisham MP, Anderson NA (1983) Pathogenicity and host specificity of Rhizoctonia solani isolated from carrots. Phytopathology 73:1564–1569
Harikrishnan R, Yang XB (2004) Recovery of anastomosis groups of Rhizoctonia solani from different latitudinal positions and influence of temperatures on their growth and survival. Plant Dis 88:817–823
Inokuti EM, Thiery-Lanfranchi D, Edel-Hermann V, et al (2019) Genetic and pathogenic variability of Rhizoctonia solani causing crown and root rot on sugar beet in France. J Plant Pathol 101:907–916
Ishii H, Fraaije BA, Sugiyama T, et al (2001) Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166–1171
Jorjani M, Heydari A, Zamanizadeh HR, et al (2012) Controlling sugar beet mortality disease by application of new bioformulations. J Plant Prot Res
Karimi E, Safaie N, Shams-Baksh M, Mahmoudi B (2016) Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Microbiol Res 192:221–230
Khan A, Gupta A, Singh P, et al (2020) Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int Microbiol 23:277–286
Khan AF, Liu Y, Khan MF (2017) Efficacy and safety of generic azoxystrobin at controlling Rhizoctonia solani in sugar beet. Crop Prot 93:77–81
Kiewnick S, Jacobsen BJ, Braun-Kiewnick A, et al (2001) Integrated Control of Rhizoctonia Crown and Root Rot of Sugar Beet with Fungicides and Antagonistic Bacteria. Plant Dis 85:718–722. https://doi.org/10.1094/PDIS.2001.85.7.718
Kirk WW, Wharton PS, Schafer RL, et al (2008) Optimizing fungicide timing for the control of Rhizoctonia crown and root rot of sugar beet using soil temperature and plant growth stages. Plant Dis 92:1091–1098
Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. J Biosci Bioeng 91:173–177
Kumar S, Sivasithamparam K, Gill JS, Sweetingham MW (1999) Temperature and water potential effects on growth and pathogenicity of Rhizoctonia solani AG-11 to lupin. Can J Microbiol 45:389–395
Lahlali R, Mchachti O, Radouane N, et al (2020) The Potential of Novel Bacterial Isolates from Natural Soil for the Control of Brown Rot Disease (Monilinia fructigena) on Apple Fruits. Agronomy 10:1814
Landy M, Warren GH, RosenmanM SB, Colio LG (1948) Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541
Lee Y-H, Cho Y-S, Lee S-W, Hong J-K (2012) Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum. Plant Pathol J 28:156–163
Li S, Zhang N, Zhang Z, et al (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49:295–303
Liu Y, Khan MF (2016a) Penthiopyrad applied in close proximity to Rhizoctonia solani provided effective disease control in sugar beet. Crop Prot 85:33–37
Liu Y, Khan MF (2016b) Utility of fungicides for controlling Rhizoctonia solani on sugar beet. J Crop Prot 5:33–38
Liu Y, Qi A, Haque ME, et al (2021) Combining penthiopyrad with azoxystrobin is an effective alternative to control seedling damping-off caused by Rhizoctonia solani on sugar beet. Crop Prot 139:105374
Liu Y, Qi A, Khan MF (2019) Age-dependent resistance to Rhizoctonia solani in sugar beet. Plant Dis 103:2322–2329
Ma X, Wang X, Cheng J, et al (2015) Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control 90:34–41
Mahmoud AF (2016a) Suppression of sugar beet damping-off caused by Rhizoctonia solani using bacterial and fungal antagonists. Arch Phytopathol Plant Prot 49:575–585
Mahmoud AF (2016b) Suppression of sugar beet damping-off caused by Rhizoctonia solani using bacterial and fungal antagonists. Arch Phytopathol Plant Prot 49:575–585
Martin SB, Lucas LT, Campbell CL (1984) Comparative sensitivity of Rhizoctonia solani and Rhizoctonia-like fungi to selected fungicides in vitro. Phytopathology 74:778–781
