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Abstract
Precipitation extremes present significant risks to Midwest agriculture, water resources, and natural
ecosystems. Recently, there is growing attention to the transitions of precipitation extremes, or shifts
between heavy precipitation and drought, due to their profound environmental and socio-economic
impacts. Changes in Midwest precipitation extremes and transitions between extremes over the past few
decades have been documented; however, their future changes are still unknown. In this study, we
estimate the projected changes in transitions of precipitation extremes in the Midwest based on 17
CMIP6 models. Two Standardized Precipitation Index (SPI) based metrics, intra-annual variability and
transitions, are used to quantify the magnitude, duration, and frequency of variability and transitions
between wet and dry extremes. Compared with the observation-based precipitation datasets, the
multimodel ensemble median of CMIP6 can reasonably represent the spatial patterns of SPI extremes
and transitions. Climate projections show significantly intensified wet extremes across the Midwest by
the end of the century, with a greater increase over the northern Midwest and the Great Lakes region. The
short-term SPI also shows intensified dry extremes over the western half of the Midwest. Consequently,
there is a significant increase in the magnitude of intra-annual variability in most areas. Projections also
suggest more frequent and rapid transitions between the wet and dry extremes, especially over the Great
Lakes region and northern Midwest. Seasonally, more frequent transitions from a wet spring to a dry
summer (or from a dry fall to a wet winter/spring) are projected to occur; and generally, the wet and dry
conditions between the transitions are projected to be more intense compared to the historical period.
Furthermore, the intensified precipitation extremes and accelerated transitions are greatly alleviated under
a lower emission scenario, implying that future changes in hydroclimate extremes, and impacts thereof,
in the Midwest are sensitive to climate change mitigation.

1. Introduction
The variations of precipitation extremes, such as heavy precipitation and drought, present major risks for
natural and human systems. The US Midwest, one of the most agriculturally productive regions in the
world (Berhane et al. 2020), can be heavily impacted by those extreme events, resulting in crop yield
reduction, infrastructure damage, poor human and ecological health outcomes, and tremendous
economic loss (Angel et al. 2018; Liu and Basso 2020). Historically, significant increasing trends in heavy
precipitation have been observed in the Midwest (Janssen et al. 2014; Walsh et al. 2014). Historical
changes in drought are more mixed, with some studies finding increasing drought frequency especially in
the northern Midwest (Ficklin et al. 2015) and other studies reporting no change or largely decreasing
drought risk in the Midwest (Mo and Lettenmaier 2018; Basso et al. 2021). Under a warming climate,
precipitation extremes are expected to be more intense (Seneviratne et al. 2012), because the water
holding capacity of the atmosphere increases with temperature according to the Clausius-Clapeyron
scaling (Bador et al. 2018). Climate projections from state-of-the-art climate models (such as Coupled
Model Intercomparison Project phase 6, CMIP6; North America Coordinated Regional Downscaling
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Experiment, NA-CORDEX) have projected increased risks of floods and droughts in the future (Akinsanola
et al. 2020; Chen and Ford 2021; Almazroui et al. 2021).

Although considerable attention has been given to the precipitation extremes by quantifying different
precipitation indices independently (Akinsanola et al. 2020; Chen and Ford 2021), there is an increasing
demand for a better understanding of the transitions between precipitation extremes, which may lead to
more significant environmental and socio-economic impacts (Ford et al. 2021). Transitions between
extremes, also described as “weather whiplash” (e.g., Cohen 2016), refers to the rapid evolution from one
climate extreme to that of the opposite sign. Such transitions of precipitation extremes and their impacts
have been documented in the Midwest. Christian et al. (2015) suggest that there is a considerable chance
that a drought year is followed by a pluvial year in the US Great Plains. Loecke et al. (2013) attributed
water quality problems in the Midwest to poor soil conditions and nutrient runoff due to the rapid
transition drought in 2012 to pluvial in 2013. A more recent example was the widespread flooding across
the Midwest in spring 2019, followed by rapid onset drought in the late summer 2019 over the southern
Midwest, both of which resulted in reductions in crop yield (Yin et al. 2020). Our recent study explores
Midwest precipitation extremes and transitions over the last 70 years, and finds that wet-to-dry transitions
have largely increased in speed and frequency in many areas of the Midwest (Ford et al. 2021).

Despite the increased concerns about recent transitions of precipitation extremes and associated
environmental and socio-economic impacts, little work has been done to estimate how the transitions will
change in the future climate. Understanding future transitions is essential to Midwestern agriculture,
especially considering the projected intensification of precipitation extremes. Therefore, the goal of the
study is to investigate the projected changes in transitions of precipitation extremes in the Midwest using
climate projections from CMIP6. We aim to answer two research questions: (1) Can CMIP6 models
represent the regional precipitation extremes and transitions during the historical period? (2) How will the
transitions change in different climate scenarios? The paper is organized as follows. A detailed
description of data and methods is given in Section 2. Historical precipitation extreme transitions in
CMIP6 are evaluated in section 3. The projected changes in the transitions and their seasonality are
presented in section 4. Discussions and summaries are provided in section 5.

