1. B. Yang, et al., Solution plasma method for the preparation of Cu-Ni/CuO-NiO with excellent methanol electrocatalytic oxidation performance. Appl. Surf. Sci. 513, 145808 (2020)
2. H.S. Ferreira, et al., Improved electrocatalytic activity of Pt supported onto Fe-doped TiO2 toward ethanol oxidation in acid media. Mater. Chem. Phys. 245, 122753 (2020)
3. I. Pötzelberger, et al., Maximum electrocatalytic oxidation performance for formaldehyde in a combinatorial copper-palladium thin film library. Appl. Catal. A-Gen. 525, 110-118 (2016)
4. S.R. Hosseini, et al., Pd-Cu/poly (o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation. Mater. Res. Bull. 80, 107-119 (2016)
5. A. Touny, R.H. Tammam, and M. Saleh, Electrocatalytic oxidation of formaldehyde on nanoporous nickel phosphate modified electrode. Appl. Catal. B-Environ. 224, 1017-1026 (2018)
6. R. Ojani, et al., Copper-poly (2-aminodiphenylamine) composite as catalyst for electrocatalytic oxidation of formaldehyde in alkaline media. Int. J. Hydrogen Energy, 38, 5457-5463 (2013)
7. C. Korzeniewski and C.L. Childers, Formaldehyde yields from methanol electrochemical oxidation on platinum. J. Phys. Chem. B, 102, 489-492 (1998)
8. S.K. Hassaninejad–Darzi, A novel, effective and low cost catalyst for formaldehyde electrooxidation based on nickel ions dispersed onto chitosan-modified carbon paste electrode for fuel cell. J. Electroceram. 33, 252-263 (2014)
9. A. Safavi, et al., Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J. Electroanal. Chem. 626, 75-79 (2009)
10. C. Zhang, et al., Synthesis of MnO2 modified porous carbon spheres by preoxidation-assisted impregnation for catalytic oxidation of indoor formaldehyde. J. Porous Mater. 27, 801-815 (2020)
11. Y. Xia, et al., Preparation of high surface area mesoporous nickel oxides and catalytic oxidation of toluene and formaldehyde. J. Porous Mater. 24, 621-629 (2017)
12. F. Niu and Q. Yi, A novel nanoporous palladium catalyst for formaldehyde electro-oxidation in alkaline media. Rare Metals, 30, 102-105 (2011)
13. J.-B. Raoof, S.R. Hosseini, and S. Rezaee, A simple and effective route for preparation of platinum nanoparticle and its application for electrocatalytic oxidation of methanol and formaldehyde. J. Mol. Liq. 212, 767-774 (2015)
14. B. Habibi and S. Ghaderi, Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@ Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode. Iran. J. Chem. Chem. Eng. 35, 99-112 (2016)
15. Y. Chen, et al., Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts. J. Colloid Interface Sci. 428, 1-7 (2014)
16. J.-B. Raoof, et al., Fabrication of bimetallic Cu/Pd particles modified carbon nanotube paste electrode and its use towards formaldehyde electrooxidation. J. Mol. Liq. 204, 106-111 (2015)
17. V. Selvaraj, A.N. Grace, and M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J. Colloid Interface Sci. 333, 254-262 (2009)
18. J. Monzó, et al., Electrochemical oxidation of small organic molecules on Au nanoparticles with preferential surface orientation. ChemElectroChem, 2, 958-962 (2015)
19. G. Padmalaya, et al., Synthesis of Micro-dumbbell Shaped rGO/ZnO Composite Rods and Its Application Towards as Electrochemical Sensor for the Simultaneous Determination of Ammonia and Formaldehyde Using Hexamine and Its Structural Analysis. J. Inorg. Organomet. P. 30, 943-954 (2020)
20. E.O. Nachaki, et al., Nickel‐Palladium‐Based Electrochemical Sensor for Quantitative Detection of Formaldehyde. ChemistrySelect. 3, 384-392 (2018)
21. S.A. Al-Jendan, et al., An optimized nickel phosphate/carbon composite electrocatalyst for the oxidation of formaldehyde. Int. J. Hydrogen Energy, 45, 14320-14333 (2020)
22. Š. Trafela, S. Šturm, and K.Ž. Rožman, Surface modification for the enhanced electrocatalytic HCHO oxidation performance of Ni-thin-film-based catalysts. Appl. Surf. Sci. 537, 147822 (2021)
23. T. Yang, et al., Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al 2 O 3 with a low Pt content. Appl. Catal. B-Environ. 200, 543-551 (2017)
24. S. Gheytani, S. Hassaninejad‐Darzi, and M. Taherimehr, Formaldehyde Electro‐catalytic Oxidation onto Carbon Paste Electrode Modified by MIL‐101 (Cr) Nanoparticles. Fuel Cells, 20, 3-16 (2020)
25. S.N. Azizi, S. Ghasemi, and F. Amiripour, Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors Actuators B: Chem. 227, 1-10 (2016)
