1 Patterson, K. D. & Pyle, G. F. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med 65, 4-21 (1991).
2 Huang, Y. S., Higgs, S. & Vanlandingham, D. L. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol 34, 104-109, doi:10.1016/j.coviro.2019.01.001 (2019).
3 Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46, 509-520 (1952).
4 Giron, S. et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. . Euro Surveill 24(45):pii=1900655., doi:https://doi.org/10.2807/1560-7917.ES.2019.24.45.1900655 (2019).
5 Sim, S., Jupatanakul, N. & Dimopoulos, G. Mosquito immunity against arboviruses. Viruses 6, 4479-4504, doi:10.3390/v6114479 (2014).
6 Aubry, F. et al. Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations. Science 370, 991-996, doi:10.1126/science.abd3663 (2020).
7 Roundy, C. M. et al. Lack of evidence for Zika virus transmission by Culex mosquitoes. Emerg Microbes Infect 6, e90, doi:10.1038/emi.2017.85 (2017).
8 Guo, X. X. et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg Microbes Infect 5, e102, doi:10.1038/emi.2016.102 (2016).
9 Guedes, D. R. et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg Microbes Infect 6, e69, doi:10.1038/emi.2017.59 (2017).
10 Viveiros-Rosa, S. G., Regis, E. G. & Santos, W. C. Vector competence of Culex mosquitoes (Diptera: Culicidae) in Zika virus transmission: an integrative review. Rev Panam Salud Publica 44, e7, doi:10.26633/RPSP.2020.7 (2020).
11 Hery, L., Boullis, A., Delannay, C. & Vega-Rua, A. Transmission potential of African, Asian and American Zika virus strains by Aedes aegypti and Culex quinquefasciatus from Guadeloupe (French West Indies). Emerg Microbes Infect 8, 699-706, doi:10.1080/22221751.2019.1615849 (2019).
12 Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasit Vectors 13, 398, doi:10.1186/s13071-020-04267-z (2020).
13 Abbo, S. R. et al. Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva. Viruses 12, 659, doi:10.3390/v12060659 (2020).
14 Fernandes, R. S. et al. Vector Competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for Three Zika Virus Lineages. Pathogens 9, doi:10.3390/pathogens9070575 (2020).
15 Lourenco-de-Oliveira, R. et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J Gen Virol 99, 258-264, doi:10.1099/jgv.0.000949 (2018).
16 Lourenco-de-Oliveira, R. & Failloux, A. B. Lessons learned on Zika virus vectors. PLoS Negl Trop Dis 11, e0005511, doi:10.1371/journal.pntd.0005511 (2017).
17 Gloria-Soria, A. et al. Global genetic diversity of Aedes aegypti. Mol Ecol 25, 5377-5395, doi:10.1111/mec.13866 (2016).
18 Guzman, M. G. & Harris, E. Dengue. Lancet 385, 453-465, doi:10.1016/S0140-6736(14)60572-9 (2015).
19 Weaver, S. C. & Lecuit, M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372, 1231-1239, doi:10.1056/NEJMra1406035 (2015).
20 Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu Rev Med 69, 395-408, doi:10.1146/annurev-med-050715-105122 (2018).
21 Kramer, L. D. & Ciota, A. T. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol 15, 112-118, doi:10.1016/j.coviro.2015.10.003 (2015).
22 Powell, J. R. Mosquitoes on the move. Science 354, 971-972, doi:10.1126/science.aal1717 (2016).
23 Weetman, D. et al. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. Int J Environ Res Public Health 15, doi:10.3390/ijerph15020220 (2018).
24 Kamgang, B. et al. Different populations of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Central Africa are susceptible to Zika virus infection. PLoS Negl Trop Dis 14, e0008163, doi:10.1371/journal.pntd.0008163 (2020).
25 Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu Rev Med 69, 395-408, doi:10.1146/annurev-med-050715-105122 (2018).
26 Singapore Zika Study, G. Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis. Lancet Infectious Diseases 17, 813-821, doi:10.1016/S1473-3099(17)30249-9 (2017).