2. Datasets And Methodology

2.1 CMIP6 output
In this study, we use precipitation output from CMIP6 to quantify the present and future precipitation
extremes. Two metrics developed in Ford et al. (2021) are applied to quantify the transition of
precipitation extremes. We use simulated daily precipitation from 17 global climate models (GCMs)
participating in CMIP6 to analyze the transitions of precipitation extremes. Previous studies have
evaluated the performance of CMIP6 in simulating precipitation extremes in the US at continental or
regional scales and suggest that multimodel median performs better overall than individual models (e.g.,
Akinsanola 2020; Srivastava et al. 2020). Also, there are studies assessing future changes in regional
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precipitation extremes using CMIP6 (e.g., Tang et al. 2021; Xu et al. 2021). Those studies in model
evaluation and extreme assessment have demonstrated that CMIP6 models can be used for regional
precipitation extreme studies. Table 1 shows the information of 17 models and their availability for the
historical simulations from 1850 to 2014 and future projections from 2015 to 2100 under three Shared
Socioeconomic Pathways (SSPs). SSP585, SSP245, and SSP126 represent the high, medium, and low
ends of the range of future pathways producing radiative forcings of 8.5 W/m2, 4.5 W/m2, 2.6 W/m2 by
2100, respectively (O'Neill et al. 2016). There is one model (NESM3) without SSP245 simulations
available and two models (NESM3 and NorESM2-LM) without SSP126 simulations available. Although
some models provide more than one ensemble member, only the first ensemble member is used in the
analysis. This approach is consistent with previous studies assessing projected changes in precipitation
extremes (Akinsanola et al. 2020).
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Table 1
Information of the 17 CMIP6 models used in this study.

Model Horizontal resolution (lat×lon grid
numbers)

historical SSP585 SSP245 SSP126

ACCESS-CM2 144×192 ✓ ✓ ✓ ✓

ACCESS-
ESM1-5

145×192 ✓ ✓ ✓ ✓

BCC-CSM2-
MR

160×320 ✓ ✓ ✓ ✓

CanESM5 64×128 ✓ ✓ ✓ ✓

CESM2 192×288 ✓ ✓ ✓ ✓

FGOALS-g3 90×180 ✓ ✓ ✓ ✓

GFDL-CM4 180×288 ✓ ✓ ✓  

GFDL-ESM4 180×288 ✓ ✓ ✓ ✓

INM-CM5-0 120×180 ✓ ✓ ✓ ✓

IPSL-CM6A-
LR

143×144 ✓ ✓ ✓ ✓

MIROC6 128×256 ✓ ✓ ✓ ✓

MPI-ESM1-2-
HR

192×384 ✓ ✓ ✓ ✓

MPI-ESM1-2-
LR

96×192 ✓ ✓ ✓ ✓

MRI-ESM2-0 160×320 ✓ ✓ ✓ ✓

NESM3 96×192 ✓ ✓    

NorESM2-LM 96×144 ✓ ✓ ✓  

NorESM2-MM 192×288 ✓ ✓ ✓ ✓

2.2 Evaluation data
Precipitation data for the period 1950–2014 is obtained from the 3rd phase Global Soil Wetness Project
(GSWP, Kim 2017) to evaluate the CMIP6 models’ performance in simulating historical transitions of
precipitation extremes. GSWP is a hybrid dataset produced based on a dynamical downscaling of the
20th Century Reanalysis (20CR, Compo et al. 2011) at a spatial resolution of 0.5°×0.5° latitude-longitude
grid. Bias corrections are then applied using global observationally-based gridded datasets (such as
Global Precipitation Climatology Centre, GPCC; Global Precipitation Climatology Project, GPCP; Climate
Prediction Center (CPC) Unified Precipitation Project) to improve the representation of temperature and
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precipitation variables (Dirmeyer et al. 2006; Yoshimura and Kanamitsu 2008). This dataset has been
used as the primary meteorological forcing in the offline simulations of the Land Surface, Snow and Soil
Moisture Model Intercomparison Project (LS3MIP), a CMIP6-Endorsed Model Intercomparison Project
(MIP), which is designed to evaluate the land models of current Earth system models and investigate land
surface, snow and soil moisture feedback to climate variability and climate change (van den Hurk et al.
2016). Although precipitation bias has been found in many gridded meteorological datasets when
compared to in situ observations due to the intrinsic heterogeneity (van den Hurk et al. 2016) and many
of gridded datasets show a negative bias in precipitation over the Great Lakes region (Behnke et al.
2016), the application of GSWP in LS3MIP as the primary forcing dataset demonstrates its credibility in
representing precipitation variability.

The spatial resolution of gridded datasets can possibly affect the detected precipitation extremes,
particularly over regions with complex terrain (Gervais et al. 2014; Herold et al. 2016). However, the
Midwest is not as orographically complex as the eastern or western US. Precipitation products at such a
spatial resolution have been used to assess precipitation extremes in previous studies (e.g., Donat et al.
2013; Olmo et al. 2020; Zhou et al. 2016). Meanwhile, comparing the GSWP-based results with the high-
resolution results in our previous study (Ford et al. 2021), the two datasets show a good agreement in the
spatial pattern in transitions of precipitation extremes, although GSWP may lose some spatial details (to
be discussed in Section 3). Considering the uncertainty of the precipitation data, another observational
precipitation dataset, the gridded CPC unified gauge-based precipitation analysis (Chen et al. 2008; Xie et
al. 2010), is also used for the evaluation. The CPC dataset provides daily precipitation at a spatial
resolution of 0.5°×0.5° latitude-longitude grid over the contiguous US since 1948.