26. S.N. Azizi, S. Ghasemi, and M. Derakhshani-mansoorkuhi, The synthesis of analcime zeolite nanoparticles using silica extracted from stem of sorghum Halepenesic ash and their application as support for electrooxidation of formaldehyde. Int. J. Hydrogen Energy, 41, 21181-21192 (2016)
27. S. Hassaninejad‐Darzi, M. Rahimnejad, and M. Gholami‐Esfidvajani, Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Nickel Decorated Nanoporous Cobalt‐Nickel Phosphate Molecular Sieve for Fuel Cell. Fuel Cells, 16, 89-99 (2016)
28. S. Kavian, S.N. Azizi, and S. Ghasemi, Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni (OH) 2-X/CPE) for the electrocatalytic oxidation of formaldehyde. Chinese J. Catal. 37, 159-168 (2016)
29. M. Abrishamkar and F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media. Micropor. Mesopor. Mater. 167, 51-54 (2013)
30. J.B. Raoof, et al., Ni/ZSM‐5 Zeolite Modified Carbon Paste Electrode as an Efficient Electrode for Electrocatalytic Oxidation of Formaldehyde. J. Chin. Chem. Soc. 60, 546-550 (2013)
31. M.M. Reddy, et al., N-Alkylation of amines with alcohols over nanosized zeolite beta. Green Chem. 15, 3474-3483 (2013)
32. S. Mintova, et al., Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Micropor. Mesopor. Mater. 90, 237-245 (2006)
33. B.M. Daas and S. Ghosh, Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation-A review. J. Electroanal. Chem. 783, 308-315 (2016)
34. R.W. Murray, A.G. Ewing, and R.A. Durst, Chemically modified electrodes. Molecular design for electroanalysis. Anal. Chem. 59, 379A-390A (1987)
35. M.M. Treacy and J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites Fifth (5th) Revised Edition. (Elsevier, 2007)
36. N.B. Castagnola and P.K. Dutta, Nanometer-sized zeolite X crystals: Use as photochemical hosts. The J. Phys. Chem. B, 102, 1696-1702 (1998)
37. N. Goyal, V.K. Bulasara, and S. Barman, Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetrasubstituted ammonium cation. J. Hazard. Mater. 344, 417-430 (2018)
38. B. Schoeman, et al., The synthesis of discrete colloidal crystals of zeolite beta and their application in the preparation of thin microporous films. J. Porous Mater. 8, 13-22 (2001)
39. G. Huang, et al., Fast synthesis of hierarchical Beta zeolites with uniform nanocrystals from layered silicate precursor. Micropor. Mesopor. Mater. 248, 30-39 (2017)
40. Q. Lin, et al., Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode. Int. J. Hydrogen Energy, 42, 1403-1411 (2017)
41. S.K. Hassaninejad–Darzi, M. Rahimnejad, and S.N. Mirzababaei, Electrocatalytic oxidation of glucose onto carbon paste electrode modified with nickel hydroxide decorated NaA nanozeolite. Microchem. J. 128, 7-17 (2016)
42. S. Eshagh-Nimvari and S. Karim Hassaninejad-Darzi, Synergistic effects of nanozeolite beta-MWCNTs on the electrocatalytic oxidation of ethylene glycol: Experimental design by response surface methodology. Mater. Sci. Eng.-B, 268, 115125 (2021)
43. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603-619 (1985)
44. B. Aghamohseni, S.K. Hassaninejad-Darzi, and M. Asadollahi-Baboli, A new sensitive voltammetric determination of thymol based on MnY nanozeolite modified carbon paste electrode using response surface methodology. Microchem. J. 145, 819-832 (2019)
45. S.K. Hassaninejad-Darzi and M. Gholami-Esfidvajani, Electrocatalytic oxidation of ethanol using modified nickel phosphate nanoparticles and multi-walled carbon nanotubes paste electrode in alkaline media for fuel cell. Int. J. Hydrogen Energy, 41, 20085-20099 (2016)
46. S.K. Hassaninejad-Darzi, Fabrication of a non-enzymatic Ni (ii) loaded ZSM-5 nanozeolite and multi-walled carbon nanotubes paste electrode as a glucose electrochemical sensor. RSC Adv. 5, 105707-105718 (2015)
47. K. Nagashree and M. Ahmed, Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium. J. Solid State Electrochem. 14, 2307-2320 (2010)
48. A. El-Shafei, A.A. Elhafeez, and H. Mostafa, Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J. Solid State Electrochem. 14, 185-190 (2010)
49. M. Fleischmann, K. Korinek, and D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Inter. Electrochem. 31, 39-49 (1971)
