1. Lorenci Woiciechowski A, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances. Bioresour Technol. 2020;304:122848.
2. Francois JM, et al. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol Biofuels. 2020;13:118.
3. Mosier N, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673-86.
4. Hattori T, Morita S. Energy crops for sustainable bioethanol production; which, where and how? Plant Prod Sci. 2010;13(3):221-34.
5. Sethupathy S, et al. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. Biotechnol Biofuels. 2021;14(1):154.
6. Beschkov V. Biogas, biodiesel and bioethanol as multifunctional renewable fuels and raw materials. Frontiers in Bioenergy and Biofuels. 2017.
7. Faga BA, et al. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol. 2010;101(7):2273-9.
8. Alvira P, et al. Effect of endoxylanase and alpha-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol. 2011;102(6):4552-8.
9. Shi J, et al. Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng. 2017;114(3):503-15.
10. Lynd LR, et al. How biotech can transform biofuels. Nat Biotechnol. 2008;26(2):169-72.
11. Jiang Y, et al. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass. Biotechnol Bioeng. 2020;117(10):2985-95.
12. Kim SM, et al. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol Biofuels. 2016;9:97.
13. Chang JJ, et al. Constructing a cellulosic yeast host with an efficient cellulase cocktail. Biotechnol Bioeng. 2018;115(3):751-61.
14. Liu H, et al. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol. 2018:1-17.
15. Branduardi P, et al. The yeast : a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 2004;4(4-5):493-504.
16. Liu H, et al. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol. 2018;38(7):1089-105.
17. Lassmann T, et al. Simulation of the downstream processing in the ethanol production from lignocellulosic biomass with ASPEN Plus® and IPSEpro. Energy Sustain Soc. 2014;4(1).
18. Binder JB, Raines RT. Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A. 2010;107(10):4516-21.
19. Matsushika A, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol. 2009;84(1):37-53.
20. Fonseca GG, et al. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008;79(3):339-54.
21. Radecka D, et al. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res. 2015;15(6).
22. Zhou J, et al. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol Biofuels. 2018;11:235.
23. Mehmood N, et al. Kluyveromyces marxianus, An attractive yeast for ethanolic fermentation in the presence of imidazolium ionic liquids. Int J Mol Sci. 2018;19(3).
24. Castro RC, Roberto IC. Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol. 2014;172(3):1553-64.
25. Lobs AK, et al. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol Biofuels. 2017;10:164.
26. Jui-Jen Chang C-YH, Feng-Ju Ho, Tsung-Yu Tsai, Huei-Mien Ke, Christine H-T Wang, Hsin-Liang Chen, Ming-Che Shih, Chieh-Chen Huang and Wen-Hsiung Li. PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels. 2012;5(1):53.
27. Choo JH, et al. Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus. Biotechnol Lett. 2014;36(10):2059-67.
28. Abdel-Banat BM, et al. Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast. 2010;27(1):29-39.
29. Nonklang S, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74(24):7514-21.
30. Fang J, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol. 2005;23(5):584-90.
31. Ryan MD, et al. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J of Gen Virol. 2001;82(5):1013-25.
32. de Felipe P, et al. Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. 2003;278(13):11441-8.
33. Chen Y-L, et al. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol. 2001;47(12):1088-94.
34. Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6(3):219-28.
35. Doronina VA, et al. Site-specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol. 2008;28(13):4227-39.
36. Souza-Moreira TM, et al. Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Res. 2018;18(5).
37. Roongsawang N, et al. Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. FEMS Yeast Res. 2010;10(7):909-16.
38. Trichas G, et al. Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol. 2008;6:40.
39. Ohgren K, et al. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol. 2007;98(13):2503-10.
40. García-Aparicio MP, et al. Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol. 2007;137-140(1-12):353-65.
41. Várnai A, et al. Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Tech. 2010;46(3-4):185-93.
42. Saitoh S, et al. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both beta-glucosidase and beta-xylosidase. Appl Microbiol Biotechnol. 2011;91(6):1553-9.
43. Zhou J, et al. Biochemical and kinetic characterization of GH43 beta-D-xylosidase/alpha-L-arabinofuranosidase and GH30 alpha-L-arabinofuranosidase/beta-D-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol. 2012;39(1):143-52.
44. Banerjee G, et al. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels. 2010;3:22.
45. Varnai A, et al. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol. 2011;102(19):9096-104.
46. Inoue H, et al. Effect of beta-mannanase and beta-mannosidase supplementation on the total hydrolysis of softwood polysaccharides by the Talaromyces cellulolyticus cellulase system. Appl Biochem Biotechnol. 2015;176(6):1673-86.
47. Katsimpouras C, et al. A thermostable GH26 endo-beta-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol. 2016;100(19):8385-97.
48. Cornelis, et al. Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992.
49. Karim A, et al. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol. 2020;333:108818.
50. Postma E, et al. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989;55(2):468.
51. Dashko S, et al. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014;14(6):826-32.
52. Remond C, et al. Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour Technol. 2010;101(17):6712-7.
53. Shin HD, et al. Novel Aspergillus hemicellulases enhance performance of commercial cellulases in lignocellulose hydrolysis. Biotechnol Prog. 2011;27(2):581-6.
54. Liu K, et al. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol. 2010;101(13):4952-8.
55. Tenkanen M, et al. Investigation of lignin-carbohydrate complexes in kraft pulps by selective enzymatic treatments. Appl Microbiol Biotechnol. 1999;51(2):241-8.
56. Gao J, et al. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels. 2015;8:115.
57. Mo W, et al. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol Biofuels. 2019;12:63.
58. Heck BL, et al. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res. 2010(7):691-8.
59. Visser W, et al. Oxygen requirements of yeasts. Appl Environ Microbiol. 1990.
60. Fonseca GG, et al. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008;79(3):339-54.
61. Santharam L, et al. Effect of aeration and agitation on yeast inulinase production: a biocalorimetric investigation. Biopro Biosyst Eng. 2019;42(6):1-13.
62. Hensing MC, et al. Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol. 1994;42(4):516-21.
63. Xin, et al. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis. Bioresour Technol. 2015.
64. Kim TH, et al. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol. 2003;90(1):39-47.
65. Hua Y, et al. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact. 2019;18(1):24.
66. Rodrussamee N, et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol. 2011;90(4):1573-86.
67. Gschaedler A, et al. Use of non-Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. Int J Food Microbiol. 2021;347.
68. You C, et al. Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. Biotechnol Bioeng. 2010;105(5):861-70.
69. Gibson, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009.
70. Antunes DF, et al. A simple and rapid method for lithium acetate-mediated transformation of Kluyveromyces marxianus cells. World J Microb Biot. 2000;16(7):653-4.
71. Pan X, et al. High level expression of a truncated beta-mannanase from alkaliphilic Bacillus sp. N16-5 in Kluyveromyces cicerisporus. Biotechnol Lett. 2011;33(3):565-70.
72. Sluiter A, et al. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL Analytical Procedure National Renewable Energy Laboratory, Golden, CO. 2006.
73. Sluiter A, et al. Determination of structural carbohydrates and lignin in biomass. NREL Analytical Procedure National Renewable Energy Laboratory, Golden, CO. 2004.
74. Rehman O, et al. Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae. Biomass Convers Bior. 2019;10(4):1269-78.
75. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-8.