2.3 Definitions of variability and transitions in precipitation
extremes
In this study, precipitation extremes are characterized using the Standardized Precipitation Index (SPI;
McKee et al. 1993). SPI is a probability-based index and has been widely used for drought monitoring
(Svoboda et al. 2002) and precipitation extremes studies (e.g., Choi et al. 2016; Russo et al. 2013; Wang
et al. 2017). It should be noted that there are several limitations of SPI, including the requirement for data
quality and length, not being capable of identifying regions that may be more “drought-prone” than
others, and possibly misleading large values of short-term SPI in regions with low seasonal precipitation
(Hayes et al. 1999), and no consideration of other meteorological conditions closely related to drought.
However, due to its simplicity and versatility, SPI has been recommended as a key drought indicator by
the World Meteorological Organization (Wilhite 2006) and a universal meteorological drought index by
the Lincoln Declaration on Drought (Hayes et al. 2011). In the SPI algorithm, at a given grid cell, long-term
(e.g., the historical period 1950–2014 in this study) precipitation data is used to determine the probability
density function (PDF) of n-day accumulated precipitation by fitting a gamma distribution. To calculate
the SPI for each CMIP6 model, its historical simulation during 1950–2014 is used as the reference to fit
the gamma distribution. Then the actual n-day accumulated precipitation on a given day in a given year
(in the historical or future period) is expressed as a standardized departure from the PDF. In this study, we
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calculate 30-, 90- and 180-day SPI to characterize monthly to seasonal precipitation extremes. We used
those three aggregation periods, matching the methods of Ford et al. (2021) to capture variability, change,
and transitions at the subseasonal to seasonal timescale. Variability and transitions on shorter
timescales (i.e., 30-days) are important for agriculture management and decision making, while those on
90- to 180-day timescales are more relevant for water resource planning. Because the calculation of
accumulated precipitation produces missing values for the first n-1 days, the first year (1950) is discarded
in our analysis.

We apply two SPI-based metrics developed in Ford et al. (2021) to quantify the transition of precipitation
extremes: intra-annual variability and transition. Intra-annual variability is based on the annual maximum
SPI and annual minimum SPI within a calendar year. It allows us to quantify the magnitude and duration
of extreme precipitation variability of each year. Magnitude is defined as the difference between the
annual maximum and minimum SPI; duration is the time span between the two intra-annual extremes,
measured in days.

Because the calculation of SPI can essentially erase the seasonal cycle of precipitation, the identified
intra-annual variability should be carefully evaluated. First, we compare the annual maximum/minimum
precipitation with the actual precipitation when the annual maximum/minimum SPI is identified (Figure
S1). The total precipitation associated with the max/min SPI is very similar to the annual max/min
precipitation totals. Although SPI-based results are slightly less extreme than the total precipitation-based
results (i.e., higher minima and lower maxima), the overall agreement suggests that the SPI-based
approach is representative of dry/wet conditions and the magnitude of the seasonal cycle of
precipitation.

We then examine the difference in timing between annual maximum (minimum) SPI and accumulated
precipitation (Figure S2). For 30-day SPI, most of the domain shows the average difference in timing is
within 60 days, suggesting that the identified maxima or minima are still representative of the wet/dry
conditions for a certain season. We also see certain differences between the SPI-based results and the
actual precipitation, especially over the Northwest. This is mainly because there is relatively strong
seasonal variability in precipitation in those regions, with evident dry and wet seasons (Figure S3). For
instance, an average amount of precipitation during the dry season can be less than the precipitation
amount for an “extreme-dry” period during the wet season. If using actual precipitation for detection, the
average dry season will be identified as the annual minimum; if using SPI, the “extreme-dry” wet season
will be considered as the annual minimum. Although both are justifiable, an SPI value represents the
deviation of the total precipitation from the average or expected value, which speaks to the intensity of
the anomaly. Spatially speaking, having the same SPI value in a humid area and a semi-arid area
signifies that the total precipitation in the two cities is of equal anomaly or intensity, after having
accounted for the difference in background climatology. This eases comparison of precipitation extremes
across a large region such as the Midwest, also is the primary reason why SPI has been used frequently
for identifying precipitation extremes in previous studies (e.g., Zhang et al. 2009; Mallya et al. 2016;
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Onuşluel Gül et al. 2021) and was one of the many reasons SPI was recommended to the WMO as a
primary indicator for monitoring meteorological drought worldwide (Hayes et al. 2011).

The transition, or as DeGaetano and Lim (2020) described, the “tail swing”, occurs when SPI moves from
at or above + 1.6 to at or below − 1.6, or vice versa. The transition can occur within a single calendar year
or across different years. This approach allows us to quantify transition frequency and duration (i.e., how
quickly the transition occurred). The frequency of transitions is defined as the number of transitions
within a certain period (e.g., the period 1951–2014 used for model evaluation). The duration of a
transition is defined as the number of days that elapse between the extreme of one sign and the
subsequent extreme of the opposite sign. More details of the transition can be found in Ford et al. (2021).
It should be noted that the thresholds ± 1.6 are used for the transition calculation because the value − 1.6
of SPI is the threshold for identifying “extreme drought” in the US drought monitor. We also test the
thresholds at ± 0.8, which are used to define “moderate drought”. The identified transitions are more
frequent if considering modest extremes, but their spatial patterns are consistent (not shown).

2.4. Quantify future changes in transitions of precipitation
extremes
We calculate intra-annual variability and transitions of precipitation extremes for the historical period
1951–2014 from individual CMIP6 models. Due to the different spatial resolutions of CMIP6 models, the
calculated metrics are regridded to a common 1.0°×1.0° latitude-longitude grid size, and multimodal
ensemble medians are then calculated. Observation-based metrics are calculated using the GSWP and
CPC precipitation, and are also regridded to a 1.0°×1.0° latitude-longitude resolution for the evaluation
purpose. When calculating the average across the Midwest, we use grid cells within the area 34°~50° N
and 80°~100° W of the US. Additionally, to evaluate the performance of individual CMIP6 models and
multimodel ensemble median, ranking scores are calculated based on correlation coefficient and relative
bias of the climatology of each SPI-based variable (annual maximum SPI, annual minimum SPI,
magnitude of intra-annual variability, duration of intra-annual variability, frequency of transitions,
duration of dry-to-wet transitions, and duration of wet-to-dry transitions). The correlation coefficient
measures the spatial agreement between the observation and model, and relative bias (RB) measures the
mean error for each model (Eq. 1).

