Springer Nature 2021 BTEX template

The Convex Uncertain Voronoi Diagram for Safe Multi-Robot
Multi-Target Tracking Under Localization Uncertainty

Jun Chen' and Philip Dames?*

!Computer, Electrical, and Mathematical Science and Engineering Division, King
Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
2*College of Engineering, Temple University, 1947 North 12th Street, Philadelphia, 19122,
Pennsylvania, USA.

*Corresponding author(s). E-mail(s): pdames@temple.edu;
Contributing authors: jun.chen.1@kaust.edu.sa;

Abstract

Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic tar-
gets using a team of mobile robots is a challenging problem that requires robots to reason about the
uncertainties in their collected measurements. The problem is made more challenging when robots
are uncertain about their own states, as this makes it difficult to both collectively localize targets
and avoid collisions with one another. In this paper, we introduce the convex uncertain Voronoi
(CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the uncertain
pose of each individual robot. We then use the CUV diagram to develop distributed multi-target
tracking and coverage control algorithms that enable teams of mobile robots to account for bounded
uncertainty in the location of each robot. Our algorithms are capable of safely driving mobile robots
towards areas of high information distribution while having them maintain coverage of the whole
area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and
hardware tests, and compare the results to our previous work which assumes perfect localization.

Keywords: Multi-robot Systems, Multi-target Tracking, Distributed Sensing Networks, Coverage Control,

Sensor-based Control

1 Introduction

Multi-robot multi-target tracking (MR-MTT) has
been studied for decades due to its broad applica-
tions to problems in surveillance, security, smart
cities, and more. There are two parts to the MR-
MTT problem: estimation and control. On the one
hand, robots must be able to estimate multiple
target states online overtime using noisy sensor
measurements. On the other hand, a team of
robots must be controlled to simultaneously search
for new targets and track existing ones. In this

paper, we link the control to the estimation so that
the robots are able to move to acquire the best
detection of targets based on the instant estimated
target states.

1.1 Multi-Target Tracking

Multi-target tracking (MTT) is the problem of
simultaneously estimating both the number of
objects within an area of interest as well as the
state of each individual object. Here the state of
an object can consist of its pose, velocity, semantic

Springer Nature 2021 ETEX template

label, or any other state of interest. One signifi-
cant challenge of multiple target tracking (MTT),
compared with single-target tracking, is data asso-
ciation, ¢.e., matching multiple measurements to
target tracks. Many MTT techniques have been
introduced over the years, each of which addresses
the data association problem in a different man-
ner. Global nearest neighbor (GNN) (Konstanti-
nova, Udvarev, & Semerdjiev, 2003) attempts
to find and to propagate the single most likely
hypothesis at each time step. Joint probabilis-
tic data association (JPDA) (Hamid Rezatofighi
et al., 2015) associates the measurements in each
time frame with existing targets using a joint
probabilistic score. Multiple hypothesis tracking
(MHT) (Blackman, 2004) associates each mea-
surement with one of the existing tracks, or forms
a new track from the measurement. Sequential
Monte Carlo (SMC) based multiple target track-
ing methods, such as particle filtering (Sarkka,
Vehtari, & Lampinen, 2007), jointly solve the
tracking and data association problemsby estimat-
ing the posterior distribution using SMC methods.
In this paper we use another method, the probabil-
ity hypothesis density (PHD) filter (R.P. Mahler,
2003), which requires no explicit data associa-
tion. The PHD filter recursively propagates the
first order moment of target distribution density
instead of the full posterior to account for target
birth and disappearance, and measurement false
alarm. As a result, this is best suited to situations
where it is not required for each target to have
a unique identity, e.g., a rescue robot only needs
to know where all of the people are located but
does not need to know the unique identity of each
person.

1.2 Coverage Control

Once we have an algorithm to effectively esti-
mate the locations of targets, the next problem
is how to control a team of robots to simultane-
ously search for new targets and track existing
ones. One common approach is to utilize coverage
control, which is the problem of a sensing net-
work moving to acquire an optimal total sensing
capability over the entire area of interest (Cortes,
Martinez, Karatas, & Bullo, 2004). In a dynamic
setting, this involves reactively adjusting the dis-
tribution of sensors over the mission space as new
information is collected. This problem has been

widely studied by roboticists in robot surveillance
(Adaldo et al., 2017), deployment (Zhong & Cas-
sandras, 2011), multi-target search and tracking
(Chen & Dames, 2021; P.M. Dames, 2020b), and
other contexts. For example, consider a team of
drones tasked with tracking the spread of a forest
fire in a mountainous area. Here the team must
trade off between remaining in areas with known
fires to collect information about the current con-
ditions and maintaining surveillance of the whole
area to detect the birth of new fires. While they do
this, the robots must simultaneously account for
the uncertainty in their positions to properly track
the fire and to maintain a safe distance between
robots at all times to avoid collisions.

Both centralized and distributed methods have
been considered to solve such problems. A number
of authors have studied coverage control strate-
gies. Hussein and Stipanovic (2007) proposed a
centralized cooperative coverage control strategy
with guaranteed collision avoidance to achieve a
desired effective coverage level of each point in
the search domain. While events happening at
each point may be detected with some level of
confidence, they assume that the probability den-
sity of events happening is known a priori instead
of being detected online by sensors. Distributed
algorithms often scale better to large networks
and over large geographic regions than centralized
approaches, leading to a rising amount of research
interest. Other have proposed gradient-based dis-
tributed coverage control schemes to maximize
the probability of detecting randomly occurring
events in a mission space using a team of mobile
sensors (Li & Cassandras, 2005; Zhong & Cas-
sandras, 2011). However there is no guarantee of
sensor collision since sensor dimension were not
taken into consideration.

Voronoi-based methods (Okabe, Boots, Sugi-
hara, & Chiu, 2009) are among the most popu-
lar choices to solve distributed coverage control
problems in recent years. Lloyd’s algorithm itera-
tively drives each sensor in a convex environment
towards the weighted centroid of its local Voronoi
cell where the sensor detection probability is opti-
mal (Cortes et al., 2004; Du, Emelianenko, &
Ju, 2006). Collision avoidance is guaranteed for
point sensors since cells never overlap, and each
sensor only moves in its own cell. This can be
extended to sensors with finite size using buffered

Springer Nature 2021 ETEX template

Voronoi cells, which shrink each cell to ensure col-
lision avoidance (Zhou, Wang, Bandyopadhyay, &
Schwager, 2017). Heterogeneity of agents can be
taken into account through variants of Voronoi
diagrams such as the weighted Voronoi diagram
(Kim, Santos, Guerrero-Bonilla, Yezzi, & Egerst-
edt, 2022). In this paper, we assume that each
robot is able to communicate with all neighbors,
though coverage control problem with limited
communication ranges is addressed in recent lit-
eratures (Kantaros, Thanou, & Tzes, 2015; Luo
& Sycara, 2019; Rudolph, Wilson, & Egerstedt,
2021). By encoding the information distribution,
which is a time-varying density function, as the
importance weighting function in Lloyd’s algo-
rithm, sensors are able to reach their optimized
location for detection. One example of an infor-
mation density function could be the probability
density function of target positions the sensors
aimed at tracking over the area of interest. Schwa-
ger, McLurkin, and Rus (2006) extended Lloyd’s
algorithm and derived a control law enabling
sensors to approximate the information density
function from measurements while maintaining
or seeking a near-optimal sensing configuration.
Schwager, Rus, and Slotine (2009) later proposed
a controller using an adaptive control architec-
ture for sensors to learn a parameterized model
of that measured distribution in the environment.
P.M. Dames (2020b) used the probability hypoth-
esis density (PHD) as the weighting function in
Lloyd’s algorithm to guide a team of sensors
towards areas of high target density detected by
on board sensors.

All of the above-mentioned coverage control
strategies assume that the locations of the mobile
sensors are perfectly known. This is a strong
assumption which is not true in practice. To
account for uncertainty in the positions of points,
researchers have recently proposed the uncertain
Voronoi diagram (UV diagram), or fuzzy Voronoi
diagram, an extended Voronoi partitioning strat-
egy that divides uncertain spatial databases by
using a Gaussian distribution to model the
uncertainty (Evans & Sember, 2008; Jooyandeh,
Mohades, & Mirzakhah, 2009; Xie, Cheng, Yiu,
Sun, & Chen, 2013). However, none of these
works have been applied to the task of collision
avoidance or decentralized control. Most recently,
two variants of the buffered Voronoi diagram

were proposed for multi-agent collision avoid-
ance with localization uncertainty, the buffered
uncertainty-aware Voronoi cell (B-UAVC) (Zhu,
Brito, & Alonso-Mora, 2022) and the probabilistic
buffered Voronoi cell (PBVC) (M. Wang & Schwa-
ger, 2019). Neither of these methods makes any
guarantees for coverage during a search task.

1.3 Contributions

We recently introduced a distributed version of
the PHD filter (P.M. Dames, 2020a) but, like all
of the above MTT methods, it assumes perfect
knowledge of the location of each sensor. This
is unrealistic for many practical applications. In
this paper, our goal is to propose a distributed,
collision-free control strategy that leads sensors to
congregate in areas with higher information den-
sity while maintaining full coverage of the search
space. We solve the MR-MTT problem under
localization uncertainty from three aspects.

