1. Wang Y, Chen Q, Liu Z, Guo X, Du Y, Yuan Z, Guo M, Kang L, Sun Y, Jiang Y: Transcriptome Analysis on Single Small Yellow Follicles Reveals That Wnt4 Is Involved in Chicken Follicle Selection. FRONT ENDOCRINOL 2017, 8:317.
2. Ren J, Sun C, Chen L, Hu J, Huang X, Liu X, Lu L: Exploring differentially expressed key genes related to development of follicle by RNA-seq in Peking ducks (Anas Platyrhynchos). PLOS ONE 2019, 14(6):e209061.
3. Bonnet A, Dalbies Tran R, Sirard MA: Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction (Cambridge, England) 2008, 135(2):119-128.
4. Xu Q, Zhao W, Chen Y, Tong Y, Rong G, Huang Z, Zhang Y, Chang G, Wu X, Chen G: Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes. PLOS ONE 2013, 8(2):e55496.
5. Wu Y, Zhao X, Chen L, Wang J, Duan Y, Li H, Lu L: Transcriptomic Analyses of the Hypothalamic-Pituitary-Gonadal Axis Identify Candidate Genes Related to Egg Production in Xinjiang Yili Geese. Animals : an open access journal from MDPI 2020, 10(1):90.
6. Zhao Z, Wang L, Sun X, Zhang J, Zhao Y, Na RS, Zhang J, Leung FCC: Transcriptome analysis of the Capra hircus ovary. PLOS ONE 2015, 10(3):e121586.
7. Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, Yan G, Hu Y: MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLOS ONE 2013, 8(3):e59667.
8. Xu Q, Zhang Y, Chen Y, Tong Y, Rong G, Huang Z, Zhao R, Zhao W, Wu X, Chang G et al: Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides) by Solexa sequencing. PLOS ONE 2017, 9(2).
9. Rui C, Jun WW, Long ZX, Peng X, Yi W, Lin LH: Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. MOL CELLS 2015, 38(4).
10. Jianfang Z, Xiaowen J, Doudou Z, Yueqin L, Junkai L, Jiali L, Haoshu L, Sheng C: miR-143 is critical for the formation of primordial follicles in mice. Frontiers in bioscience (Landmark edition) 2013, 18.
11. C BS, A SC, N RK, J DT, H SA, V TML: Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads. BIOL REPROD 2011, 85(1).
12. V SA, Dmitriy O, Roland G, Marcela L, Milos M: Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J CELL PHYSIOL 2009, 219(2).
13. Liu G, Liu S, Xing G, Wang F: lncRNA PVT1/MicroRNA-17-5p/PTEN Axis Regulates Secretion of E2 and P4, Proliferation, and Apoptosis of Ovarian Granulosa Cells in PCOS. Molecular Therapy - Nucleic Acids 2020, 20:205-216.
14. Yang G, Lu X, Yuan L: LncRNA: a link between RNA and cancer. Biochimica et biophysica acta 2014, 1839(11):1097-1109.
15. Shen X, Bai X, Xu J, Zhou M, Xu H, Nie Q, Lu X, Zhang X: Transcriptome sequencing reveals genetic mechanisms underlying the transition between the laying and brooding phases and gene expression changes associated with divergent reproductive phenotypes in chickens. MOL BIOL REP 2016, 43(9):977-989.
16. Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X: Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLOS ONE 2017, 12(2):e172389.
17. Bushati N, Cohen SM: microRNA functions. Annu.rev.cell Dev.biol 2007, 23(1):175.
18. ALVAREZGARCIA, Ines, MISKA, Eric A: MicroRNA functions in animal development and human disease. DEVELOPMENT 2005, 132(21):4653-4662.
19. Ouyang Q, Hu S, Li L, Ran M, Zhu J, Zhao Y, Hu B, Hu J, He H, Li L et al: Integrated mRNA and miRNA transcriptome analysis provides novel insights into the molecular mechanisms underlying goose pituitary development during the embryo-to-hatchling transition. POULTRY SCI 2021, 100(9):101380.