RB =

−
M −

−
O
_

−
O

× 100%

1

where 
−
Mand 

−
O are climatological mean from the model and observation, respectively. The total ranking

score (RS) is defined in Eq. 2 according to the method in Kim et al. (2020).
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RS = 1 −
1

MNR ∑ R
i=1∑

N
j=1ranki , j

2

where M is 18 (the multimodel ensemble median and 17 CMIP6 models), N is 3 (the variable derived from
30-, 90-, and 180-day SPI), R is 2 (correlation coefficient and relative bias), and ranki,j represents the
ranking of the model for the evaluation measure i and the SPI-based variable j. Values of RS closer to 1
indicate better model performance.

For the projected changes in transitions, we calculate the difference between the historical period (1981–
2010) and the future period (2071 − 2000 as long-term future) under three SSPs. Two criteria are used to
evaluate the statistical significance of the projected change. First, the non-parametric Wilcoxon signed‐
rank test is used to assess the statistical significance of the multimodel ensemble median (Sillmann et al.
2013). The projected changes are considered “significant” when the Wilcoxon test rejects the null
hypothesis at the 5% significance level. Second, the robustness across CMIP6 models is assessed based
on inter‐model agreement (Chen 2020). The projected changes are considered “robust” when at least 75%
of the models agree on the sign of the change.

3. Evaluation Of The Historical Precipitation Extreme Transitions
We first evaluate the climatology of annual maximum and minimum SPI during the period 1951–2014.
Figure 1 shows the comparison between GSWP and CMIP6. Although GSWP is a hybrid precipitation
product at a relatively coarse resolution, it well represents the spatial distribution of SPI extremes
compared to the observations used in Ford et al. (2021) (Figure S4). For the 30-day SPI, the eastern half
of the Midwest shows higher values in annual maximum (i.e., wetter) and lower values in annual
minimum (i.e., drier), indicating greater shorter-term precipitation variability in this region. For the 90-day
and 180-day SPI, the northern regions exhibit a larger intra-annual range, suggesting greater longer-term
precipitation variability in those regions. Figure S5 shows the climatology of annual maximum and
minimum SPI based on the CPC precipitation dataset, which exhibits a reasonably good agreement with
the GSWP-based results in both magnitude and spatial pattern. The major difference is found in the
annual minimum 30-day and 90-day SPI. CPC suggests lower values in the southwest, but GSWP and
nClimDiv in Ford et al. (2021) suggest lower values in the southeast. Previous studies also discussed the
uncertainty among different observational datasets, and concluded that the spread among different
observational datasets for most precipitation extreme indices are comparable to the CMIP6 interquartile
model spread (Srivastava et al. 2020). CMIP6 somewhat captures the observed spatial pattern of SPI
extreme climatologies, except for the annual minimum 90-day SPI. Meanwhile, the multimodel ensemble
median of CMIP6 has smoothed spatial variability. For instance, CMIP6 underestimates the dry
conditions in the north, where the 180-day annual minimum SPI is relatively low, but overestimates the
dry conditions in other regions.
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Figure 2 shows the magnitude and duration of intra-annual variability in GSWP and CMIP6. Similar to the
finding in SPI extreme climatologies, there is greater intra-annual variability in 30-day SPI over the eastern
half of the Midwest. With longer SPI intervals (e.g., 90 days or 180 days), the value of magnitude
gradually decreases, and more areas in the north exhibit relatively higher intra-annual variability
compared to other regions. CPC agrees with GSWP in the magnitude and duration and intra-annual
variability (Figure S6), but the magnitude of the 30-day SPI variability shows relatively high values in the
southwest, which are not present in GSWP and Ford et al. (2021). CMIP6 shows a general agreement in
the spatial pattern with GSWP, with a pattern correlation of 0.54, 0.47, and 0.61 for 30-day, 90-day, and
180-day SPI, respectively. According to the three observation-based SPI intervals, northern regions (e.g.,
Wisconsin, Minnesota, and North Dakota) have a relatively short duration of intra-annual variability,
suggesting the transitions between wet and dry events usually occur within a shorter time in those
regions. For instance, a transition from extreme dry to extreme wet conditions occurs on average within
four months in northern Wisconsin. CMIP6 does not capture the duration of intra-annual variability at 30-
day and 90-day SPI, but shows a good agreement with GSWP for 180-day SPI.

Figure 3 shows the frequency of transition during the period 1951–2014. For 30-day SPI, more frequent
transitions occur over the eastern half of the Midwest, especially in the Great Lakes region, with a return
interval of less than a year. When SPI is calculated at a longer interval (e.g., 180 days), the northern
states, such as Minnesota and North Dakota, also exhibit high transition frequency, with a return interval
of about 2.7 years. Again, CPC shows a reasonably good agreement with the GSWP in both magnitude
and spatial pattern of the frequency (Figure S7). Generally, CMIP6 well represents the observed high
frequency of 30-day SPI transitions in the east, and the high frequency of 90-day and 180-day SPI
transitions in the north and the Great Lakes region. The pattern correlation between CMIP6 and GSWP is
0.58, 0.47, and 0.35 for 30-day, 90-day, and 180-day SPI transitions, respectively. However, CMIP6 exhibits
less spatial variability than GSWP. Although CMIP6 agrees with GSWP in the regions with a higher
frequency of transitions, it overestimates the frequency in the rest areas of the Midwest.