1.3.1 Distributed Control

We introduced a novel coverage control method
that uses a convex uncertain Voronoi (CUV)
diagram over the mission space to account for
uncertainty in the locations of sensors and Lloyd’s
algorithm to iteratively drive each sensor to the
weighted centroid of its CUV cell (Chen & Dames,
2020c¢). In the same work we also propose a colli-
sion avoidance algorithm which guarantees safety
and avoids “deadlock,” the phenomenon where
sensors block each other from moving to their
respective goals.

1.3.2 Distributed Tracking

We developed a distributed PHD filter that
accounts for the uncertainty in the position of
each sensor by using the CUV diagram (Chen &
Dames, 2020a). This required us to develop four
new distributed algorithms to properly maintain
the distributed PHD filter, which, in the limit of
no localization uncertainty, become exactly our
previous algorithms (P.M. Dames, 2020b).

1.3.3 Experiments

In our previous conference papers (Chen &
Dames, 2020a, 2020c), we tested our proposed
coverage control strategy and MTT algorithms

Springer Nature 2021 ETEX template

in simulations, comparing the results of our new
algorithm to those obtained from our old approach
that did not consider uncertainty (P.M. Dames,
2020b) to demonstrate the benefits of properly
accounting for localization uncertainty. In this
paper, we validate the efficacy of distributed
multi-robot multi-target tracking with experimen-
tal tests using a team of ground vehicles. Most
recent distributed multi-robot hardware tests,
such as (Benevento et al., 2020; Breitenmoser,
Metzger, Siegwart, & Rus, 2010; Kim et al., 2022;
Pierson, Figueiredo, Pimenta, & Schwager, 2017;
Rudolph et al., 2021; Santos, Diaz-Mercado, &
Egerstedt, 2018; Schwager et al., 2006; Shi et
al., 2020; L. Wang, Ames, & Egerstedt, 2016;
Zhu et al., 2022), have relied on external posi-
tioning systems such as motion capture systems
and GPS to provide a global information of
robot poses, leaving a gap between these results
and real-world applications. Additionally, most
of the experiments utilize a central station (e.g.,
desktop) to handle local communication between
robots, though in practice, each robot itself must
decide the proper time frame to send messages
to and receive messages from proper robots. In
our tests, all agents navigate in a GPS-denied
environment and rely only on onboard sensors
for localization, which introduces a significantly
larger localization error. Meanwhile, we develop
a fully distributed communication strategy based
on ROS for each robot to handle data exchange
and decision-making cooperatively. The hardware
experiments provide a proof-of-concept demon-
stration that our proposed control strategy can be
used for real-world applications.

2 Problem Formulation

A team of n robots R = {ry,...,m,} explores
a convex environment £ C RZ. Each robot is
equipped with sensors such that it can localize
itself (with bounded uncertainty) with respect
to a shared global reference frame. Let Q =
{q1,...,qn} and Q = {Gy, ..., Gn} denote the true
and estimated poses of robots at each time step,
respectively. The dynamics of each robot are mod-
eled by the first order equation ¢; = u;, where u;
is the control input.

The set of targets is given by X =
{z1,...,2,}. This target set encodes both the
number of targets (i.e., the cardinality of the set

X) and the state of each target (i.e., the ele-
ments of the set x;). Note that X is completely
unknown to the robots, so they do not even know
the true number of targets within the environ-
ment. As robot r moves, at each time step it
receives a set of measurements Z, of a subset of
the targets within its field of view (FoV). Note
that the size the measurement set Z, varies over
time due to false positive and false negative detec-
tions and due to the motion of both targets and
robots causing targets to enter and leave the sen-
sor field of view (FoV). These measurements are in
the robots’ local reference frames and are used to
track the targets. Our approach to coverage con-
trol will use the current estimate of the target set
to create a time-varying information density func-
tion ¢(x), which indicates the information content
at each point € E (P.M. Dames, 2020a).

2.1 PHD Filter

The target and measurement sets, X and Z, from
above contain a random number of random ele-
ments, and thus are realization of random finite
sets (RFSs) (R.P. Mahler, 2007). The first order
moment of a distribution over RFSs is known
as the Probability Hypothesis Density (PHD),
denoted v(z), which takes the form of a density
function over the state space of a single target or
measurement. The PHD filter recursively updates
this target density function in order to estimate
the target set (R.P. Mahler, 2003).

The PHD filter uses three models to describe
the motion of the targets: 1) The motion model,
f(z] &), describes the likelihood of an individual
target transitioning from an initial state £ to a new
state z. 2) The survival probability model, ps(x),
describes the likelihood that a target with state
x will continue to exist from one time step to the
next. 3) The birth PHD, b(x), encodes both the
number and locations of the new targets that may
appear in the environment.

The PHD filter also uses three models to
describe the ability of robots to detect targets: 1)
The detection model, py(z | ¢), gives the probabil-
ity of a robot with state g successfully detecting
a target with state x. Note that the probability
of detection is identically zero for all x outside
the sensor FoV. 2) The measurement model, g(z |
x, q), gives the likelihood of a robot with state
q receiving a measurement z from a target with

Springer Nature 2021 ETEX template

state x. 3) The false positive (or clutter) PHD,
¢(z | q), describes both the number and locations
of the clutter measurements.

Using these target and sensor models, the PHD
filter prediction and update equations are:

o () =b(z) + [E @ | Opa(©ut e de (1)

o(a) = (1 pala | Yot (a) + 3 L2a@V (@)
2cZ, nz(v)
@)
new) =e(z | @) + / Ve g(@)o(z) da (3)
E
bra(@) =9z | 7,)palz | 9) (4)

where 9, 4(x) is the probability of a sensor at ¢
receiving measurement z from a target with state
2. In this work we represent the PHD using a set
of weighted particles (Vo, Singh, Doucet, et al.,
2003).

2.2 Lloyd’s Algorithm

From the work of Cortes et al. (2004), at each time
step, the team attempts to minimize the following
functional:

QW) = [minf (o - a)o(o)do

.)
= [10l - al)oto)ds,

where ||z — ¢;|| denotes the Euclidean distance
between a point x € F and the location g; of robot
ri, f(-) is a monotonically increasing function
(which quantify the degradation of a sensor’s abil-
ity to measure events with increasing distance),
¢(x) > 0 denotes the importance of each point x,
and W = {Wy,...,W,} C R? is a partition of
E, mean that U;WW; = E and int(W;) Nint(W;) =
@,Vi # j (where int(WW) denotes the interior of
region W). The region W; is sometimes called the
dominance region of robot 7;, e.g., the region that
robot r; is responsible for.

Minimizing H with respect to W induces the
partition on the environment V; = {x | ¢ =
argming_; ., ||# —qgl|}. This is the Voronoi par-
tition, as Figure 2a shows, and these V; are the
Voronoi cells, which are convex by construction

and contain the set of points that are closest to
robot 1.

Minimizing H with respect to @ leads each
sensor to the weighted centroid of its Voronoi cell
(Cortes et al., 2004), that is

. Jy, xo(z) dx

G =F 7o 6)
it Vi o(x) dw (
Robots then follow the control input
Ui = —kprop(@i — 47), (7)

where kprop > 0 is a positive gain. Following this
control input will cause the team to asymptot-
ically reach a local minimum of (5), with each
robot stopping at the weighted centroid of its
Voronoi cell. This process is known as Lloyd’s
algorithm. Like in our previous work (P.M. Dames,
2020b), we set ¢(x) = wv(x). This encourages
robots to move towards areas that are likely to
contain targets.

2.3 Localization Uncertainty
Regions

We assume that each robot r; knows its state with
bounded uncertainty. However, this is rarely true
in practice. Instead, robots typically track their
state using a recursive Bayesian filter, such as a
Kalman filter. In this case, each robot knows its
estimated position ¢; and the associated covari-
ance matrix ¥;. We find the eigendecomposition
of Zz

¥; = PAP™!, (8)
where P is an orthonormal 2 x 2 matrix and
A = diag(A1, A2) is a diagonal matrix of eigenval-
ues. We define the localization uncertainty region
of robot r; to be B; = B(¢g;,b;), which is a ball
centered at ¢; with radius

b; = ¢ max \; (9)
j

where ¢ is a positive constant. The probability of
robot r; being located within this region is then

dxz, (10)

Springer Nature 2021 ETEX template

We use ¢ = 3 so that the region covers at
least 99.73% (minimum achieved when Ay = \3)
of all possible locations of r;, though any other
level set of the covariance matrix could be used
to guarantee a desired level of confidence. This
same approach can also be used with other non-
Gaussian distributions so long as one can define
a bounded, circular region which, as we will see
in Sec. 2.4, is required to efficiently construct the
CUV diagram.

2.4 Uncertain Voronoi Diagram

Xie et al. (2013) defined the uncertain Voronoi
(UV) diagram and proposed a centralized method
to construct the UV diagram over a convex region.
In this paper, we define a UV cell in a similar way
as follows:

Definition 1 (UV Cells) The UV cell of a robot r;
is U; £ {:L’ | p(l = argmink:l,...,n HI - qk”) > 0}7 the
collection of points in F such that r; has a nonzero

probability to be the nearest sensor to each point x €
U;.

A UV cell U; contains all possible Voronoi cells
generated from all possible combinations of the
positions of robot 7; and each of its neighbors.
Therefore, by assigning each robot to be responsi-
ble for all information in its UV cell, the coverage
of the whole environment is guaranteed even with
the localization uncertainty of robots. In other
words, no matter where each robot is actually
located within an uncertainty region B;, the union
of all of the UV cells will be equal to the entire
environment, U;U; = E.