27 Ruchusatsawat, K. et al. Long-term circulation of Zika virus in Thailand: an observational study. Lancet Infect Dis 19, 439-446, doi:10.1016/S1473-3099(18)30718-7 (2019).
28 Ngwe Tun, M. M. et al. Detection of Zika Virus Infection in Myanmar. Am J Trop Med Hyg 98, 868-871, doi:10.4269/ajtmh.17-0708 (2018).
29 Quyen, N. T. H. et al. Chikungunya and Zika Virus Cases Detected against a Backdrop of Endemic Dengue Transmission in Vietnam. Am J Trop Med Hyg 97, 146-150, doi:10.4269/ajtmh.16-0979 (2017).
30 Wen, J. & Shresta, S. Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr Opin Immunol 59, 1-8, doi:10.1016/j.coi.2019.02.001 (2019).
31 Luo, X. S., Imai, N. & Dorigatti, I. Quantifying the risk of Zika virus spread in Asia during the 2015-16 epidemic in Latin America and the Caribbean: A modeling study. Travel Med Infect Dis 33, 101562, doi:10.1016/j.tmaid.2020.101562 (2020).
32 Lwande, O. W. et al. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector Borne Zoonotic Dis 20, 71-81, doi:10.1089/vbz.2019.2486 (2020).
33 Grard, G. et al. Zika virus in Gabon (Central Africa)--2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 8, e2681, doi:10.1371/journal.pntd.0002681 (2014).
34 Ngoagouni, C., Kamgang, B., Nakoune, E., Paupy, C. & Kazanji, M. Invasion of Aedes albopictus (Diptera: Culicidae) into central Africa: what consequences for emerging diseases? Parasit Vectors 8, 191, doi:10.1186/s13071-015-0808-3 (2015).
35 Kamgang, B. et al. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis 7, e2590, doi:10.1371/journal.pntd.0002590 (2013).
36 Vega-Rua, A. et al. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 3, 326, doi:10.1038/s42003-020-1046-6 (2020).
37 Nunez, A. I. et al. Evidence of Zika virus horizontal and vertical transmission in Aedes albopictus from Spain but not infectious virus in saliva of the progeny. Emerg Microbes Infect 9, 2236-2244, doi:10.1080/22221751.2020.1830718 (2020).
38 Vazeille, M. et al. Zika virus threshold determines transmission by European Aedes albopictus mosquitoes. Emerg Microbes Infect 8, 1668-1678, doi:10.1080/22221751.2019.1689797 (2019).
39 Parra, M. C. P. et al. Detection of Zika RNA virus in Aedes aegypti and Aedes albopictus mosquitoes, Sao Paulo, Brazil. Infect Genet Evol 98, 105226, doi:10.1016/j.meegid.2022.105226 (2022).
40 Glavinic, U. et al. Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasit Vectors 13, 479, doi:10.1186/s13071-020-04361-2 (2020).
41 Schaffner, F., Chouin, S. & Guilloteau, J. First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc 19, 1-5 (2003).
42 Koban, M. B. et al. The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasit Vectors 12, 109, doi:10.1186/s13071-019-3349-3 (2019).
43 Yang, F. et al. Cache Valley Virus in Aedes japonicus japonicus Mosquitoes, Appalachian Region, United States. Emerg Infect Dis 24, 553-557, doi:10.3201/eid2403.161275 (2018).
44 Abbo, S. R. et al. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl Trop Dis 14, e0008217, doi:10.1371/journal.pntd.0008217 (2020).
45 Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R(2) and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface 14, doi:10.1098/rsif.2017.0213 (2017).
46 R: A language and environment for statistical computing. (2021).
47 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1 - 48, doi:10.18637/jss.v067.i01 (2015).
48 Lüdecke, D. et al. An R Package for Visualizing Statistical Models. Journal of Open Source Software 6, doi:10.21105/joss.03393 (2021).
49 Stoffel, M. A., Nakagawa, S. & Schielzeth, H. partR2: partitioning R(2) in generalized linear mixed models. PeerJ 9, e11414, doi:10.7717/peerj.11414 (2021).