20. Ma, R.Q.; Ye X.; Cheng H.Y.; Chen J.; Cui H.; Wei L.H.; Chang X.H.. The expression and cliniacl significance of GPNMB in epithelial ovarian cancer. Chinese Journal of Clinical Obstetrics and Gynecology. 2013, 14, 388-391.
21. Moridi I, Mamillapalli R, Cosar E, Ersoy GS, Taylor HS: Bone Marrow Stem Cell Chemotactic Activity Is Induced by Elevated CXCl12 in Endometriosis. REPROD SCI. 2017, 24(4):526-533.
22. Zhou HY, Pon YL, Wong AST: HGF/MET Signaling in Ovarian Cancer. CURR MOL MED 2008, 8(6):469-480.
23. Schmahl J, Rizzolo K, Soriano P: The PDGF signaling pathway controls multiple steroid-producing lineages. Cold Spring Harbor Laboratory Press 2008, 22(23):3255-3267.
24. Rodriguez-Aguayo C, Bayraktar E, Ivan C, Aslan B, Mai J, He G, Mangala LS, Jiang D, Nagaraja AS, Ozpolat B et al: PTGER3 induces ovary tumorigenesis and confers resistance to cisplatin therapy through up-regulation Ras-MAPK/Erk-ETS1-ELK1/CFTR1 axis. EBIOMEDICINE 2019, 40:290-304.
25. Ville V, Nsrein A, Milena D, Antti K, Ilkka M, Claes O, Matti P, Nafis R, Klaus E, J VS et al: Erbb4 regulates the oocyte microenvironment during folliculogenesis. HUM MOL GENET 2020, 29(17):2813-2830.
26. Menon B, Gulappa T, Menon KMJ: Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. MOL CELL ENDOCRINOL 2017, 442:81-89.
27. Xu F, Fengzhe L, Feng W, Guomin Z, Jing P, Caifang R, Tingting Z, Hua Y, Ziyu W, Yanli Z: Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep. BIOSCIENCE REP 2018, 38(2):R20171350.
28. Hua Y, Feng W, Fengzhe L, Caifang R, Jing P, Yongjie W, Ziyu W, Xu F, Yanli Z: Comprehensive Analysis of long non-coding RNA and mRNA Expression Patterns in Sheep Testicular Maturation. BIOL REPROD 2018, 99(3):650-661.
29. J MTF: Tuning exocytosis for speed: fast and slow modes. Biochimica et biophysica acta 2003, 1641(2-3):157-165.
30. Yadav PK, Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Chaube SK: Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy. J BIOMED SCI 2018, 25(1):36.
31. Wanqiu Z, Taoyan Y, Yan F, Dong N, Weihu C, Li C, Lizhi L: Seasonal differences in the transcriptome profile of the Zhedong white goose (Anser Cygnoides) pituitary gland. POULTRY SCI 2020, 100(2):1154-1166.
32. Wei Z, Li P, Huang S, Lkhagvagarav P, Zhu M, Liang C, Jia C: Identification of key genes and molecular mechanisms associated with low egg production of broiler breeder hens in ad libitum. BioMed Central 2019, 20(1):408.
33. Fernanda P, Griselda I, Alejandra V, Olga G, Adalí P, Marta T: Gonadotropin-releasing hormone antagonist antide inhibits apoptosis of preovulatory follicle cells in rat ovary. BIOL REPROD 2005, 72(3):659-666.
34. J MM, Emilia S, Leo C, Marion M, W JA, K PK, J SD: Death Processes in Bovine Theca and Granulosa Cells Modelled and Analysed Using a Systems Biology Approach. INT J MOL SCI 2021, 22(9):4888.
35. Wang M, Feng S, Ma G, Miao Y, Zuo B, Ruan J, Zhao S, Wang H, Du X, Liu X: Whole-Genome Methylation Analysis Reveals Epigenetic Variation in Cloned and Donor Pigs. FRONT GENET 2020, 11:23.