Let distmax(Gi,) and distyin(g;,) denote the
distances from a point = to the farthest or near-
est points within robot r;’s bounded uncertainty
region B;, respectively. Using these distances, one
can construct the boundaries for the UV cell of
robot 7; with respect to robot j(5 i) as:

distmax (¢s,) = distmin(d;,). (11)

These dividing lines, denoted by F;(j), are called
the UV-edges of r; with respect to r;. For circu-
lar uncertainty regions, F;(j) take the form of a
hyperbola (Xie et al., 2013), as Figure 1 shows.
Without loss of generality, let the center of the
hyperbola be at the midpoint of the line segment

o A 0 1 2

Fig. 1 Figure shows the UV edge FEiigpt(left) of robot
Tright With respect to robot 7je; (red curve). The X’s at
(1,0) and (—1,0) are the estimated locations of r.jgp and
T1eft, respectively. Dashed circles represent the localization
uncertainty regions of the robots. The black area contains
all of the points whose nearest robot is uncertain. The UV
edge FEiigne(left) is a collection of points whose shortest
distance to the right circle is equal to the longest distance
to the left circle, indicated by blue line segments.

connecting ¢; to ¢; and that this line segment is
parallel with the x axis. The hyperbola is then
given by

£ Y
where
bi +b; i — 4
a = —’2_ J C:Hq 2qj|| b: 027(12 (13)

where b;,b; are from (9) and ¢;,q; are the esti-
mated locations robots ¢ and j. Note that in this
coordinate frame the sensors are located at the
foci of the hyperbola.

3 Distributed Control with
Localization Uncertainty

In this section, we introduce three distributed
algorithms to construct the convex uncertain
Voronoi (CUV) diagram over the mission space
and use this to ensure collision avoidance as well
as perform coverage control. These algorithms all
account for uncertainty in the locations of robots
and their combination iteratively drive each robot
to the weighted centroid of its CUV cell while
guaranteeing safety and avoids “deadlock,” the
phenomenon where robots block each other from
moving to their respective goals.

Springer Nature 2021 ETEX template

(a) Voronoi diagram

(b) CUV diagram

Fig. 2 A Voronoi diagram and a CUV diagram with 15
cells. Green markers are estimated sensor locations. Note
that CUV cells are a superset of the original Voronoi cells
and that CUV cells overlap with one another.

3.1 The CUV Diagram and Its
Construction

A CUYV diagram, shown Fig. 2b, is composed of
the collection of CUV cells of all robots.

Definition 2 (CUV cell) The convex uncertain
Voronoi (CUV) cell C; of robot r; is the convex hull
of its UV cell U;.

To construct the CUV diagram, a robot must
know the locations of all of its CUV neighbors.

Definition 3 (CUV neighbors) The CUV neighbor
set for robot r; is N; 2 {j | j # i, E;(j) € 8U;}, where
oU; is the boundary of the UV cell U;.

Proposition 1 The CUV neighbors and the Voronoi
neighbors of a robot are identical.

Proof Since U; is the union of all possible Voronoi cells
of r;, UV edges E;(j) and E;(i) are contours of the
union of all possible Voronoi edges between 7; and r;.
Thus, the UV neighbors and the Voronoi neighbors
of a robot are identical. Since the CUV cells are con-
vex hulls of the UV cells, the CUV neighbors and the
Voronoi neighbors of a robot are also identical. |

We assume that each robot is able to com-
munication with all its CUV neighbors, a stan-
dard assumption in distributed multi-agent con-
trol algorithms (P.M. Dames, 2020a), in order
to exchange estimated locations and uncertainty
region radii. Using this information, each robot
can use algorithm 1 to construct its CUV cell

Voronoi Cell

CUV Cell

@)\\) Sensor
Z

UV Cell

Fig. 3 Figure shows a robot’s estimated location with its
localization uncertainty region (green) and its Voronoi cell
(black), UV cell (gray), CUV cell (red), CAR (yellow).

Algorithm 1 Distributed Construction of CUV
Cells

1: for Each robot r; do

2: Get estimated location ¢;

3: Find the neighbor set N;

4: Initialize Az =A

5: for r; in N; do

6: Receive ¢; and b; from 7;

7 Compute UV edge E;(j) using (12)

8: A; + {x € A;| z,§; on the same side
of Ei(j)}

9: end for

10: C; < convex hull(4;)

11: end for

using only local information. The basic idea for a
robot r; is to sequentially divide the original mis-
sion space using the UV edges F;(j) and discard
the portion not containing r; after each division.
Finally, the robot constructs the CUV cell by
computing the convex hull of the remaining area.
Figure 3 shows a schematic diagram of Voronoi,
UV, and CUV cells for a robot.

3.2 Collision Avoidance

3.2.1 Collision Avoidance Regions
(CARs)

By construction, Voronoi cells have disjoint inte-
riors and are convex. Thus, if point robots have
perfect knowledge of their locations and never
move outside their responding cell, it is naturally
guaranteed that they move without collision (e.g.,
being at the same location). However, this is not
the case for CUV-based control with localization
uncertainty. In fact, CUV cells always overlap with
their neighbors as long as the uncertainty region
for any robot is non-empty. Thus, we want each

Springer Nature 2021 ETEX template

robot to perform motion only within a region that
ensures no collisions with other robots, which we
call a collision avoidance region (CAR), shown in
Figure 3.

Definition 4 (CAR) The collision avoidance region
(CAR) for robot r; is M; £ {z | x € V;,d(z,0V;) >
bi+bpufter }, where Vj is the Voronoi cell V; constructed
using the estimated positions of r; and each neighbor
in N; and bpyfer is @ small buffered distance.

Note that bpuger can be used to account for
effects such as the size of mobile robots, a stopping
distance for robots with higher-order dynamics,
or the maximum distance a robot can traverse in-
between location updates. Also, M; exists if and
only if all CUV neighbors are initially outside of
r;’s localization uncertainty region B;.

Proposition 2 (CAR safety) Fach robot r; may go
anywhere within its CAR and be guaranteed to avoid
collisions with all other robots.

Proof From (10) we know that robot 7; must be inside
of its localization uncertainty region, i.e., dist(g;, §;) <
b;. Therefore, Definition 2 guarantees that ¢; € V;.
Since V; has disjoint interiors with its neighbors, it is
guaranteed that r; will not collide with any neighbors.

d

3.2.2 Deadlock Avoidance

Deadlock is the problem that robots mutually
block each other from reaching their goals. While
using the CUV-based method, this can occur when
the goal is located in the intersection of CUV cells.
Zhou et al. (2017) proved that a deadlock can only
happen under the condition that a robot is at a
vertex or on an edge of its safe moving region, the
buffered Voronoi cell in their paper or the CAR
in our case. They proposed two heuristic solutions
that perform well in practice to alleviate deadlock
phenomena, the second of which we utilize in our
implementation. This basic idea, outlined in Algo-
rithm 2, is to continuously break this deadlock
condition.

3.3 Distributed Coverage Control

As discussed in Section 2.4, minimizing the cost
functional H with respect to the robot dominance

Algorithm 2 Deadlock Avoidance
1: if §; reaches a vertex of M; then
2: Move along either of the adjacent edges by

bbuﬂer

3: else if §; reaches an edge Fj of M; then

4: Compute distance to the right-hand vertex
by

5: Move along Fj to the right by
min(bv; bbuffer)

6: end if

Algorithm 3 Distributed Coverage Control
1: for each robot r; do
2 Compute Voronoi cell V;
3 Compute CAR M; using V;, b;, bpufrer
4 Compute CUV cell C; using Algorithm 1
5: Find weighted centroid ¢ of C}
6
7
8
9

Find goal ¢f = argmin,,,, ||z — c||
if ¢} in the interior of M; then
Move towards ¢

: else
10: Deal with deadlock using Algorithm 2
11: end if

12: end for

regions W yields Voronoi cells V; for i =1,...,n
when the robot locations are known. However, in
our setting, this final condition is no longer true.
Instead, we will utilize the CUV cells C; as the
dominance regions W;. By construction, the UV
cells U; are the smallest dominance region that
ensures that each location in F is within at least
one robot dominance region. However, the UV
cells are not convex so the weighted centroid may
be outside of the cell boundaries. Thus, we choose
to use the CUYV cells as these are the smallest con-
vex regions containing the UV cells. Additionally,
it is more computationally efficient to work with
convex polygons rather than regions defined by
the intersection of conic sections.

To achieve distributed coverage control, the
mobile robots run Algorithm 3. Each robot itera-
tively finds the weighted centroid in its CUV cell
and attempts to reach it. If the centroid is outside
of its CAR, the robot goes to the point in its CAR
that is closest to the centroid. If a robot reaches
the boundary of its CAR, then it runs Algorithm
2 to avoid deadlock.

Springer Nature 2021 ETEX template

100
80
60|
40t

201

0 O !
0 20 40 60 80 100

Fig. 4 Trajectories of each robot in collision avoidance
test. The green markers indicate the initial positions of each
robot. Each pair of antipodal robots has a pair of lines with
different colors showing the trajectories of each robot.