The duration of transitions is closely related to the frequency - a higher frequency generally corresponds
to quicker transitions. Therefore, the duration of transitions from extreme dry (wet) to extreme wet (dry)
shows a consistent pattern with the frequency (Figure S8). The shortest 30-day SPI transitions occur in
the east and the Great Lakes regions, where transitions of precipitation extremes only take 3–4 months.
The 180-day SPI shows that the shortest transitions also appear in the north, such as Minnesota and
Dakotas. We also note some differences between the dry-to-wet and wet-to-dry transitions. The 180-day
SPI highlights the southwest part of the region, which exhibits relatively quick dry-to-wet transitions
(Figure S8c), which is not shown in the wet-to-dry transitions (Figure S8i). Similar to the performance in
simulating transition frequency, CMIP6 captures the spatial pattern of the duration but with overall less
variability in many regions.

Furthermore, we evaluate the temporal evolution of SPI extremes. Figure 4 shows the time series of
annual maximum and minimum SPI averaged over the Midwest. Although there is little agreement in
inter-annual variability of the SPI extremes between GSWP and CMIP6, we do find the general trends are
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consistent in these two datasets. During the historical period 1951–2014, observations show a
significant increase in annual maximum SPI. The rate of increase is larger for longer-term SPI intervals.
CMIP6 also exhibits a significant positive trend in annual maximum SPI but at a lower rate. Both
observations and CMIP6 show a decrease in the 30-day annual minimum SPI (i.e., increasing dry
extremes), and an increase in the 90- and 180-day SPI annual minimums (i.e., decreasing dry extremes);
however, these trends are not statistically significant.

Overall, the multimodel ensemble median of CMIP6 shows good agreement with the observations with
respect to the spatial patterns of intra-annual variability and transitions of precipitation extremes.
Although biases are noted in some regions, the models are capable of representing the climatologies of
transitions and the general trends of SPI extremes in the Midwest. Moreover, we examine the performance
of individual CMIP6 models. The multimodel ensemble median consistently outperforms most of the
models throughout all the SPI-based variables (Table S1). We also find there is no evident difference in
the projected changes between the multimodel ensemble from all available models and the multimodel
ensemble from best performance models (e.g., top 5) (not shown). Therefore, to maintain a consistent set
of models in the historical and future analysis, we chose to use the median values based on simulations
from all CMIP6 models in both cases.

4. Projected Changes In Transitions Of Precipitation Extremes

4.1 Changes in SPI extremes and intra-annual variability
From 2015 to 2100, all three scenarios show a significant increase in annual maximum SPI over the
Midwest, indicating that the intensity of wet events is projected to increase in the future (Fig. 4). Among
the three scenarios, SSP585 shows the greatest increase. The annual maximum 30-day SPI averaged
across the Midwest is about 2.07 during the reference period 1981–2010. By the end of the century
(2071–2100), the annual maximum SPI is projected to increase by 0.54, approximately 26% relative to
the baseline. For reference, the regional-average annual maximum 30-day SPI during the extreme flooding
of 2019 was 2.37. Although SSP245 and SSP126 also exhibit a rapid increase at the early stage of the
21st century, the rate of increase moderates from 2040 to the end of the century, likely due to less
projected warming as a result of future climate mitigation efforts applied to these scenarios (O’Neill et al.
2016). By the end of the century, the annual maximum 30-day SPI is estimated to increase by 18% and
14% in SSP245 and SSP126, respectively. Similar to the historical trends, the projected change in annual
minimum SPI depends on the time interval of the SPI investigated. The 30-day SPI shows a significant
decrease in the Midwest, suggesting the short-term dry events will get more intense. The average annual
minimum 30-day SPI is -2.35 during the reference period, and is projected to decrease by approximately
15% (-0.35) by the period 2071–2100. For reference, the region-average annual minimum 30-day SPI
during the drought year of 2012 was − 2.82. SSP245 and SSP126 exhibit a negative trend in 30-day SPI,
however, which is not statistically significant. For the 90-day or 180-day SPI, the trend of annual minimum
SPI is relatively small and mostly not significant, which broadly supports the hypothesis that seasonal
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drought in this region will not systematically increase in response to the greenhouse gas forcing (e.g.,
Cook et al. 2020).

Figure 5 shows the spatial distributions of projected changes in annual maximum and minimum SPI in
the Midwest by the end of the century. The annual maximum SPI is projected to increase across the
Midwest in all three scenarios, with the greatest increase in SSP585. Spatially, the intensification of wet
conditions is stronger in the northern states and the Great Lakes region. The annual minimum 30-day and
90-day SPI shows a significant decrease in SSP585, especially over the western half of the Midwest. We
also see a slight decrease over the southwest in SSP245 and SSP126, and a slight increase in 180-day
SPI in some areas of the west. However, no significant changes are found in large areas of the Midwest in
SSP245 and SSP126 with longer SPI intervals. This agrees with the regional average time series (Fig. 4),
indicating little change in the intensity of future seasonal to multi-season meteorological droughts over
the Midwest.

Due to the increased annual maximum SPI and decreased annual minimum SPI, the magnitude of intra-
annual variability shows a significant increase in most of the areas in the Midwest by the end of the
century (Fig. 6). The greatest increase is found in the northern half of the study area for the 30-day SPI
under the SSP585 scenario. Meanwhile, we note that there is no significant change in the duration of
intra-annual variability (Figure S9). From the historical perspective (Fig. 2), the northern states already
have a relatively short duration of intra-annual variability. Therefore, the projected increase in magnitude
would pose a higher risk of precipitation extremes in those regions.

