We present new high-resolution absolute-dated stalagmite δ18O and δ13C records from the southeastern United States (SE US) spanning the last 12 thousand years (ka). A local relationship between annual rainfall amount and its amount-weighed δ18O composition exists on interannual timescales, driven mostly by an amount effect during summer and spring seasons, and by an isotopically depleted composition of fall and winter precipitation. Based on a novel interpretation of modern rainfall isotopic data, stalagmite δ18O variability is interpreted to reflect the relative contribution of summer and spring precipitation combined relative to combined fall and winter precipitation. Precipitation amount in the SE US increases during the Younger Dryas, the 8.2 ka and Little Ice Age abrupt cooling events. High precipitation during these events reflects enhancement of spring and summer precipitation while the contribution of fall and winter rainfall remained unchanged or decreased slightly. Results from this study support model simulation results that suggest increased precipitation in the SE US during Atlantic Meridional Overturning Circulation (AMOC) slowdown/shutdown (LeGrande et al., 2006; Renssen et al., 2002; Vellinga and Wood, 2002). In association with Northern Hemisphere mid-latitude cooling from the Early to mid-Holocene, annual precipitation in the SE US decreases, a pattern distinctive from that observed during abrupt cooling events related to AMOC shifts. Long-term hydroclimate change in the SE US is likely sensitive to summer insolation reduction as inferred for other tropical and subtropical regions. This study has implications for our understanding of the sensitivity of subtropical hydroclimate to factors both internal and external to the climate system in a warmer climate.