Bazzoni, R., and Bentivegna, A. (2019). Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 11.
Benitez, Jorge A et al. “Fluorescence Molecular Tomography for In Vivo Imaging of Glioblastoma Xenografts.” Journal of visualized experiments : JoVE ,134 57448. 26 Apr. 2018, doi:10.3791/57448
Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., and Landfield, P.W. (2004). Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101, 2173-2178.
Bowman, R.L., Wang, Q., Carro, A., Verhaak, R.G., and Squatrito, M. (2017). GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol 19, 139-141.
Calmon, M.F., Colombo, J., Carvalho, F., Souza, F.P., Filho, J.F., Fukuyama, E.E., Camargo, A.A., Caballero, O.L., Tajara, E.H., Cordeiro, J.A., and Rahal, P. (2007). Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. Cancer Genet Cytogenet 173, 31-37.
Choi, J.S., Kim, K.H., Jeon, Y.K., Kim, S.H., Jang, S.G., Ku, J.L., and Park, J.G. (2009). Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int J Cancer 124, 1258-1262.
Conceição, A.L., Babeto, E., Candido, N.M., Franco, F.C., De Campos Zuccari, D.A., Bonilha, J.L., Cordeiro, J.A., Calmon, M.F., and Rahal, P. (2015). Differential Expression of ADAM23, CDKN2A (P16), MMP14 and VIM Associated with Giant Cell Tumor of Bone. J Cancer 6, 593-603.
Costa, E.T., Barnabé, G.F., Li, M., Dias, A.A., Machado, T.R., Asprino, P.F., Cavalher, F.P., Ferreira, E.N., Del Mar Inda, M., Nagai, M.H., Malnic, B., Duarte, M.L., Leite, K.R., De Barros, A.C., Carraro, D.M., Chammas, R., Armelin, H.A., Cavenee, W., Furnari, F., and Camargo, A.A. (2015). Intratumoral heterogeneity of ADAM23 promotes tumor growth and metastasis through LGI4 and nitric oxide signals. Oncogene 34, 1270-1279.
Costa ET, Camargo AA. Beyond the Proteolytic Activity: Examining the Functional Relevance of the Ancillary Domains Using Tri-Dimensional (3D) Spheroid Invasion Assay. Methods Mol Biol. 2018;1731:155-168. doi: 10.1007/978-1-4939-7595-2_15. PMID: 29318552.
Costa, F.F., Verbisck, N.V., Salim, A.C., Ierardi, D.F., Pires, L.C., Sasahara, R.M., Sogayar, M.C., Zanata, S.M., Mackay, A., O'hare, M., Soares, F., Simpson, A.J., and Camargo, A.A. (2004). Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors. Oncogene 23, 1481-1488.
Darmanis, S., Sloan, S.A., Croote, D., Mignardi, M., Chernikova, S., Samghababi, P., Zhang, Y., Neff, N., Kowarsky, M., Caneda, C., Li, G., Chang, S.D., Connolly, I.D., Li, Y., Barres, B.A., Gephart, M.H., and Quake, S.R. (2017). Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep 21, 1399-1410.
De Vries, N.A., Beijnen, J.H., and Van Tellingen, O. (2009). High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev 35, 714-723.
Dohda, T., Maljukova, A., Liu, L., Heyman, M., Grandér, D., Brodin, D., Sangfelt, O., and Lendahl, U. (2007). Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 313, 3141-3152.
Dries, D.R., and Yu, G. (2009). Rip exposed: how ectodomain shedding regulates the proteolytic processing of transmembrane substrates. Proc Natl Acad Sci U S A 106, 14737-14738.
Drumm, M.R., Dixit, K.S., Grimm, S., Kumthekar, P., Lukas, R.V., Raizer, J.J., Stupp, R., Chheda, M.G., Kam, K.L., Mccord, M., Sachdev, S., Kruser, T., Steffens, A., Javier, R., Mccortney, K., and Horbinski, C. (2020). Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro Oncol 22, 470-479.
Edwards, D.R., Handsley, M.M., and Pennington, C.J. (2008). The ADAM metalloproteinases. Mol Aspects Med 29, 258-289.
Fridrichova, I., Smolkova, B., Kajabova, V., Zmetakova, I., Krivulcik, T., Mego, M., Cierna, Z., Karaba, M., Benca, J., Pindak, D., Bohac, M., Repiska, V., and Danihel, L. (2015). CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl Res 165, 717-730.
Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A., Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., Chin, L., Depinho, R.A., and Cavenee, W.K. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21, 2683-2710.
Gilbert, C.A., Daou, M.C., Moser, R.P., and Ross, A.H. (2010). Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70, 6870-6879.
Goldsmith, A.P., Gossage, S.J., and Ffrench-Constant, C. (2004). ADAM23 is a cell-surface glycoprotein expressed by central nervous system neurons. J Neurosci Res 78, 647-658.
Groot, A.J., Habets, R., Yahyanejad, S., Hodin, C.M., Reiss, K., Saftig, P., Theys, J., and Vooijs, M. (2014). Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol 34, 2822-2832.
Gusev, Y., Bhuvaneshwar, K., Song, L., Zenklusen, J.-C., Fine, H., and Madhavan, S. (2018). The REMBRANDT study, a large collection of genomic data from brain cancer patients. Scientific Data 5, 180158.
Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Reviews Molecular Cell Biology 8, 101-112.
Hagihara, A., Miyamoto, K., Furuta, J., Hiraoka, N., Wakazono, K., Seki, S., Fukushima, S., Tsao, M.S., Sugimura, T., and Ushijima, T. (2004). Identification of 27 5' CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene 23, 8705-8710.
Hiddingh, L., Tannous, B.A., Teng, J., Tops, B., Jeuken, J., Hulleman, E., Boots-Sprenger, S.H., Vandertop, W.P., Noske, D.P., Kaspers, G.J., Wesseling, P., and Wurdinger, T. (2014). EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 5, 363-374.
Hsia, H.E., Tüshaus, J., Brummer, T., Zheng, Y., Scilabra, S.D., and Lichtenthaler, S.F. (2019). Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 76, 3055-3081.
Hu, C., Lv, H., Pan, G., Cao, H., Deng, Z., Wen, J., and Zhou, J. (2011). The expression of ADAM23 and its correlation with promoter methylation in non-small-cell lung carcinoma. Int J Exp Pathol 92, 333-339.
Jurisch-Yaksi, N., Sannerud, R., and Annaert, W. (2013). A fast growing spectrum of biological functions of γ-secretase in development and disease. Biochim Biophys Acta 1828, 2815-2827.
Kucheryavykh, L.Y., Ortiz-Rivera, J., Kucheryavykh, Y.V., Zayas-Santiago, A., Diaz-Garcia, A., and Inyushin, M.Y. (2019). Accumulation of Innate Amyloid Beta Peptide in Glioblastoma Tumors. Int J Mol Sci 20.
Kwon, N.S., Kim, D.S., and Yun, H.Y. (2017). Leucine-rich glioma inactivated 3: integrative analyses support its prognostic role in glioma. Onco Targets Ther 10, 2721-2728.
Lavoie, M.J., and Selkoe, D.J. (2003). The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278, 34427-34437.
Le Gall, S.M., Maretzky, T., Issuree, P.D., Niu, X.D., Reiss, K., Saftig, P., Khokha, R., Lundell, D., and Blobel, C.P. (2010). ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 123, 3913-3922.
Lin, J., Zhang, X.M., Yang, J.C., Ye, Y.B., and Luo, S.Q. (2010). γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch Med Res 41, 519-529.
Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., Hawkins, C., Ng, H.K., Pfister, S.M., Reifenberger, G., Soffietti, R., Von Deimling, A., and Ellison, D.W. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23, 1231-1251.
Ma, R., Tang, Z., Sun, K., Ye, X., Cheng, H., Chang, X., and Cui, H. (2018). Low levels of ADAM23 expression in epithelial ovarian cancer are associated with poor survival. Pathol Res Pract.
Magold, A.I., Cacquevel, M., and Fraering, P.C. (2009). Gene expression profiling in cells with enhanced gamma-secretase activity. PLoS One 4, e6952.
Marie, S.K.N., Oba-Shinjo, S.M., da Silva, R. et al. Stathmin involvement in the maternal embryonic leucine zipper kinase pathway in glioblastoma. Proteome Sci 14, 6 (2016). https://doi.org/10.1186/s12953-016-0094-9
Markus-Koch, A., Schmitt, O., Seemann, S., Lukas, J., Koczan, D., Ernst, M., Fuellen, G., Wree, A., Rolfs, A., and Luo, J. (2017). ADAM23 promotes neuronal differentiation of human neural progenitor cells. Cell Mol Biol Lett 22, 16.