4.2 Changes in transition
Figure 7 shows the projected changes in the frequency of precipitation transitions. The 30-day SPI
suggests significantly more transitions will occur across the Midwest by the end of the century in SSP585
and SSP245. The most prominent increase can be found in 30-day SPI over the Great Lakes regions and
the northern Midwest, including Minnesota, Wisconsin, Illinois, Indiana, and Michigan, where at least one
more transition will occur every two years. The changes account for about 30% increase compared to the
historical transition frequency. It should be noted that the Great Lakes and the north already have higher
transition frequency than other areas of the Midwest during the historical period. The greater increase in
future transition frequency would further highlight the vulnerability of those regions to climate change.
When precipitation extremes are quantified using a longer-interval SPI, there is a slight increase in
transition frequency in the western half of the Midwest in SSP585 and no significant changes in the other
two scenarios. Additionally, we examine the projected changes related to the definition of precipitation
extremes (section 2.3). Figure S10 shows the projected changes in the frequency of transitions based on
three sets of thresholds (± 1.6, ± 1.2, and ± 0.8). They are used because − 1.6, -1.2, and − 0.8 are used to
define extreme, severe, and moderate droughts, respectively, according to the drought classification of US
drought monitoring. The spatial patterns of the project changes among the three sets of thresholds are
consistent. If including severe/moderate extremes, the magnitude of the projected increase in transition
frequency is much lower than the magnitude with considering “extreme” extremes only, especially for the
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30- and 90-day SPI. This suggests that there are more frequent transitions between extreme wet/dry
conditions, but fewer transitions between moderate wet/dry conditions.

The increased frequency can correspond to a shortened duration of precipitation transitions (Fig. 8). Both
dry-to-wet and wet-to-dry transitions are projected to become more rapid across the Midwest under a
warming climate. Historically, the transitions would take around 3 months over the Great Lakes region
(Figure S8). Under a warming climate, the reduced duration is about 20 days in those regions. Although
no significant changes in transition frequency are found in SSP245 and SSP126 for 180-day SPI, we note
significantly reduced transition durations in some regions (e.g., Illinois). Therefore, future warming may
not affect the total number of transitions between long-term droughts and wet conditions, but
significantly accelerates the transitions between the extremes. The unaltered transition frequency with
reduced transition duration also imply that the long-term extremes may last longer in the future, however,
which is out of the scope of this study and will be investigated in our future work.

4.3 Changes in seasonality
We examine the seasonality of the transitions averaged across the Midwest during the historical period
1981–2010 and the future period 2071–2100 under the SSP585 scenario. Because the 90-day and 180-
day SPI is based on the accumulated total precipitation over three months and six months, respectively,
their seasonality has been largely smoothed out. Therefore, our analysis is only focused on the 30-day
SPI. Figure 9 shows the frequency of maximum and minimum 30-day SPI that is identified in different
months. Historically, GSWP and CMIP6 show a good agreement. A slight difference is found in annual
minimum SPI during summer, which may explain the discrepancy in the duration of intra-annual
variability discussed in section 3. The frequency of SPI extremes is evenly distributed throughout the year.
In other words, no clear seasonality is seen in the occurrence of annual maximum and minimum SPI. By
the end of the century, more annual maximum SPI tends to occur during the cold season (e.g., from
December to April), and more annual minimum SPI tends to occur during the warm season (e.g., from
July to September). The projected changes in the seasonality of SPI extremes demonstrate a potential
wet-spring-dry-summer pattern in a warming climate, which is also documented in previous studies (Byun
and Hamlet 2018; Dai et al. 2016; Hamlet et al. 2019). This is also consistent with cool-season warming
in the northern parts of the domain, where temperature currently limits winter precipitation.

Figure 10 shows the seasonality of transitions between extreme wet and dry conditions. Similar to the SPI
extremes, neither wet-to-dry nor dry-to-wet transitions show evident seasonality during the historical
period. Under the SSP585 scenario, there are more wet-to-dry transitions occurring in late spring or early
summer, and more dry-to-wet transitions happening in late fall or early winter. As the duration of the
transition is projected to decrease in the future, the transitions would only take 2–3 months.
Consequently, slightly more wet-to-dry transitions end in summer, and more dry-to-wet transitions end in
winter/spring. Combining with the results discussed in section 4.2, the projected changes in seasonality
suggest that more frequent transitions from a wet spring to a dry summer (or from a dry fall to a wet
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winter/spring) will occur in the Midwest, and, generally, the wet and dry conditions between the
transitions are projected to be more intense compared to the historical period.

5. Summary And Conclusions
This study investigates the historical and future variability of and transitions between precipitation
extremes in the Midwest using state-of-the-art climate models in CMIP6. We find significantly increased
magnitude of precipitation extremes and increased frequency of transitions, which could have
substantial socio-economic and environmental impacts in the Midwest. Similar results about future wet
and dry extremes have been documented in recent studies of the CMIP6 projections (e.g., Akinsanola et
al. 2020; Cook et al. 2020). Observation-based assessments have suggested that increased precipitation
variability and systematic warming have important implications for flood risk and conjunctive water
management (Hamlet and Lettenmaier 2007). The projected increase in annual maximum SPI suggests
heavy precipitation is expected to be more intense, possibly leading to increased flood risk and issues
with excessively wet soils (Scoccimarro and Gualdi 2020; Byun et al. 2019). Due to the large area of
agricultural land in the Midwest, the increased heavy precipitation is also likely to drive more nutrient
runoff to surface water bodies (Coffey et al. 2018; Motew et al. 2018), and augment long-standing soil
erosion issues in the region (Thaler et al. 2021). The increased flood risk also poses challenges for the
drainage system in urban areas (Yazdanfar and Sharma 2015), particularly those with undersized
systems and/or combined sewer overflows.