Moita C, Feio SS, Nunes L, et al (2005) Optimisation of physical factors on the production of active metabolites by Bacillus subtilis 355 against wood surface contaminant fungi. Int Biodeterior Biodegrad 55:261–269
Moussa TA (2002) Studies on biological control of sugarbeet pathogen Rhizoctonia solani Kühn. J Biol Sci 2:800–804
Nielsen MN, Sørensen J, Fels J, Pedersen HC (1998) Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Env Microbiol 64:3563–3569
Olaya G, Buitrago C, Pearsaul D, et al (2012) Detection of resistance to QoI fungicides in Rhizoctonia solani isolates from rice. In: Phytopathology. AMER PHYTOPATHOLOGICAL SOC 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA, pp 88–88
Ongena M, Duby F, Jourdan E, et al (2005) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67:692–698
Ongena M, Jourdan E, Adam A, et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090
Otten W, Filipe JAN, Bailey DJ, Gilligan CA (2003) Quantification and analysis of transmission rates for soilborne epidemics. Ecology 84:3232–3239
Pastor NA, Reynoso MM, Tonelli ML, et al (2010) Potential biological control Pseudomonas sp. PCI2 against damping-off of tomato caused by Sclerotium rolfsii. J Plant Pathol 737–745
Redani L (2015) Compétitivité, valorisation des ressources et objectifs de sécurité alimentaire pour la filière sucrière au Maroc. PhD Thesis, Gembloux Agro-Bio Tech Université de Liège, Gembloux, Belgique
Rhmiza A (1991) Contribution to the study of damping off and rot of sugar-beet in Doukkala region (Morocco)
Rong S, Xu H, Li L, et al (2020) Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pestic Biochem Physiol 162:69–77
Rosenzweig N, Olaya G, Atallah ZK, et al (2008) Monitoring and tracking changes in sensitivity to azoxystrobin fungicide in Alternaria solani in Wisconsin. Plant Dis 92:555–560
Ruppel EG (1972) Pathogenicity of Rhizoctonia solani from Sugar Beet. Phytopathology 62:202–205
Rush CM, Winter SR (1990) Influence of previous crops on Rhizoctonia root crown rot of sugar beet. Plant Dis 74:421–425
Selim HM, Gomaa NM, Essa AM (2017) Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol 27:81–95
Shan-lin LI (2013) Determination on Toxicity of Different Fungicides to Rhizoctonia solani in Laboratory. J Agric Catastrophology
Singh N, Raina S, Singh D, et al (2017) Exploitation of promising native strains of Bacillus subtilis with antagonistic properties against fungal pathogens and their PGPR characteristics. J Plant Pathol 27–35
Snaiki J, Nadif A, Ouhssine M (2005) Detection of two pathotypes of Erwinia causing soft rot of sugar beet in the Gharb plain of Morroco. Bull OEPPEPPO Bull 35:537–540
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857
Stump WL, Franc GD, Miller SD, Wilson RG (2002) Azoxystrobin and post emergence herbicide combinations for Rhizoctonia and weed management in sugarbeet. J Sugar Beet Res 39:37–58
Szczech M, Shoda M (2006) The Effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154:370–377
Wang L, Yang X, Tan C, et al (2018a) Effects of Bacillus subtilis (Y1336) on controlling rose powdery mildew and soil nutrient status. Southwest China J Agric Sci 31:2569–2574
Wang XQ, Zhao DL, Shen LL, et al (2018b) Application and mechanisms of Bacillus subtilis in biological control of plant disease. In: Role of rhizospheric microbes in soil. Springer, pp 225–250
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322
Yangui T, Rhouma A, Triki MA, et al (2008) Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot 27:189–197
Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145
Zhang C, Wang W, Xue M, et al (2021) The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control fusarium wilt in cowpea. J Fungi 7:685