4 Distributed Control
Simulations

We conduct simulations using MATLAB to vali-
date our proposed control methods from Section
3. The environment is an open 100 x 100 m square
mission space with no obstacles. The information
distribution function is initially the summation of
20 Gaussian probability density functions (PDF's),
each of which has a random mean and a covariance
matrix of the form o2, I, where I is an iden-
tity matrix and oo,y = 3m. The mean of each
Gaussian PDF performs a Gaussian random walk
with maximum velocity 5m/s, and the means may
move out of the environment and re-enter. The
covariance matrices are time-invariant.

Robots are regarded as particles, occupying no
space. Robot motion is holonomic with a maxi-
mum velocity of 5m/s. Robots localize themselves
at the frequency of 10Hz and the covariance
matrix for the location of each robot is of the form
Y = 021, where o; is time-invariant, though it
may be different for each i. Two robots are con-
sidered in danger of collision if their localization
uncertainty regions overlap. The robots begin each
trial uniformly distributed along the edges of the
space, ensuring that they begin a safe distance
from each other. We assume that each robot is
able to obtain information everywhere in their own
CUYV cell. While this is a limiting assumption, the
goal of this work is to demonstrate the efficacy of
the control strategy. Practical concerns, such as
robots with a limited field of view and imperfect
measurements, will be addressed in the Section

Robot # 1 19 | 20 | 50 | 100
or (m)
0.1 3 [115 | 85 | 176
0.2 7 [87 | 95 | 193
0.3 25 | 144 | 118 | 168
0.4 3 | s2 | 132 | 102

Table 1 Number of collisions per trial

5. Also, note the robots use a sampling-based
integration method to calculate the centroids.

4.1 Collision Avoidance

Before testing the target tracking performance, we
first conduct a series of tests to demonstrate the
need for collision avoidance.

4.1.1 Motivation

We ran trials with 10, 20, 50 and 100 robots with
localization errors ranging from 0.1 m to 0.4 m, in
steps of 0.1 m. Each robot has a radius of 0.1 m,
the same order of magnitude as the localization
uncertainty. We consider the worst case, in which
two robots collide if their localization uncertainty
regions overlap. The robots search for 20 dynamic
targets over the course of 1000s. Note that 20
is only the initial number of targets and that
the actual number varies over time as new tar-
gets enter and existing ones leave. The robots use
the old method from (P.M. Dames, 2020a), which
assumes perfect knowledge in the positions of the
robots and only guarantees collision avoidance in
this case.

As Table 1 shows, even with a low density of
robots (only 10 in the 60 x 60 m area) a number of
collisions happen over each trial, even with very
modest uncertainty in the positions of each robot.
As the density of robots increases, so to do the
number of collisions. This agrees with the intu-
ition that a higher robot density will increase the
chance of collisions. The number of collisions also
generally increases as the amount of localization
uncertainty increases. However, the correlation
between these two factors is less strong than it was
between robot density and number of collisions.

4.1.2 Results

Next, we demonstrate how these collisions, and
deadlock, are prevented using the approach from
Section 3.2. Eight robots are evenly distributed

Springer Nature 2021 ETEX template

100

80
60

a0}

. -
20 i
L
‘

Fig. 5 Distribution of robots and information after 100
simulated seconds. Green markers show the true positions
of 30 robots and red crosses show their current goals, i.e.,
the weighted centroid of their CUV cells. The informa-
tion distribution is shown in grayscale in the background,
with darker indicating more information. The robots were
originaly uniformly spaced along the boundaries of the
environment.

at the edges of the mission space at the begin-
ning, formulating four pairs of antipodal robots, as
Figure 4 shows. The goal is for the robots in each
pair to exchange positions. All robots start moving
to their goals simultaneously with the same veloc-
ity. Due to this symmetry, all robots approach the
center at the same time, blocking the way of the
other robots. As Figure 4 shows, all robots were
able to successfully avoid collision and eventually
reach their goals.

4.2 Optimized Coverage
4.2.1 Single Trial

We first show a single trial using 30 robots.
Each robot has a localization error o; ran-
domly distributed in the range [0.2, 0.3]m (so
r; € [0.6,0.9]m). All robots begin uniformly dis-
tributed along the boundaries of the environment,
and the trial lasts for 100s. The results are shown
in Figure 5. We see that most robots end up
clustered in the areas of high information den-
sity, while a few of others stay in low information
density areas in order to maintain coverage of
the entire mission space. Some robots have not
reached their temporary goals since the informa-
tion density changes over time, resulting in the

continuous change of the weighted centroids in
their CUV cells.

4.2.2 Comparison of Trials

We then conduct a large array of experiments
to show the performance of different sensing net-
works. We define dense-information regions as
regions that are within 30ep,, of the means of the
Gaussian PDFs in the information distribution
function. To measure the performance of the team,
we use two metrics. First, we measure the fraction
of the total area that lies within the dense infor-
mation regions, denoted as the dense-information
proportion (DIP). Second, we measure the frac-
tion of the total number of robots believed to be
within high-density regions, i.e., ¢; in the high-
density region, denoted as the optimized robot
proportion (OSP). The difference between the
OSP and the DIP will demonstrate the ability of
our control algorithm to guide robots to areas of
high information density. Specifically, we want the
OSP to be significantly higher than the DIP, indi-
cating that the robots are gathering at locations
with high information value.

We compare sensing networks of 4 different
sizes, from 20 robots to 50 robots in steps of
10. For each network size we test 5 different
uncertainty region sizes, drawing ¢ from uniform
distributions ranging from [0.1, 0.2]m to [0.5,
0.6] m, running 10 trials for each configuration,
and plotting them in Fig. 6. We log the data for
300s and use only the last 200s to compute the
OSP and the DIP for each sensing network since
it takes up to 100s for the OSP to reach steady
state. The mean and range of the DIP are nearly
identical for all tests, indicating that the total
information density over the mission space is rel-
atively stable for all tests. The results show that
for all sensing networks, the OSP is at least two
times larger than the DIP, meaning that all of the
team has optimized the robot locations.

For each network size, the OSP decreases as
the range of ¢ increases. This is expected, since
increasing o also increases the minimum allow-
able distance between robots using the CAR. The
result is that fewer robots are able to gather
within high-density areas. We also see that for
this particular environment, the OSP decreases
as the network size increases. This is due to the
fact that a smaller group tends to move to high

11

Springer Nature 2021 ETEX template

100 100

F-{TF-
FCIF--4
-

. ol g
J 186 migaag

100 100

ol

L

w8

60

,_
--
.
)

X X R

j I

40 40 40t i 40
B 8 8 8 8 B 8 8 8 8 B 8 8 8 8 B 8 8 8 8

20 20 201 20

0 0 0
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05

uncertainty uncertainty uncertainty uncertainty

(a) 20 Robots (b) 30 Robots

(c) 40 Robots (d) 50 Robots

Fig. 6 Boxplots showing the OSP (black) and the DIP (blue) percentages for networks with 20, 30, 40, and 50 robots and
different localization errors o; ranging from 0.1m to 0.5m. Each boxplot contains the results from 10 trials.

information density areas more significantly to
optimize its total detection probability, while a
larger group explores more in low density areas
as high density areas are saturated with agents.
Additional, robots with higher localization uncer-
tainty reserve more space among each other during
moving inside the working space, causing high
density areas saturated with less amount of agents.

5 Distributed Estimation with
Localization Uncertainty

All the above simulations assumed robots have a
priori knowledge of where the important areas are
within the environment, an unrealistic assump-
tion. To address this, we develop a distributed
tracking algorithm that allows the robots to dis-
cover and recursively update the important areas
during exploration. The key to our approach is
to distribute the storage and maintenance of the
PHD across individual agents in a way that is
guaranteed to match the results of a central-
ized PHD filter. This distributed storage system
requires each robot to exchange information with
its neighbors in order to dynamically update its
dominance region and the PHD information in
that region. P.M. Dames (2020b) previously pro-
posed three algorithms for distributed PHD parti-
cle exchange, prediction, and update steps respec-
tively, using the Voronoi cell as the dominance
region of each robot. When all robots are able
to perfectly localize themselves the dominance
regions form a perfect partition (i.e., full cover-
age of the environment and no overlap between

regions). While the CUV diagram guarantees full
coverage of the environment, it does this by cre-
ating overlapping cells (Chen & Dames, 2020b).
This greatly increases the difficulty in maintaining
the distributed PHD representation. Thus, we pro-
pose four novel algorithms to solve these problems.
Note that we implement all of these algorithms in
discrete time with a constant time interval.

At each discrete time step, each robot must
first run the particle exchange (5.2) algorithm to
update its CUV cell and ownership of particles.
In order to recursively estimate the target state,
each robot should then run the PHD prediction
(5.3) and update (5.4) algorithms in each discrete
time step. All three of these algorithms use the
exchange set algorithm (5.1) as a subroutine to
determine the set of neighbors each robot must
exchange data with.

5.1 Exchange Set

Our approach to distributed estimation requires
each robot to exchange information with its neigh-
bors in multiple contexts. To capture this range in
behavior we define the exchange set of a robot as
follows:

Definition 5 (Exchange Set) Let robot r be inside of
some convex region S. Its exchange set with respect
to Sis & (S) 2 {i=1,...,n| SNC; # @}, where n
is the number of robots in the team.