50. S. Hassaninejad‐Darzi, M. Rahimnejad, and M. Golami‐Esfidvajani, Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Nickel Decorated Nanoporous Cobalt‐Nickel Phosphate Molecular Sieve for Fuel Cell. Fuel Cells, 16, 89-99 (2016)
51. S.K. Hassaninejad-Darzi, et al., Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Hydrogen Titanate Nanotubes, Including Nickel Hydroxide. Iran. J. Sci. Technol. A, 42, 1259-1268 (2018)
52. H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode-I. Über das nickel (II)-hydroxidhydrat. Electrochim. Acta, 11, 1079-IN1 (1966)
53. A. Ciszewski and G. Milczarek, Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode. J. Electroanal. Chem. 469, 18-26 (1999)
54. H. Yang, et al., Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode. J. Mol. Catal. A: Chem. 144, 315-321 (1999)
55. M. Koper, M. Hachkar, and B. Beden, Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz crystal microbalance. J. Chem. Soc., Faraday Trans. 92, 3975-3982 (1996)
56. G. Barral, S. Maximovitch, and F. Njanjo-Eyoke, Study of electrochemically formed Ni(OH)2 layers by EIS. Electrochim. Acta, 41, 1305-1311 (1996)
57. R. Ojani, J.-B. Raoof, and S. Safshekan, Electrocatalytic oxidation of formaldehyde on nickel modified ionic liquid carbon paste electrode as a simple and efficient electrode. J. Appl. Electrochem. 42, 81-87 (2012)
58. A. Samadi-Maybodi, S. Ghasemi, and H. Ghaffari-Rad, Application of nano-sized nanoporous zinc 2-methylimidazole metal-organic framework for electrocatalytic oxidation of methanol in alkaline solution. J. Power Sources, 303, 379-387 (2016)
59. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Inter. Electrochem. 101, 19-28 (1979)
60. S. Hassaninejad‐Darzi, Application of Synthesized NaA Nanozeolite as a Novel Supported Electrode for the Formaldehyde Electro‐catalytic Oxidation. Fuel Cells, 18, 82-95 (2018)
61. A.J. Bard and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2nd ed.; (Wiley, New York, 2001)
62. B. Habibi and N. Delnavaz, Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate. Int. J. Hydrogen Energy, 35, 8831-8840 (2010)
63. C. Wang, et al., Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochim. Acta, 191, 329-336 (2016)
64. Y. Shu, et al., Facile synthesis of ultrathin nickel–cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation. ACS appl. Mater. Inter. 10, 2360-2367 (2018)
65. C.O. Laoire, et al., Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C, 113, 20127-20134 (2009)
66. D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms. (Wiley, New York, 1993)
67. S.K. Hassaninejad-Darzi, Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine. Chin. J. Catal. 39, 283-296 (2018)
68. M.S. Tohidi and A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrogen Energy, 41, 8881-8892 (2016)
69. M.S. Tohidi and A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of Mn(II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrogen Energy, 41, 8881-8892 (2016)
70. S. Azizi, S. Ghasemi, and H. Yazdani-Sheldarrei, Synthesis of mesoporous silica (SBA-16) nanoparticles using silica extracted from stem cane ash and its application in electrocatalytic oxidation of methanol. Int. J. Hydrogen Energy, 38, 12774-12785 (2013)
71. A. El-Shafei, Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 471, 89-95 (1999)
72. A.J. Bard and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, (Wiley, New York, 2001)
73. H. Luo, et al., Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73, 915-920 (2001)
74. Y. Yu, et al., Electrocatalytic oxidation of formaldehyde on nickel ion implanted-modified indium tin oxide electrode. J. Power Sources, 286, 130-135 (2015)
75. R. Ojani, J.B. Raoof, and S.R.H. Zavvarmahalleh, Preparation of Ni/poly (1, 5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. J. Solid State Electrochem. 13, 1605-1611 (2009)
76. J.-B. Raoof, et al., Highly improved electrooxidation of formaldehyde on nickel/poly (o-toluidine)/Triton X-100 film modified carbon nanotube paste electrode. Int. J. Hydrogen Energy, 37, 2137-2146 (2012)
77. J.-B. Raoof, et al., Poly (N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. J. Electroanal. Chem. 633, 153-158 (2009)
78. S.R. Hosseini, et al., Synthesis of Pt–Cu/poly (o-Anisidine) nanocomposite onto carbon paste electrode and its application for methanol oxidation. Int. J. Hydrogen Energy, 40, 292-302 (2015)