1 Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol.5, 370-382, doi:10.1016/0002-9149(60)90084-9 (1960).
2 Ross, J., Jr. Adaptations of the left ventricle to chronic volume overload. Circ. Res.35, suppl II:64-70, doi:10.1016/0002-9149(75)90774-2 (1974).
3 Hunter, J. J. & Chien, K. R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med.341, 1276-1283, doi:10.1056/nejm199910213411706 (1999).
4 Patten, R. D., Udelson, J. E. & Konstam, M. A. Ventricular remodeling and its prevention in the treatment of heart failure. Curr. Opin. Cardiol.13, 162-167 (1998).
5 Helm, P. A. et al. Evidence of Structural Remodeling in the Dyssynchronous Failing Heart. Circ. Res.98, 125-132, doi:doi:10.1161/01.RES.0000199396.30688.eb (2006).
6 Ashikaga, H., Omens, J. H. & Covell, J. W. Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure. American Journal of Physiology-Heart and Circulatory Physiology287, H1994-H2002, doi:10.1152/ajpheart.00326.2004 (2004).
7 Dec, G. W. & Fuster, V. Idiopathic Dilated Cardiomyopathy. N. Engl. J. Med.331, 1564-1575, doi:10.1056/nejm199412083312307 (1994).
8 Lyu, Y., Chen, J. & Xu, H. The pathogenic gene screening in a Chinese familial dilated cardiomyopathy pedigree from Hubei. Gene642, 159-162, doi:https://doi.org/10.1016/j.gene.2017.11.001 (2018).
9 Fan, L.-L. et al. Whole exome sequencing identifies a novel mutation (c.333 + 2T > C) of TNNI3K in a Chinese family with dilated cardiomyopathy and cardiac conduction disease. Gene648, 63-67, doi:https://doi.org/10.1016/j.gene.2018.01.055 (2018).
10 Mahmaljy, H., Yelamanchili, V. S. & Singhal, M. in StatPearls (StatPearls Publishing
Copyright © 2020, StatPearls Publishing LLC., 2020).
11 Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. Lancet375, 752-762, doi:10.1016/s0140-6736(09)62023-7 (2010).
12 Merlo, M. et al. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail.20, 228-239, doi:10.1002/ejhf.1103 (2018).
13 Reichart, D., Magnussen, C., Zeller, T. & Blankenberg, S. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes. J. Intern. Med.286, 362-372, doi:https://doi.org/10.1111/joim.12944 (2019).
14 Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J., 3rd. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation80, 564-572, doi:10.1161/01.cir.80.3.564 (1989).
15 Schaper, J. et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation83, 504-514, doi:doi:10.1161/01.CIR.83.2.504 (1991).
16 Merlo, M. et al. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail.20, 228-239, doi:https://doi.org/10.1002/ejhf.1103 (2018).
17 Burke, A. & Tavora, F. Practical cardiovascular pathology. (Wolters Kluwer Health/Lippincott Williams & Wilkins, 2011).
18 Vermij, S. H., Abriel, H. & van Veen, T. A. B. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc. Res.113, 259-275, doi:10.1093/cvr/cvw259 (2017).
19 Mu, L. M., Wang, W. F., Zheng, H., Guo, Z. K. & Zhang, G. M. Expression of N-cadherin in myocardial tissues during the development of a rat heart. Genet. Mol. Res.14, 9882-9889, doi:10.4238/2015.August.19.22 (2015).
20 Ivanov, D. et al. Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem. Cell Biol.115, 231-242, doi:10.1007/s004180100252 (2001).
21 Zhong, Y., Brieher, W. M. & Gumbiner, B. M. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. The Journal of cell biology144, 351-359, doi:10.1083/jcb.144.2.351 (1999).
22 Yoshida, M. et al. Weaving hypothesis of cardiomyocyte sarcomeres: discovery of periodic broadening and narrowing of intercalated disk during volume-load change. The American journal of pathology176, 660-678, doi:10.2353/ajpath.2010.090348 (2010).
23 Kostetskii, I. et al. Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ. Res.96, 346-354, doi:10.1161/01.RES.0000156274.72390.2c (2005).
24 Perriard, J. C., Hirschy, A. & Ehler, E. Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc. Med.13, 30-38, doi:10.1016/s1050-1738(02)00209-8 (2003).
25 McNally, E. M. & Mestroni, L. Dilated Cardiomyopathy. Circ. Res.121, 731-748, doi:doi:10.1161/CIRCRESAHA.116.309396 (2017).
26 Masuda, H. et al. Side-to-side linking of myocardial cells in hypertrophic cardiomyopathy: whole heart microscopic observation with tangential sections. Pathol. Int.55, 677-687, doi:10.1111/j.1440-1827.2005.01894.x (2005).
27 Maeda, M., Holder, E., Lowes, B., Valent, S. & Bies, R. D. Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation95, 17-20, doi:10.1161/01.cir.95.1.17 (1997).
28 Olson, T. M. et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation105, 431-437, doi:10.1161/hc0402.102930 (2002).
29 Belkin, A. M., Ornatsky, O. I., Glukhova, M. A. & Koteliansky, V. E. Immunolocalization of meta-vinculin in human smooth and cardiac muscles. J. Cell Biol.107, 545-553, doi:10.1083/jcb.107.2.545 (1988).