An example of a convex region S is the CUV
cell C, in which case &.(S) is equivalent to the

Springer Nature 2021 ETEX template

(b) Prediction (c) Update

Fig. 7 Figures showing an example of the main robot
(central square) and its neighbors (blue square) exploring
a rectangular environment. The solid lines show the cur-
rent CUV cell of each robot. Figure 7a shows the particle
exchange process. The dashed lines show the new CUV cell
of the main robot in the next time step. Figure 7b shows the
PHD prediction step. The dashed lines show the expanded
CUYV cell of the main robot, containing all possible loca-
tions that a target starting in the CUV cell of the main
robot may end up. Figure 7c shows the PHD update step.
The dashed lines show the sensor FoV of each robot.

(a) Exchange

CUV neighbor set of r, as defined in (Chen &
Dames, 2020b, Definition 3). Note that the CUV
neighbor set and the Voronoi neighbor set of a
robot are identical.

We assume that each robot is capable of
communicating with each member of its Voronoi
neighbor set for both Voronoi diagram initializa-
tion and maintenance (Bash & Desnoyers, 2007;
Carbunar, Grama, & Vitek, 2004). As was noted
in (Schwager et al., 2009), this requirement can-
not be translated into a communication range
constraint. Some authors have recently proposed
solutions to the case with limited communication
range by using multi-hop communication (Cortes,
Martinez, & Bullo, 2005; Guo & Jafarkhani, 2016;
Mahboubi & Aghdam, 2013). We also assume that
communication is perfect, meaning there is no sig-
nal loss or delay. While this is not realistic, it
is beyond the scope of this paper to address the
problem.

We introduce Algorithm 4, which enables each
robot to find its exchange set in a completely dis-
tributed manner. A robot r first finds all of its
CUV neighbors 7 € N'(r) and compares their CUV
cells individually with S. Neighbors who meets the
condition that C; NS # & are added to &.(S).
Then each neighbor i recursively checks if any
robots in its neighborhood N (i) meet the condi-
tion until no more robots do, skipping any robots
that have already been added to the exchange set).

Theorem 3 Algorithm /4 is guaranteed to find the full
exchange set E-(S) for robot r.

Algorithm 4 Find Exchange Set

1: function FINDEXGSET(id, &.(5), S)

2 Find CUV neighbor set N (id)

3 for i € N(id) do

4 Send S to i

5: 1 compares its CUV cell C; with S
6 if C; NS #TANi&E(S) then
7 E-(S) « {&:(9),1}

8 &-(S) < FINDEXGSET(3, &,(5), C)
9 end if

10: end for

11: return &.(S5)

12: end function

Algorithm 5 Particle Exchange

Share (¢,,q%) with robots in N (r)
Compute CUV cell, C!
& (CY) =FINDEXGSET(r, {r}, CL)
Initialize T = C! \ Ci~1
for i € £.(C!) do
r send T with ¢
i computes AC,; =CI='NT
¢ sends polygon AC,; and particles in
AC;; tor
9: r updates T < T\ AC,;
10: end for

® NP TR ®N e

Proof Assume that there is some robot i(# r) such
that C; NS # @ and i & £-(5). That is, Algorithm 4
terminates before checking robot ¢. This means that
i ¢ N(r) and that for all robots j € N (i) we have
C;NS = @ so that C;NS = @. This is a contradiction,
therefore all robots i ¢ &£-(S) must be in &(S). O

5.2 Particle Exchange

As each robot moves, so to do the boundaries of
its CUV cell. Since these CUV cells are used to
distribute the PHD storage, robots must exchange
data every time a cell changes shape. Algorithm 5
outlines this process of transferring ownership of
particles between robots. Each robot r first com-
putes its new CUV cell by finding its neighbor set.
This requires r to share the radius and center of its
localization uncertainty region, £, and ¢’ respec-
tively, with all its neighbors. Then r determines all
other robots that it must exchange particle with
by finding the exchange set &.(C!), using Algo-
rithm 4. Next, robot r must keep track of all of

Springer Nature 2021 ETEX template

Algorithm 6 Distributed PHD Prediction Step
for Robot r

Algorithm 7 Distributed PHD Update Step for
Robot r

Compute expanded CUV cell, C*
£-(Ct) = FINDEXGSET(r, {r}, Ct)
Initialize expanded area T = C* \ C*
for i € &£.(C%) do
r sends T to ¢
i computes AC‘M = Cf_l nT
i sends polygon ACN’M and particles in
Aé’m to r
r updates T + T\ ACN',,,,»
9: end for
10: Send done signal to robots i € £,(C?)
11: Wait for all robots i € &.(C) to be done
receiving
12: Perform PHD prediction in C* using (1)
13: Save particles only within C?
1: for i € £,.(C?) do
15: i replace particles in ACN'M» with those sent
from r
16: end for

IR S A

%

the area from which it has yet to receive informa-
tion (T") so as not to double count regions shared
by more than 2 robots. The shaded area of Figure
7a shows the initial region T'. Finally, it exchanges
data with all of the members of its exchange set.

5.3 PHD Prediction

The PHD prediction step propagates the target
distribution forward in time. This process includes
the appearance of new targets and the disappear-
ance and movement of existing targets. We assume
that targets are homogeneous, i.e., sharing iden-
tical models. However, we could use the semantic
PHD (SPHD) filter (Chen & Dames, 2019), a
modified version of the PHD filter, to incorporate
different motion models for different types of tar-
gets. In order to account for the motion of targets
from one CUV cell to another, we need to run
the prediction over an area that is larger than the
CUV cell. The expanded cell of robot r should
include the starting locations of all the possible
targets that may enter into C). in the next time
step.

To do this, each robot r runs Algorithm 6.
Robot r first expands its CUV cell by inflating
C? using the maximum travel distance of a target
over the time step to get C? (line 1). Note that if

1: if F,. C int(C!) then
2. Update PHD using Z! with (2)

3: else

4 E-(F,) =FINDEXGSET(r, {r}, F)

5: Initialize T'= F,. \ C,

6: for i € £.(F)) do

7 if i = r then

8: Compute n.. =
fC,‘ V2 g, (2)0(2) do

9: else

10: r sends Z,,q., T to i

11: i computes P =C; N'T

12:) computes nir =
Jp V20, (@)v(@) do 4

13: i sends P,n, tor

14: r updates T + T\ P

15: end if

16: end for

17 Compute 7., = c(2r; @) + Xpeep () nt

18: Update PHD using Z, with (2)

19: Send 7. to all i € &.(F,) who run (2) using
Zy

20: end if

C’f; is non-convex then we take the convex hull and
that C* = C% if targets are static. Then 7 finds its
exchange set Sr(éﬁ), by running Algorithm 4, and
receives particles from robots in &,(C?) to fill the
expanded area (lines 2-9). Note that the 7" func-
tions as an indicator of the finished area to avoid
receiving duplicated particles from areas where 3
or more CUV cells overlap. The robot then runs
the PHD prediction (1) only after all robots in
&.(C?) have finished receiving particle (lines 10—
13) in order to yield an identical predicted PHD
to that of a centralized PHD filter. Finally, lines
14-16 are required to ensure that all robots agree
in overlapping regions.

5.4 PHD Update

The PHD update step uses the sensor measure-
ments to correct the prediction from the previous
step. As was the case in (P.M. Dames, 2020b), the
PHD update step can be classified into two cases,
as Algorithm 7 shows. The first case happens when
the field of view of sensor r, F,, is fully inside
its CUV cell. In this case, we may simply apply

Springer Nature 2021 ETEX template

(a) Robot 1
Fig. 8 Demonstration of PHD update procedure for the
case where r’s sensor FoV exceeds the boundary of its CUV
cell. The main robot is the green square in the middle and
its field of view, F}., is shown by the green circle.

(b) Robot 2 (c) Robot 3

PHD update equation (2) using 7’s measurement
set (lines 1-2).

The other case is more complicated as robot r
cannot compute the normalization term (3) using
only local information. First, robot r must find its
exchange set &.(F,) (line 4) and initialize the un-
updated region T (line 5), which is shown as the
gray area in Figure 8a. Next, robot r and all of its
neighbors in the exchange set compute the partial
normalization terms, 0’ , Vi € £.(F,) (lines 6-14).
This process is illustrated in Figure 8, where the
central robot exchanges data with 1, then 2, and
then 3. The gray area is 7" and the hashed area is
P, which is the area over which the partial normal-
ization term is computed at each step. Once r has
all of the partial normalization terms it can add
them to compute the full term, 7, from (3) (line
15). It then sends that term back to each neigh-
bor and all robots can use the full normalization
term to run the PHD update equation (2) within
their CUV cell (lines 16-17).

As noted by R. Mahler (2009), the final result
of the multi-sensor PHD filter update depends on
the order in which measurements are applied. We
proposed one solution to this in (P.M. Dames,
2020a) by processing updates starting from the
lowest ID and keeping track of the current robot
by using a Boolean activation variable (indicat-
ing that that robot is the one currently running
its update). Each robot pauses until it becomes
the active agent in its neighbor set (i.e., all other
robots with lower IDs have already run the update
step). The same strategy could be used here.