36. Manman S, Tingting L, Fuxiang C, Pengfeng W, Ying W, Lan C, Kaizhou X, Jinyu W, Genxi Z: Transcriptomic Analysis of circRNAs and mRNAs Reveals a Complex Regulatory Network That Participate in Follicular Development in Chickens. FRONT GENET 2020, 11:503.
37. Gao Y, Wu F, Ren Y, Zhou Z, Chen N, Huang Y, Lei C, Chen H, Dang R: MiRNAs Expression Profiling of Bovine (Bos taurus) Testes and Effect of bta-miR-146b on Proliferation and Apoptosis in Bovine Male Germline Stem Cells. INT J MOL SCI 2020, 21(11):3846.
38. Grado-Ahuir JA, Aad PY, Ranzenigo G, Caloni F, Cremonesi F, Spicer LJ: Microarray analysis of insulin-like growth factor-I-induced changes in messenger ribonucleic acid expression in cultured porcine granulosa cells: possible role of insulin-like growth factor-I in angiogenesis. J ANIM SCI 2009, 87(6):1921-1933.
39. Takashi O, Kanako O, Shoichiro O: Troponin I controls ovulatory contraction of non-striated actomyosin networks in the C. elegans somatic gonad. J CELL SCI 2010, 123(9):1557-1566.
40. Hu F, Sun B, Xu P, Zhu Y, Meng X, Teng G, Xiao Z: MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. SCI REP-UK 2017, 7(1):804-810.
41. Dong W, Tan F, Yang W: Wnt signaling in testis development: Unnecessary or essential? GENE 2015, 565(2):155-165.
42. Li S, Wang M, Chen Y, Wang W, Wu J, Yu C, Zheng Y, Pan Z: Role of the Hedgehog Signaling Pathway in Regulating the Behavior of Germline Stem Cells. STEM CELLS INT 2017, 2017:5714608.
43. Satoru T, Takuya Y, Yoshiki T, Eisuke N: ERK MAP kinase in G cell cycle progression and cancer. CANCER SCI 2006, 97(8):697-702.
44. McCubrey JA, Franklin MML, Franklin RA: Reactive oxygen species-induced activation of the MAP kinase signaling pathways. ANTIOXID REDOX SIGN 2006, 8(9-10):1775-1789.
45. Guri T, Melissa D, Gopalakrishnan R: FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochimica et biophysica acta 2011, 1813(11):1938-1945.
46. Chang T, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ et al: Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. MOL CELL 2007, 26(5):745-752.
47. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB et al: p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. CURR BIOL 2007, 17(15):1298-1307.
48. Lazo PA: Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. CELL SIGNAL 2017, 33:49-58.
49. Chiu H, Martínez MR, Bansal M, Subramanian A, Golub TR, Yang X, Sumazin P, Califano A: High-throughput validation of ceRNA regulatory networks. BMC GENOMICS 2017, 18(1):418.
50. Ewa L, Pierrette R, Emmanuelle B, Olivier D, Philippe R, Gilles C: Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis. ENDOCRINOLOGY 2009, 150(1):422-434.
51. Wang W, Chen J, Luo L, Li Y, Liu J, Zhang W: Effect of cadmium on kitl pre‐mRNA alternative splicing in murine ovarian granulosa cells and its associated regulation by miRNAs. J APPL TOXICOL 2017, 38(2):227-239.
52. Li H, Rukina D, David Fabrice P A, Li Terytty Y, Oh C, Gao Arwen W, Katsyuba E, Bou Sleiman M, Komljenovic A, Huang Q et al: Identifying gene function and module connections by the integration of multispecies expression compendia. GENOME RES 2019, 29(12):2034-2045.
53. Noritaka N, Ikko K, Heng-Yu F, Youko F, Tomoko K, Yoshinori T, Toshihiro M, S RJ, Masayuki S: LH-induced neuregulin 1 (NRG1) type III transcripts control granulosa cell differentiation and oocyte maturation. Molecular endocrinology (Baltimore, Md.) 2011, 25(1):104-116.
