1. Varnava, C. Photonic devices compute in memory. Nature Electronics 2019 2:3 2, 91–91 (2019).
2. Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nature Communications 8, 1–8 (2017).
3. Chakraborty, I., Saha, G., Sengupta, A. & Roy, K. Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons. Scientific Reports 8, 1–9 (2018).
4. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nature Photonics 2017 11:7 11, 441–446 (2017).
5. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 2021 15:2 15, 102–114 (2021).
6. Dalir, H. et al. Massively parallel amplitude-only Fourier neural network. Optica, Vol. 7, Issue 12, pp. 1812-1819 7, 1812–1819 (2020).
7. Miscuglio, M. & Sorger, V. J. Photonic tensor cores for machine learning. Applied Physics Reviews 7, 031404 (2020).
8. George, J. K. et al. Neuromorphic photonics with electro-absorption modulators. Optics Express, Vol. 27, Issue 4, pp. 5181-5191 27, 5181–5191 (2019).
9. Photonic Radio Frequency Memory Using Frequency Shifting Recirculating Delay Line Structure. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-32-1-99.
10. Wang, X. et al. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, Vol. 4, Issue 5, pp. 507-515 4, 507–515 (2017).
11. Suer, C. et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, Vol. 7, Issue 4, pp. 333-335 7, 333–335 (2020).
12. Hong, J., Qiu, F., Cheng, X., Spring, A. M. & Yokoyama, S. A high-speed electro-optic triple-microring resonator modulator. Scientific Reports 2017 7:1 7, 1–6 (2017).
13. Hashemi, H., Nakai, M. & Chung, S. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Optics Express, Vol. 27, Issue 9, pp. 13430-13459 27, 13430–13459 (2019).
14. Cheng, Z. et al. Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials. Advanced Materials 30, (2018).
15. Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nature Photonics 9, 725–732 (2015).
16. Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1 (2019).
17. Xu, P., Zheng, J., Doylend, J. K. & Majumdar, A. Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics 6, 553–557 (2019).
18. Zhang, H. et al. Miniature Multilevel Optical Memristive Switch Using Phase Change Material. ACS Photonics vol. 6 2205–2212 (2019).
19. Zhang, Y. et al. Myths and truths about optical phase change materials: A perspective. Applied Physics Letters vol. 118 (2021).
20. Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light: Science & Applications 2020 9:1 9, 1–16 (2020).
21. Zhang, H. et al. Comparison of the phase change process in a GST-loaded silicon waveguide and MMI. Optics Express, Vol. 29, Issue 3, pp. 3503-3514 29, 3503–3514 (2021).
22. Wu, C. et al. Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material. ACS Photonics 6, 87–92 (2019).
23. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nature Materials 2016 15:8 15, 870–875 (2016).
24. Sui, X., Wu, Q., Liu, J., Chen, Q. & Gu, G. A review of optical neural networks. IEEE Access 8, 70773–70783 (2020).
25. Xu, M., Slovin, G., Paramesh, J., Schlesinger, T. E. & Bain, J. A. Thermometry of a high temperature high speed micro heater. Review of Scientific Instruments 87, (2016).
26. Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications 10, (2019).
27. Ríos, C. et al. Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials. (2021).
28. [2201.05439] Broadband nonvolatile electrically programmable silicon photonic switches. https://arxiv.org/abs/2201.05439.
29. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2020 589:7840 589, 52–58 (2021).
30. Peserico, N., de Lima, T. F., Prucnal, P., & Sorger, V. J. (2022). Emerging devices and packaging strategies for electronic-photonic AI accelerators: opinion. Optical Materials Express, 12(4), 1347-1351.