Meanwhile, the projected decrease in annual minimum SPI indicates that future dry conditions will get
drier, exposing the agricultural regions to potential economic losses due to drought (Ukkola et al. 2020).
Irrigation has often been proposed as a climate adaptation strategy to improve crop resilience to future
changes in drought risk (e.g., Li et al. 2020). However, along with being cost-prohibitive, widespread
adoption of irrigation, especially in the currently majority non-irrigated agricultural lands in the Midwest,
could exacerbate water supply issues for municipal or commercial use in times of prolonged drought.
Soil and water conservation strategies are also vital adaptation measures for Midwest agriculture, and
are becoming increasingly important to boost resilience to drought and reduce soil erosion and nutrient
runoff from increasing precipitation intensity.

It is important to note that the sequencing of precipitation extremes can greatly determine the magnitude
of associated impacts. For example, a 30-day dry extreme that follows a prolonged wet period will have
less socio-economic impacts than the same extreme following a near-normal or prolonged dry period.
Similarly, conditions preceding wet extremes such as soil moisture conditions, reservoir levels, and
streamflow can greatly impact the extent of flood damage associated with wet extremes. Although it is
beyond the scope of this study, further impact-focused research is necessary to better recognize and
communicate the implications of changing Midwest precipitation extremes for drought and flood impact
preparedness, adaptation, and management.
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We also find more frequent transitions of precipitation extremes, particularly transitions from wet spring
to dry summer in the Midwest. Observation-based studies also document a wetting trend during the early
growing season and a drying trend during the late growing season in the Midwest (Dai et al. 2015). Such
a transition would seriously impair crop production, especially for the rainfed crops, which dominate
agriculture in the eastern Midwest. Excess precipitation and flooding in spring can cause widespread
planting delays for both commodity and annual specialty crops, soil compaction, poor seed germination,
higher fungus, and bacterial disease incidence, and lead to issues with nutrient loss and soil erosion (Rao
and Yi, 2003; Kleinman et al. 2006). Concurrently, even 30- or 90-day drought, if aligned with crop
pollination and/or grain/fruit formation periods, can lead to yield decreases or crop failure (Westcott et al.
2005; Rippey et al. 2015). The results of this study show projected increases in the speed of transitions
between extremely wet and dry conditions, suggesting overall less time for preparation and management
of the hazard impacts.

Like other precipitation extreme studies (such as Akinsanola et al. 2020, Srivastava et al. 2020), this
study is based on climate projections from state-of-the-art climate models in CMIP6. However, we need to
acknowledge certain limitations of the current analysis. First, the dry bias in the central US has been a
long-standing issue in CMIP5 and CMIP6 models (Al-Yaari et al. 2019; Srivastava et al. 2020). The SPI-
based analysis can somewhat avoid the influence of the mean bias, but associated uncertainty in
precipitation distribution may still affect the identified precipitation extremes (Pierce et al. 2015). Second,
the springtime extreme precipitation over the central US is primarily controlled by mesoscale convective
systems (Feng et al. 2016). However, current CMIP6 models still are not able to resolve these mesoscale
convective systems due to their coarse spatial resolutions (Ridder et al. 2021). Therefore, it is necessary
to investigate the impacts of bias correction and high-resolution dynamical downscaling on the
transitions of precipitation extremes. Meanwhile, although dynamical downscaling can provide more
useful information for regional impact studies due to its higher spatial resolution, uncertainties related to
regional climate models (RCMs) cannot be ignored. Our previous study found that different RCMs with
the same GCM boundary conditions can lead to opposite changes in precipitation extremes (Chen and
Ford 2021). Some studies even show worse performance in dynamic downscaling than GCMs (e.g.,
Mishra et al. 2018). Moreover, coarse-resolution (e.g., 12–50 km) and high-resolution (e.g., convection-
permitting resolution, < 5 km) RCMs may lead to inconsistent rainfall intensity (Kendon et al. 2017).
Therefore, when dynamically downscaled CMIP6 climate data becomes available, it will be worthwhile to
evaluate the added value of downscaling in precipitation extremes compared to the GCMs.

It is expected that the intensity of heavy precipitation would scale with the change in air temperature
(Held and Soden 2006). Therefore, we see significantly increased annual maximum SPI with the greatest
increase in the SSP585 scenario, which corresponds to the greatest temperature increase (Cook et al.
2020). Meanwhile, a warmer atmosphere would take longer to replenish its moisture between storms
(Shiu et al. 2012), potentially leading to longer dry spells and intensified drought conditions. However,
identifying the mechanisms that result in projected more frequent and rapid transitions of precipitation
extremes will be a focal point in our future work.
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Despite the potential future risks of intensified precipitation extremes and more frequent transitions over
the Midwest, we note considerable differences in the projected changes among different scenarios. The
projected increase in magnitude and frequency of precipitation extreme transitions can be largely avoided
under a lower-emission scenario (Figs. 5–8). Aligning with previous literature that has explored the
impacts of 0.5°C less global warming on climate extremes (such as Zhang et al. 2018; King and Karoly
2017; Hoegh-Guldberg et al. 2018), this study highlights the importance of climate mitigation efforts in
reducing the risks of extreme events in the Midwest.