54. Jones RL, Pepling ME: KIT signaling regulates primordial follicle formation in the neonatal mouse ovary. DEV BIOL 2013, 382(1):186-197.
55. Wei B, Liu Y, Guan H: MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes. EXP THER MED 2020, 19(3):1915-1924.
56. Jing J, Jiang X, Chen J, Yao X, Zhao M, Li P, Pan Y, Ren Y, Liu W, Lyu L: Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. ANIM REPROD SCI 2017, 181:69-78.
57. Song Y, Shi L, Liu Z, Qiu G: Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea:Decapoda). BioMed Central 2014, 15(1):547.
58. Luo J, Zhou J, Cheng Q, Zhou C, Ding Z: Role of microRNA-133a in epithelial ovarian cancer pathogenesis and progression. ONCOL LETT 2014, 7(4):1043-1048.
59. Guo J, Xia B, Meng F, Lou G: miR-133a suppresses ovarian cancer cell proliferation by directly targeting insulin-like growth factor 1 receptor. Tumor biology 2014, 35(2):1557-1564.
60. Zhang Z, Chen C, Xu M, Zhang L, Liu J, Gao Y, Jiang H, Yuan B, Zhang J: MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. THERIOGENOLOGY 2019, 123:45-53.
61. Li Z, XiaoXin Z, Xuejing Z, Yu L, Lei L, Sheng C: MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. The Journal of endocrinology 2017, 234(1):1-14.
62. Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory requirements. NAT METHODS 2015, 12(4):357-360.
63. Mihaela P, M PG, M AC, Tsung-Cheng C, T MJ, L SS: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. NAT BIOTECHNOL 2015, 33(3):290-295.
64. Trapnell C, Williams BA, Pertea G, Mortazavi A, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. NAT BIOTECHNOL 2010, 28(5):511-515.
65. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. GENOME BIOL 2014, 15(12):550.
66. Michael L, Robert T: Transcription regulation and animal diversity. NATURE 2003, 424(6945):147-151.
67. Li C, Guo H, Xu X, Weinberg W, Deng C: Fibroblast growth factor receptor 2 (Fgfr2) plays an important role in eyelid and skin formation and patterning. DEV DYNAM 2001, 222(3):471-483.
68. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. GENOME BIOL 2009, 10(3):R25.
69. R FM, D MS, Li N, Chen W, Nikolaus R: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. NUCLEIC ACIDS RES 2012, 40(1):37-52.
70. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN: RNA-Seq gene expression estimation with read mapping uncertainty. BIOINFORMATICS 2010, 26(4):493-500.
71. Kong L, Zhang Y, Ye Z, Liu X, Zhao S, Wei L, Gao G: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. NUCLEIC ACIDS RES 2007, 35(suppl 2):w345-w349.
72. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y: Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. NUCLEIC ACIDS RES 2013, 41(17):e166.
73. Wang L, Park Hyun J, Dasari S, Wang S, Kocher J, Li W: CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. NUCLEIC ACIDS RES 2013, 41(6):e74.
74. D FR, Alex B, Jody C, Penelope C, Y ER, R ES, Andreas H, Kirstie H, Liisa H, Jaina M et al: Pfam: the protein families database. NUCLEIC ACIDS RES 2014, 42(Database issue):D222-D230.
75. Doron B, Manda W, Aaron G, S MD, Chris S: The microRNA.org resource: targets and expression. NUCLEIC ACIDS RES 2008, 36(suppl 1):D149-D153.
76. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of Mammalian MicroRNA Targets. CELL 2003, 115(7):787-798.
77. Yu G, Wang L, Han Y, He Q: clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology 2012, 16(5):284-287.
78. Chen X, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C, Wei L: KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. NUCLEIC ACIDS RES 2011, 39(suppl 2):W316-W322.
79. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Cold Spring Harbor Laboratory Press 2003, 13(11):2498-2504.
80. J LK, D ST: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 2001, 25(4):402-408.