6 Distributed Estimation and
Control Simulations

There are two main approaches for robots to get
their locations: relative to a global coordinate

system or to their starting location. The former
is typically done using a global positioning sys-
tem (GPS) sensor when outdoors or a motion
capture system when indoors. The latter is typi-
cally done using a combination of proprioceptive
(e.g., IMU or wheel encoders) and exteroceptive
(e.g., camera or lidar) sensors. Levinson, Monte-
merlo, and Thrun (2007) fuse GPS, IMU, wheel
odometry, and LIDAR data to achieve an average
localization error of < 5cm for vehicles in urban
environment, compared with > 1 m for GPS alone.
Similarly, experiments in (Dellaert, Fox, Burgard,
& Thrun, 1999), which use Monte Carlo localiza-
tion, show that when using a sonar and lidar a
robot achieve localization error of < 25cm, which
can be further decreased to < 10 cm if cell size and
number of samples are properly selected.

Using the data from the references above, we
choose to conduct our MATLAB simulations in an
open 60 x 60 m 2D space. Each robot ¢ has localiza-
tion error o; ranging from 0.1 m to 0.4 m in steps
of 0.05 m, which is representative of real-world sce-
narios. We also compare these results to the case
without localization error for reference. For each
level of localization error, we test either 10, 15,20
ground robots tracking 10,15,20 targets, where
the targets can either be all static or all dynamic.
This leads to a total of 9x3x3x2 = 162 scenarios
tested, with ten trials for each combination.

The robots begin each trial uniformly dis-
tributed along the edges of the space, ensuring
that they begin a safe distance from each other.
They move with a maximum speed of 2m/s.
Each robot is equipped with an isotropic sensor
with a 6 m sensing range. The other parameters
of the sensor model are identical to those from
(P.M. Dames, 2020b). Note that the PHD fil-
ter can easily accommodate more realistic sensor
models (P. Dames & Kumar, 2015). The tar-
get models also match those from (P.M. Dames,
2020b). The PHD is represented by a uniform grid
of particles. The grid resolution is 1 m, and ini-
tially the weight of each particle is set to w; =
2.774, so that the total expected number of targets
is initially 1.

We use the first order Optimal SubPattern
Assignment (OSPA) metric (Schuhmacher, Vo, &
Vo, 2008), a commonly-used approach in MTT.
The error between two sets X,Y, where X =m <
Y = n without loss of generality, is

15

Springer Nature 2021 ETEX template

d(X,)Y) = (1 miHn
n mell,

(Z} de(2i, Ym(@))" + (0 = m)))% (14)

where c is a cutoff distance, d.(z,y) = min(c, ||z —
y||), and II,, is the set of all permutations of the
set {1,2,...,n}. This gives the average error in
matched targets, where OSPA considers all pos-
sible assignments between elements € X and
y € Y that are within distance ¢ of each other.
This can be efficiently computed in polynomial
time using the Hungarian algorithm (Kuhn, 1955).
We use ¢ = 10m, p = 1, and measure the error
between the true and estimated target sets. Note
that a lower OSPA value indicates a more accurate
tracking of the target set.

6.1 Static Targets

We first test the case of stationary targets to get a
benchmark of performance. Note that in addition
to remaining stationary, there are no newborn tar-
gets and no existing targets disappear. Figure 9
shows the average OSPA error over the final 250s
of 300s runs to get the steady-state value. Over-
all, we see that for a fixed number of robots and
targets the OSPA error remains fairly consistent
over the range of localization uncertainty values
tested, with a slight increase as o; increases. This
increase is due to two main reasons. First, the
total detection probability of the team is no longer
maximized as discussed in 3.1, and decreases as
the localization uncertainty level increases. Sec-
ond, the increase in localization error results in an
increase in the distances between robots for col-
lision avoidance, which prevents the robots from
tracking more accurately when targets are closely
spaced. These effects are more pronounced both
with smaller teams and when the robot-to-target
ratio is low. This is due to the decrease in redun-
dancy in the system. However, when the number
of robots exceeds the number of static targets, the
OSPA error is close to 0 within the uncertainty
range of 0.4m, indicating that all targets end up
being tracked accurately.

6.2 Dynamic Targets

In the case of moving targets, the number of tar-
gets indicates the initial number. Targets move

with a maximum speed of 1m/s. However, this
value varies over time as new targets enter the
search area and others leave it. To account for this
increased complexity we run the trials for a longer
time (1000s) and we measure the average OSPA
error over the final 900s to obtain a measure of
steady-state behavior.

In Figures 9b, 9d, and 9f, we see that the
OSPA error increases roughly by 1-2m as the
uncertainty range increasing from Om to 0.4m.
This is primarily due to an increase in the number
of untracked targets (each of which increases the
OSPA by a value of 1/n), with a minor effect due
to an increase in the error of tracked targets. The
number of untracked targets is considerably higher
in the dynamic target case because new targets
enter the area along the boundaries and there are
simply not enough robots to ensure that each is
detected early on. This is also why the OSPA error
is effectively constant regardless of the initial num-
ber of targets for all team sizes and uncertainty
values.

We see that as the team size increases, the
error decreases, just like in the static case. The
primary reason for this is that a greater percent-
age of the area is visible at any given time, leading
to a high fraction of new targets being detected
and tracked. We also see a more pronounced and
consistent increase in the OSPA as o increases,
compared to the static case. This is due to the
more diffuse estimate of target locations within
the PHD making it more difficult to initiate track-
ing and the increased likelihood of losing tracking
of a target over time.

7 Hardware Experiments

We test our proposed estimation and control algo-
rithms using a team of TurtleBot3 platform for
both robots and moving targets. The TurtleBot3,
shown in Figure 10, is a differential drive robot
equipped with a 2D lidar with a full 360° field
of view and 3.5m range. The maximum velocity
of the searching robots is 0.1 m/s while the max-
imum velocity of the moving targets is 0.05m/s.
The robots operate in a 4m x 4m open portion
of an indoor space, shown by the yellow square in
Fig. 11. The robots use this full prior occupancy
grid map for localization using amcl from the ROS
navigation stack (Quigley et al., 2009), an imple-
mentation of adaptive Monte Carlo localization

Springer Nature 2021 ETEX template

10

OSPA(m)
r N
— —
oy ———
e ———
- +
o e
e —
=
- -
- -
o e ST
= -
-~ - -
—_— -
- =
o0 -
T - -
—r - -
[T
—r— - -
——
e ——
[=
P
—

0 0.1 015 0.2 0.25 0.3 0.35 04
Uncertainty(m)
(a) 10 Robots & Static Targets

10

m)

ar * ; vt

OSPA(

iddidi)

Uncertainty(m)
(c) 15 Robots & Static Targets

o

10

OSPA(m)

+ * -
+

F T * t u
ﬂ': !:1- eég ,:ﬂ UUﬂ -gg aul? 9? :
0 0.1 015 0.2 0.25 0.3 0.35 0.4

Uncertainty(m)
(e) 20 Robots & Static Targets

\V]

OSPA(m)

Géég 0 {0 o8 Y ?2’? 60y obo

0 0.1 0.15 0.2 0.25 0.3 0.35 04
Uncertainty(m)
(b) 10 Robots & Moving Targets

10
8
6
2 iy
S e st o 0 0 I8
o it
2"
0
0 0.1 0.15 0.2 0.25 0.3 0.35 04
Uncertainty(m)
(d) 15 Robots & Moving Targets
10
8
6
4 H - aég
4 wp 000 8P T
2#?6 b4y ugg ??H e .

0 0.1 0.15 0.2 0.25 0.3 0.35 04
Uncertainty(m)
(f) 20 Robots & Moving Targets

Fig. 9 OSPA error of different teams of robots tracking different numbers of targets under different localization uncertainty
levels. Red, blue and black boxplot represents target set of 10, 15 and 20 targets respectively.

(AMCL) (Pfaff, Burgard, & Fox, 2006) using only
lidar data. amcl outputs the estimated pose and
covariance, which we use to compute the radius
of the localization uncertainty region of a robot
using (9). Note, these radii may change as the
robots move, which could lead to a pair of robots
getting too close, the localization uncertainty sud-
denly increasing, and preventing the robots from
constructing their CUV cells. However, through-
out our experiments, this situation never arose

since the localization uncertainty is relatively con-
sistent due to the static and well-structured nature
of the environment, with radii typically around
0.1m. The robots use the ROS navigation stack to
reach their goals, which uses the dynamic window
approach (DWA) (Fox, Burgard, & Thrun, 1997).

To make the targets stand out against the
background, we use strips of retroreflective tape.
The returns from the tape in the laser scan
ROS message have an intensity value around

17

Springer Nature 2021 ETEX template

Fig. 11 The occupancy grid map of the living room envi-
ronment built via SLAM. The yellow square shows the 4 m
X 4m open search space inside the map.

8000 units, while background objects are typically
under 5000. To convert the lidar data to bear-
ing and range measurements, we discard all lidar
points below an intensity threshold of 7000, find
the centroid of each cluster of remaining points,
and compute the range and bearing to that cen-
troid, a technique we previously used in another
target tracking context (P. Dames & Kumar,
2015). We attach these retroflective tape bands to
water bottles (stationary targets) or TurtleBot3s
(dynamic targets). The dynamic targets follow
pre-defined trajectories, which are unknown to the
tracking robots. We also limit the maximum detec-
tion range of the TurtleBot to 2m as we found
that beyond this range the reflective marker detec-
tions were not reliable. This also makes the sensing
problem more challenging as the robots have a
smaller field of view.

Localize
(AMCL)

Construct CUV

Move
cell

Receive
measurements

Determine
goal

Run PHD filter

Fig. 12 Diagram of actions each robot takes recursively
for distributed estimation and tracking.

