1. George K, Whyte GP, Green DJ, et al. The endurance athletes heart: Acute stress and chronic adaptation. Br J Sports Med 2012;46(suppl 1):i29–36. https://doi.org/10.1136/bjsports-2012-091141.
2. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003;43:2–15. https://doi.org/10.1016/s0018-506x(02)00024-7.
3. Logan JG, Barksdale DJ. Allostasis and allostatic load: Expanding the discourse on stress and cardiovascular disease. J Clin Nurs 2008;17:201–8. https://doi.org/10.1111/j.1365-2702.2008.02347.x.
4. Seeman TE, Crimmins E, Huang MH, et al. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Soc Sci Med 2004;58:1985–97. https://doi.org/10.1016/S0277-9536(03)00402-7.
5. Schulkin J. Allostasis, homeostasis, and the costs of physiological adaptation. New York, NY: Cambridge University Press 2004:17-30.
6. Freeman JV, Dewey FE, Hadley DM, et al. Autonomic nervous system interaction with the cardiovascular system during exercise. Prog Cardiovasc Dis 2006;48:342–62. https://doi.org/10.1016/j.pcad.2005.11.003.
7. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med 2003;33:889–919. https://doi.org/10.2165/00007256-200333120-00003.
8. Makivic B, Nikic M, Willis M. Heart rate variability (HRV) as a tool for diagnostic and monitoring performance in sport and physical activities. J Exer Physiol 2013;16:103–31.
9. Sarmiento S, García-Manso JM, Martín-González JM, et al. Heart rate variability during high-intensity exercise. J Syst Sci Complexity 2013;26:104–16. https://doi.org/10.1007/s11424-013-2287-y.
10. Dong JG. The role of heart rate variability in sports physiology. Exp Ther Med 2016;11:1531–36. https://doi.org/10.3892/etm.2016.3104.
11. Vanderlei LCM, Pastre CM, Hoshi RA, et al. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc 2009;24:205–17. https://doi.org/10.1590/s0102-76382009000200018.
12. Chen JL, Yeh DP, Lee JP, et al. Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. J Strength Cond Res 2011;25:1546–52. https://doi.org/10.1519/JSC.0b013e3181da7858.
13. Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur J Sport Sci 2013;13:1–24.
14. Piermattéo A, Lo Monaco G, Reymond G, et al. The meaning of sport and performance among amateur and professional athletes. Int J Sport Exer Psychol 2020;18:472–84. https://doi.org/10.1080/1612197X.2018.1536160.
15. Malik M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996;17:354–81. https://doi.org/10.1161/01.CIR.93.5.1043.
16. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research—Recommendations for experiment planning, data analysis, and data reporting. Front Psychol 2017;8:213. https://doi.org/10.3389/fpsyg.2017.00213.
17. Tarvainen MP, Niskanen JP, Lipponen JA, et al. Kubios HRV – Heart rate variability analysis software. Comput Methods Programs Biomed 2014;113:210–20. https://doi.org/10.1016/j.cmpb.2013.07.024.
18. Sandercock GRH, Bromley PD, Brodie DA. Reliability of three commercially available heart rate variability instruments using short-term (5-min) recordings. Clin Physiol Funct Imaging 2004;24:359–67. https://doi.org/10.1111/j.1475-097X.2004.00584.x.
19. Sandercock GRH, Shelton C, Bromley P, et al. Agreement between three commercially available instruments for measuring short-term heart rate variability. Physiol Meas 2004;25:1115–24. https://doi.org/10.1088/0967-3334/25/5/003.
20. Cardio Perfect Software. Heart rate variability module for cardio perfect rest ECG. Skaneateles Falls, New York, NY: Welch Allyn, Inc 2015.
21. Stewart A, Marfell-Jones M, Olds T, et al. International standards for anthropometric assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry 2011: 53-55.
22. Jowett NI, Turner AM, Cole A, et al. Modified electrode placement must be recorded when performing 12-lead electrocardiograms. Postgrad Med J 2005;81:122–5.
23. Denver JW, Reed SF, Porges SW. Methodological issues in the quantification of respiratory sinus arrhythmia. Biol Psychol 2007;74:286–94.
24. Penttilä J, Helminen A, Jartti T, et al. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clin Physiol 2001;21:365–76.
25. Saboul D, Pialoux V, Hautier C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur J Sport Sci 2013;13:534–42.
26. Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 2007;102:79–86.
27. Martinmäki K, Rusko H. Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol 2008;102:353–60. https://doi.org/10.1007/s00421-007-0594-5
28. Perkins SE, Jelinek HF, Al-Aubaidy HA, et al. Immediate and long term effects of endurance and high intensity interval exercise on linear and nonlinear heart rate variability. J Sci Med Sport 2017;20:312–16.
29. Ramos-Campo DJ, Ávila-Gandía V, Alacid F, et al. Muscle damage, physiological changes, and energy balance in ultra-endurance mountain-event athletes. Appl Physiol Nutr Metab 2016;41:872–8.
30. Vallverdú M, Ruiz-Muñoz A, Roca E, et al. Assessment of heart rate variability during an endurance mountain Trail race by multi-scale entropy analysis. Entropy 2017;19:758. https://doi.org/10.3390/e19120658.
31. Lampert R, Bremner JD, Su S, et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J 2008;156:759.e1–7. https://doi.org/10.1016/j.ahj.2008.07.009.
32. Cataldo A, Bianco A, Paoli A, et al. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes. Eur J Transl Myol 2018;28:7051. https://doi.org/10.4081/ejtm.2018.7051
33. Hautala A, Tulppo MP, Mäkikallio TH, et al. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol 2001;21:238–45. https://doi.org/10.1046/j.1365-2281.2001.00309.x.
34. Bernardi L, Passino C, Robergs R, et al. Acute and persistent effects of a 46-kilometer wilderness trail run at altitude: Cardiovascular autonomic modulation and baroreflexes. Cardiovasc Res 1997;34:273–80. https://doi.org/10.1016/s0008-6363(97)00025-4.
35. Gratze G, Rudnicki R, Urban W, et al. Hemodynamic and autonomic changes induced by ironman: Prediction of competition time by blood pressure variability. J Appl Physiol (1985). 2005;99:1728–35. https://doi.org/10.1152/japplphysiol.00487.2005.