In summary, this study investigates the projected changes in transitions of precipitation extremes in the
Midwest using climate simulations from 17 CMIP6 models. Two SPI-based metrics, intra-annual
variability and transition adopted from Ford et al. (2021), are used to quantify the magnitude, duration,
and frequency of transitions between wet and dry extremes. The evaluation with the observation-based
precipitation dataset suggests the multimodel ensemble median of CMIP6 can reasonably represent the
spatial patterns of the SPI extremes and transitions during the historical period. For instance, using 30-
day SPI, which depicts short-term (e.g., monthly) precipitation variability, we see greater intra-annual
variability and higher frequency of transitions in the eastern half of the Midwest, especially in the Great
Lakes region. With longer SPI intervals, which represent longer-term (e.g., seasonal) precipitation
variability, the northern areas exhibit greater magnitude and shorter duration of intra-annual variability,
and higher frequency of transitions.

Climate projections suggest significantly intensified wet extremes across the Midwest by the end of the
century, with a greater increase in the north and the Great Lakes region. The short-term SPI also shows
intensified dry extremes over the western half of the Midwest. Consequently, there is significantly
increased intra-annual variability in most of the areas in the Midwest compared to the historical period.
Meanwhile, a warming climate also leads to more frequent and rapid transitions between the wet and dry
extreme events, especially over the Great Lakes regions and the northern states. Seasonality analysis
further reveals that more frequent transitions from a wet spring to a dry summer (or from a dry fall to a
wet winter/spring) will occur in the Midwest. The difference among three scenarios, including SSP585,
SSP245, and SSP126, indicates that the intensified precipitation extremes and accelerated transitions
can be greatly alleviated under a lower emission scenario, and highlights the importance of effective
climate action in the long-term development of climate-vulnerable regions in the Midwest.
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Figure 1

Climatology of annual maximum (a-f, unitless) and minimum (g-l, unitless) SPI during 1951-2014 based
on 30-, 90-, and 180-day SPI in GSWP and CMIP6. Text in panels d-f and j-l shows the pattern correlation
between CMIP6 and GWSP. An asterisk sign indicates the correlation is significant at the 95% confidence
level.



Page 24/31

Figure 2

Climatology of the magnitude (a-f, unitless) and duration (g-l, in days) of intra-annual variability during
1951-2014 based on 30-, 90-, and 180-day SPI in GSWP and CMIP6. Text in panels d-f and j-l shows the
pattern correlation between CMIP6 and GWSP. An asterisk sign indicates the correlation is significant at
the 95% confidence level.
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Figure 3

Frequency of precipitation extreme transitions (in number of transitions per year) during 1951-2014
based on 30-, 90-, and 180-day SPI in GSWP and CMIP6. Text in panels d-f shows the pattern correlation
between CMIP6 and GWSP. An asterisk sign indicates the correlation is significant at the 95% confidence
level.
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Figure 4

Time series of annual maximum (a-c, unitless) and minimum (d-f, unitless) SPI anomalies averaged
across the Midwest during 1951-2100 based on 30-, 90-, and 180-day SPI. Anomalies are calculated
based on the reference period 1981–2010. Shading shows the inter-model spread (25th and 75th
percentiles). Time series are smoothed with a 10-year running average. Text in each panel shows the
linear trend (in per decade) of annual maximum or minimum SPI. An asterisk sign indicates the trend is
significant based on the Mann-Kendall non-parametric test. Colors of the text correspond to different
datasets or different simulations. It should be noted that the thick black/gray lines for CMIP6 historical
are based on three different sets of models that are available for SSP585, SSP245, and SSP126 (shown
in Table 1), and they show consistency. The historical trend is calculated based on all available models.
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Figure 5

Projected changes in annual maximum and minimum SPI (unitless) over the time period 2071–2100
relative to the historical period 1981-2010 under the SSP585 (a-f), SSP245 (g-l), and sSP126 (m-r)
scenarios. Stippling indicates the changes are statistically significant.
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Figure 6

Projected changes in magnitude of intra-annual variability (unitless) over the time period 2071–2100
relative to the historical period 1981-2010 under the SSP585 (a-c), SSP245 (d-f), and sSP126 (g-i)
scenarios. Stippling indicates the changes are statistically significant.
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Figure 7

Projected changes in frequency of transitions (in number of transitions per year) over the time period
2071–2100 relative to the historical period 1981-2010 under the SSP585 (a-c), SSP245 (d-f), and sSP126
(g-i) scenarios. Stippling indicates the changes are statistically significant.
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Figure 8

Projected changes in duration of transitions (in days) over the time period 2071–2100 relative to the
historical period 1981-2010 under the SSP585 (a-f), SSP245 (g-j), and sSP126 (m-r) scenarios. Panels on
the left are for the wet-to-dry transitions, and panels on the right are for the dry-to-wet transitions.
Stippling indicates the changes are statistically significant.

Figure 9

Frequency (in %) of the occurrence of maximum and minimum 30-day SPI in each month. The black and
blue lines are GSWP and CMIP6 historical, respectively, for the period 1981-2010; the red line is CMIP6
SSP585 for the period 2071-2100. Shading shows the inter-model spread (25th and 75th percentiles).
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Figure 10

Frequency (in %) of the occurrence of wet-to-dry (a,c) and dry-to-wet (b,d) transitions in each month based
on the 30-day SPI. Panels a,b show when the transition starts; panels c,d show when the transition ends.
The black and blue lines are GSWP and CMIP6 historical, respectively, for the period 1981-2010; the red
line is CMIP6 SSP585 for the period 2071-2100. Shading shows the inter-model spread (25th and 75th
percentiles).