7.1 Distributed Communication

Our system is composed of a laptop with Intel
Core i7-5500U CPU and 8 GB memory running
Ubuntu 16.04, and four Turtlebot3 robots run-
ning Raspbian Jessie. All computers communicate
over a local wireless network. We use ROS to han-
dle the data exchange between robots/processes,
with each robot having a set of nodes to local-
ize itself, compute its CUV cell, detect targets
from its lidar scan, run the PHD filter, compute
the goal, and send navigation commands. During
operation, each robot asynchronously follows the
set of actions in Fig. 12.

To implement Algorithms 4 to 7, robots must
exchange information locally, sharing all required
information with neighbors before running each
algorithm and sharing must be done in a spe-
cific order to ensure consistency across robots.
To achieve this, we use ROS services to send
information between pairs of nodes.

One issue that arose during implementation
was communication deadlock, where one agent
waits for a service from a second agent while that
second agents waits on a service from the first.
This is often due to a communication latency,
where one agent can call for a service before
it receives the request sent earlier from another
agent. To prevent this, we developed a sequen-
tial information exchange algorithm, outlined in
Algorithm 12. The basic idea is to always allow
only one robot to request information from others
within a neighborhood at one time and to ensure
that each robot receives information sequentially
instead of simultaneously. For the robot r with
exchange set &,.(S), we use a set £ (line 2) to
store all robots in &,(S) which robot r has received
information from it. ry, is the smallest ID of

Springer Nature 2021 ETEX template

robots not having received information from robot
r (line 5), and robot r uses this to decide whether
to request information from its neighbors or to
respond to requests (lines 6-9). Finally, r adds rmin
to £ (line 10) and the cycle repeats until r has
sent information to all robots in its exchange set
(line 4).

1: function SEQINFOEXG(r, &,.(S))

2 Initialize £ = @

3 while £ # £,.(5) do

4 Tmin = min(&,-(S) \ £)

5: if r = Tmin then

6 Send request to all robots in &,.(.5)
7 else

8 Wait for request from robot rpyi,
9: end if

10: L+ LU{rmin}

11: end while

12: end function

7.2 Results

The robots begin exploration from the boundary
of the environment, as shown in Figure 13a, with
sufficient separation to ensure that their local-
ization uncertainty regions do not overlap so the
CUV diagram can be successfully initialized. In
general, we found that the localization uncertainty
regions shrink after robots begin to move since
more environment information is collected.

There are three phases along the process of
multi-target search and tracking. Initially, all
robots move towards the targets with each of them
tracking a unique target, as Figure 13b shows. In
the second and third phases, targets 3 and tar-
get 4 begin to move, respectively. We can see
in Figures 13c and 13d that robots 3 and robot
4 effectively follow these moving targets while
the other robots continue to track the stationary
targets. This trial demonstrates the efficacy the
our proposed estimation and control algorithms
to track mixed static and dynamic targets under
localization uncertainty.

8 Conclusions

In this paper, we first propose a distributed control
algorithm for a mobile sensing network that opti-
mizes the sensor locations to improve detections
while maintaining coverage of the entire mission
space, accounting for uncertainty in the loca-
tion of each sensor, and guaranteeing safety. This
approach uses two novel variants of the Voronoi
cell: the convex uncertainty Voronoi (CUV) dia-
gram and the collision avoidance region (CAR).
Sensors are able to construct both the CUV and
the CAR in a distributed fashion, using only local
information about sensors’ estimated locations
and the associated uncertainty of these estimates.
The sensors then recursively drive to the weighted
centroid of their CUV cells, using the information
density function to determine the relative weights
of each location in the environment. This enables
sensors to move to regions with high informa-
tion density. The CARs then restrict the motion
of each sensor to avoid collision with others and
to avoid becoming stuck in any deadlock con-
figuration. Our simulation results show that the
proposed algorithm functions as desired. Further-
more, we explore the effects of changing the size
of the network and the scale of the localization
error on the performance of the team. We see that
increasing localization error results in larger spac-
ing between sensors. Future work will focus on
performing hardware tests using teams of mobile
robots and incorporating a mechanism to estimate
the information distribution function online.

We then introduce four distributed algorithms
to enable a team of robots to safely search for and
track a time-varying number of targets. This offers
a significant improvement over our previous work
that assumed that all robots had perfect knowl-
edge of their own positions, which is an unrealistic
assumption in practice. These algorithms enable
the team of robots to exchange data and main-
tain a distributed multi-target filter in a consistent
and efficient manner that yields an identical result
to a centralized approach. To do this, we lever-
age our recent results where we introduced the
convex uncertainty Voronoi (CUV) diagram, using
this to distribute the PHD across the team and
to ensure collision avoidance. The complication
lies in that robots are possible to maintain the
PHD in a common region due to the ambiguity
of their true locations. Thus, the PHD should be

19

Springer Nature 2021 ATEX template

e S

Ll / Robot 1

- Jarget 1 Target 4

e

Target 3 Targ;et 2

Robot 3

(a) Initial Poses of Robots and Targets

Target 3
Robot'3

(c) Tracking Phase 2

(b) Tracking Phase 1

Robot#

larget 4

(d) Tracking Phase 3

Fig. 13 Figures show initial states of robots and targets, and three phases during distributed search and tracking. In
Figure 13a, yellow lines indicate the boundaries of the open search space in the map. In Figures 13b, 13c, 13d, white and
blue arrows show trajectories of robots and targets, respectively.

carefully maintained by each individual robot to
avoid the loss or over maintaining. We validate our
approach using a series of simulated experiments,
where we take localization error values from real-
world scenarios. Robot localization accuracy in
our simulations is set to account for a number
of real-world scenarios. The results show that the
tracking accuracy decreases only slightly as the
localization uncertainty level increases, compared
with the case where robots have perfect knowl-
edge of their locations. Meanwhile, our proposed
method guarantees collision avoidance, which can
be a significant issue when applying Voronoi-based
control algorithms in practice. Future work will
ailm to remove the assumption of perfect com-
munication between robots to further increase
the real-world applicability of our proposed algo-
rithms.

Acknowledgments. This work was supported
by the National Science Foundation grant IIS-
1830419.

References

Adaldo, A., Mansouri, S.S., Kanellakis, C.,
Dimarogonas, D.V., Johansson, K.H., Niko-
lakopoulos, G. (2017). Cooperative cover-
age for surveillance of 3d structures. 2017
ieee/rsj international conference on intelli-
gent robots and systems (iros) (pp. 1838-
1845).

Bash, B.A., & Desnoyers, P.J. (2007). Exact dis-
tributed voronoi cell computation in sensor
networks. Proceedings of the 6th interna-
tional conference on information processing
in sensor networks (pp. 236-243).

Springer Nature 2021 ETEX template

Benevento, A., Santos, M., Notarstefano, G.,
Paynabar, K., Bloch, M., Egerstedt, M.
(2020). Multi-robot coordination for esti-
mation and coverage of unknown spatial
fields. 2020 ieee international conference on
robotics and automation (icra) (pp. 7740-
7746).

Blackman, S.S. (2004). Multiple hypothesis
tracking for multiple target tracking. IFEFE
Aerospace and FElectronic Systems Maga-
zine, 19(1), 5-18.

Breitenmoser, A., Metzger, J.-C., Siegwart, R.,
Rus, D. (2010). Distributed coverage control
on surfaces in 3d space. 2010 ieee/rsj inter-
national conference on intelligent robots and
systems (pp. 5569-5576).

Carbunar, B., Grama, A., Vitek, J. (2004).
Distributed and dynamic voronoi overlays
for coverage detection and distributed hash
tables in ad-hoc networks. Proceedings.
tenth international conference on parallel
and distributed systems, 2004. icpads 2004.
(pp. 549-556).

Chen, J., & Dames, P. (2019). Multi-class
target tracking using the semantic phd fil-
ter. International symposium on robotics
research.

Chen, J., & Dames, P. (2020a). Collision-free dis-
tributed multi-target tracking using teams
of mobile robots with localization uncer-
tainty. 2020 ieee/rsj international confer-
ence on intelligent robots and systems (iros)

(pp. 6968-6974).

Chen, J., & Dames, P. (2020b). Distributed
and collision-free coverage control of a team
of mobile sensors using the convex uncer-
tainty voronoi diagram. American control
conference. (Accepted)

Chen, J., & Dames, P. (2020c). Distributed
and collision-free coverage control of a team
of mobile sensors using the convex uncer-
tain voronoi diagram. 2020 american control

conference (acc) (pp. 5307-5313).

Chen, J., & Dames, P. (2021). Distributed multi-
target tracking for heterogeneous mobile
sensing networks with limited field of
views. 2021 ieee international conference on

robotics and automation (icra) (pp. 9058—
9064).

Cortes, J., Martinez, S., Bullo, F. (2005).
Spatially-distributed coverage optimization
and control with limited-range interactions.
ESAIM: Control, Optimisation and Calculus
of Variations, 11(4), 691-719.

Cortes, J., Martinez, S., Karatas, T., Bullo, F.
(2004). Coverage control for mobile sensing
networks. [FEFE Transactions on robotics
and Automation, 20(2), 243-255.

Dames, P., & Kumar, V. (2015). Autonomous
localization of an unknown number of tar-
gets without data association using teams
of mobile sensors. IEEFE Transactions

on Automation Science and Engineering,
12(3), 850-864.