Miura, F.K., Alves, M.J., Rocha, M.C., Da Silva, R., Oba-Shinjo, S.M., and Marie, S.K. (2010). Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma. Clinics (Sao Paulo) 65, 305-309.
Murphy, G. (2008). The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8, 929-941.
Oberheim Bush, N.A., Hervey-Jumper, S.L., and Berger, M.S. (2019). Management of Glioblastoma, Present and Future. World Neurosurg 131, 328-338.
Ostrom, Q.T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., and Barnholtz-Sloan, J.S. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol 21, v1-v100.
Pang, L., Hu, J., Li, F., Yuan, H., Yan, M., Liao, G., Xu, L., Pang, B., Ping, Y., Xiao, Y., and Li, X. (2019). Discovering Rare Genes Contributing to Cancer Stemness and Invasive Potential by GBM Single-Cell Transcriptional Analysis. Cancers (Basel) 11.
REMBRANDT. (2005). http://rembrandt.nci.nih.gov. In, (National Cancer Institute).
Silbergeld, D.L., Rostomily, R.C., and Alvord, E.C. (1991). The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults. J Neurooncol 10, 179-185.
Steed, T.C., Treiber, J.M., Brandel, M.G., Patel, K.S., Dale, A.M., Carter, B.S., and Chen, C.C. (2018). Quantification of glioblastoma mass effect by lateral ventricle displacement. Sci Rep 8, 2827.
Sun, Z., Wang, L., Zhou, Y., Dong, L., Ma, W., Lv, L., Zhang, J., and Wang, X. (2020). Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 40, 767-784.
Takada, H., Imoto, I., Tsuda, H., Nakanishi, Y., Ichikura, T., Mochizuki, H., Mitsufuji, S., Hosoda, F., Hirohashi, S., Ohki, M., and Inazawa, J. (2005). ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation. Oncogene 24, 8051-8060.
Verbisck, N.V., Costa, E.T., Costa, F.F., Cavalher, F.P., Costa, M.D., Muras, A., Paixão, V.A., Moura, R., Granato, M.F., Ierardi, D.F., Machado, T., Melo, F., Ribeiro, K.B., Cunha, I.W., Lima, V.C., Maciel, M.O.S., Carvalho, A.L., Soares, F.F., Zanata, S., Sogayar, M.C., Chammas, R., and Camargo, A.A. (2009). ADAM23 negatively modulates alpha(v)beta(3) integrin activation during metastasis. Cancer Res 69, 5546-5552.
Vilimas, T., Mascarenhas, J., Palomero, T., Mandal, M., Buonamici, S., Meng, F., Thompson, B., Spaulding, C., Macaroun, S., Alegre, M.L., Kee, B.L., Ferrando, A., Miele, L., and Aifantis, I. (2007). Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13, 70-77.
Viola, K.L., and Klein, W.L. (2015). Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129, 183-206.
Vollmann-Zwerenz, A., Leidgens, V., Feliciello, G., Klein, C.A., and Hau, P. (2020). Tumor Cell Invasion in Glioblastoma. Int J Mol Sci 21.
Wang, J., Xu, S.L., Duan, J.J., Yi, L., Guo, Y.F., Shi, Y., Li, L., Yang, Z.Y., Liao, X.M., Cai, J., Zhang, Y.Q., Xiao, H.L., Yin, L., Wu, H., Zhang, J.N., Lv, S.Q., Yang, Q.K., Yang, X.J., Jiang, T., Zhang, X., Bian, X.W., and Yu, S.C. (2019). Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci 22, 91-105.
Wang, Y., Sun, Y., and Qiao, S. (2012). ADAM23 knockdown promotes neuronal differentiation of P19 embryonal carcinoma cells by up-regulating P27KIP1 expression. Cell Biol Int 36, 1275-1279.
Watanabe, Y., Kim, H.S., Castoro, R.J., Chung, W., Estecio, M.R., Kondo, K., Guo, Y., Ahmed, S.S., Toyota, M., Itoh, F., Suk, K.T., Cho, M.Y., Shen, L., Jelinek, J., and Issa, J.P. (2009). Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology 136, 2149-2158.
Wolfe, M.S. (2019). Structure and Function of the γ-Secretase Complex. Biochemistry 58, 2953-2966.
Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., Ma, H., Tao, Z., Xie, Y., Zhang, C., Yu, S., and Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin Cancer Res 38, 339.
Zhang, X., Chen, T., Zhang, J., Mao, Q., Li, S., Xiong, W., Qiu, Y., Xie, Q., and Ge, J. (2012). Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci 103, 181-190.