Dames, P.M. (2020a). Distributed multi-target
search and tracking using the PHD filter.
Autonomous Robots, 44, 673-689.

Dames, P.M. (2020b, March). Distributed
multi-target search and tracking
using the PHD (filter. Autonomous

Robots, 673-689. Retrieved from
https://doi.org/10.1007/s10514-019-09840-
9

10.1007/s10514-019-09840-9

Dellaert, F., Fox, D., Burgard, W., Thrun, S.
(1999). Monte carlo localization for mobile
robots. Proceedings 1999 ieee international
conference on robotics and automation (cat.
no. 99c¢h36288c) (Vol. 2, pp. 1322-1328).

Du, Q., Emelianenko, M., Ju, L. (2006). Con-
vergence of the Lloyd algorithm for comput-
ing centroidal Voronoi tessellations. SIAM

21

Springer Nature 2021 ETEX template

Journal on Numerical Analysis, 44 (1), 102—
119.

Evans, W., & Sember, J. (2008). Guaran-
teed Voronoi diagrams of uncertain sites.
20th canadian conference on computational
geometry (pp. 207-210).

Fox, D., Burgard, W., Thrun, S. (1997). The
dynamic window approach to collision avoid-
ance. IEEFE Robotics € Automation Maga-
zine, 4 (1), 23-33.

Guo, J., & Jafarkhani, H. (2016). Sensor deploy-
ment with limited communication range
in homogeneous and heterogeneous wire-
less sensor networks. IEEE Transactions
on Wireless Communications, 15(10), 6771
6784.

Hamid Rezatofighi, S., Milan, A., Zhang, Z., Shi,
Q., Dick, A., Reid, I. (2015). Joint proba-
bilistic data association revisited. Proceed-
ings of the ieee international conference on
computer vision (pp. 3047-3055).

Hussein, L1., & Stipanovic, D.M. (2007). Effective
coverage control for mobile sensor networks
with guaranteed collision avoidance. IEEE
Transactions on Control Systems Technol-

ogy, 15(4), 642-657.

Jooyandeh, M., Mohades, A., Mirzakhah, M.
(2009). Uncertain Voronoi diagram. Infor-
mation processing letters, 109(13), 709-712.

Kantaros, Y., Thanou, M., Tzes, A. (2015). Dis-
tributed coverage control for concave areas
by a heterogeneous robot—swarm with visi-

bility sensing constraints. Automatica, 53,
195-207.

Kim, S., Santos, M., Guerrero-Bonilla, L., Yezzi,
A., Egerstedt, M. (2022). Coverage control
of mobile robots with different maximum
speeds for time-sensitive applications. IEEE

Robotics and Automation Letters.

Konstantinova, P., Udvarev, A., Semerdjiev, T.
(2003). A study of a target tracking
algorithm wusing global nearest neighbor
approach. Proceedings of the international
conference on computer systems and tech-
nologies (compsystech’03) (pp. 290-295).

Kuhn, H.W. (1955). The Hungarian method for
the assignment problem. Naval Research
Logistics Quarterly, 2(1-2), 83-97.

Levinson, J., Montemerlo, M., Thrun, S. (2007).
Map-based precision vehicle localization in
urban environments. Robotics: science and
systems (Vol. 4, p. 1).

Li, W., & Cassandras, C.G. (2005). Distributed
cooperative coverage control of sensor net-
works. Proceedings of the 44th ieee con-

ference on decision and control (pp. 2542—
2547).

Luo, W., & Sycara, K. (2019). Voronoi-based
coverage control with connectivity mainte-
nance for robotic sensor networks. 2019
international symposium on multi-robot and
multi-agent systems (mrs) (pp. 148-154).

Mahboubi, H., & Aghdam, A.G. (2013).
Self-deployment algorithms for coverage
improvement in a network of nonidentical
mobile sensors with limited communication

ranges. 2018 american control conference
(pp. 6882—6887).

Mahler, R. (2009). The multisensor phd filter:
I. general solution via multitarget calculus.
Signal processing, sensor fusion, and target

recognition zviii (Vol. 7336, p. 73360E).

Mahler, R.P. (2003). Multitarget bayes filtering
via first-order multitarget moments. IEFEE
Transactions on Aerospace and Electronic
systems, 39(4), 1152-1178.

Mahler, R.P. (2007). Statistical multisource-
multitarget information fusion (Vol. 685).

Springer Nature 2021 ETEX template

Artech House Norwood, MA.

Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.
(2009). Spatial tessellations: concepts and

applications of voronoi diagrams (Vol. 501).
John Wiley & Sons.

Pfaff, P., Burgard, W., Fox, D. (2006). Robust
monte-carlo localization using adaptive like-
lihood models. FEuropean robotics sympo-
stum 2006 (pp. 181-194).

Pierson, A., Figueiredo, L.C., Pimenta, L.C.,
Schwager, M. (2017). Adapting to sensing
and actuation variations in multi-robot cov-

erage. The International Journal of Robotics
Research, 36(3), 337-354.

Quigley, M., Conley, K., Gerkey, B., Faust, J.,
Foote, T., Leibs, J., ... others (2009). Ros:
an open-source robot operating system. Icra
workshop on open source software (Vol. 3,

p. 5).

Rudolph, M., Wilson, S., Egerstedt, M. (2021).
Range limited coverage control using air-
ground multi-robot teams. 2021 ieee inter-
national conference on robotics and automa-

tion (icra) (pp. 3525-3530).

Santos, M., Diaz-Mercado, Y., Egerstedt, M.
(2018). Coverage control for multirobot
teams with heterogeneous sensing capabili-
ties. IEEE Robotics and Automation Let-
ters, 3(2), 919-925.

Sarkka, S., Vehtari, A., Lampinen, J. (2007).
Rao-blackwellized particle filter for multiple
target tracking. Information Fusion, 8(1),
2-15.

Schuhmacher, D., Vo, B.-T., Vo, B.-N. (2008). A
consistent metric for performance evaluation
of multi-object filters. IEEE transactions on
signal processing, 56(8), 3447-3457.

Schwager, M., McLurkin, J., Rus, D. (2006).
Distributed coverage control with sensory

feedback for networked robots. robotics:
science and systems (pp. 49-56).
Schwager, M., Rus, D., Slotine, J.-J. (2009).

Decentralized, adaptive coverage control for
networked robots. The International Jour-
nal of Robotics Research, 28(3), 357-375.

Shi, Y., Wang, N., Zheng, J., Zhang, Y., Yi,
S., Luo, W., Sycara, K. (2020). Adap-
tive informative sampling with environment
partitioning for heterogeneous multi-robot
systems. 2020 ieee/rsj international confer-

ence on intelligent robots and systems (iros)
(pp. 11718-11723).

Vo, B.-N., Singh, S., Doucet, A., et al. (2003).
Sequential monte carlo implementation of
the phd filter for multi-target tracking. Proc.
int’l conf. on information fusion (pp. 792—
799).

Wang, L., Ames, A.D., Egerstedt, M. (2016).
Multi-objective compositions for collision-
free connectivity maintenance in teams of
mobile robots. 2016 ieee 55th conference on
decision and control (cde) (pp. 2659-2664).

Wang, M., & Schwager, M. (2019). Distributed
collision avoidance of multiple robots with
probabilistic buffered voronoi cells. 2019
international symposium on multi-robot and
multi-agent systems (mrs) (pp. 169-175).

Xie, X., Cheng, R., Yiu, M.L., Sun, L., Chen,
J. (2013). UV-diagram: a Voronoi dia-
gram for uncertain spatial databases. The
VLDB Journal—The International Journal
on Very Large Data Bases, 22(3), 319-344.

Zhong, M., & Cassandras, C.G. (2011). Dis-
tributed coverage control and data collec-
tion with mobile sensor networks. IEFEE
Transactions on Automatic Control, 56(10),

2445-2455.

Zhou, D., Wang, Z., Bandyopadhyay, S., Schwa-
ger, M. (2017). Fast, on-line collision avoid-
ance for dynamic vehicles using buffered

Springer Nature 2021 ETEX template

23

Voronoi cells. IEEE Robotics and Automa-
tion Letters, 2(2), 1047-1054.

Zhu, H., Brito, B., Alonso-Mora, J. (2022). Decen-
tralized probabilistic multi-robot collision
avoidance using buffered uncertainty-aware
voronoi cells. Autonomous Robots, 1-20.

	Introduction
	Multi-Target Tracking
	Coverage Control
	Contributions
	Distributed Control
	Distributed Tracking
	Experiments

	Problem Formulation
	PHD Filter
	Lloyd's Algorithm
	Localization Uncertainty Regions
	Uncertain Voronoi Diagram

	Distributed Control with Localization Uncertainty
	The CUV Diagram and Its Construction
	Collision Avoidance
	Collision Avoidance Regions (CARs)
	Deadlock Avoidance

	Distributed Coverage Control

	Distributed Control Simulations
	Collision Avoidance
	Motivation
	Results

	Optimized Coverage
	Single Trial
	Comparison of Trials

	Distributed Estimation with Localization Uncertainty
	Exchange Set
	Particle Exchange
	PHD Prediction
	PHD Update

	Distributed Estimation and Control Simulations
	Static Targets
	Dynamic Targets

	Hardware Experiments
	Distributed Communication
	Results

	Conclusions
	Acknowledgments

