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ABSTRACT 

Vascular stiffness is often the main cause of arterial hypertension and its complications including 

atherosclerosis, observed during obesity. However, the mechanisms leading to this rigidity or the 

preventing factors are misknown. We hypothesized that apelin, known for its beneficial effects on lipid, 

inflammatory, and vascular metabolism, could be a protective factor against vascular stiffness. We 

used mice deficient for the apelin gene (KO-APL) and compared with wild-type mice (WT) at the level 

of metabolic markers and inflammations of white adipose tissue (WAT), as well as aortic functional 

and anatomical parameters. 

KO-APL mice developed an inflammation associated with significant remodeling of WAT, in particular  

with the protease expressions such as neutrophil elastase or cathepsin S. From a vascular point of view, 

these same elastases are involved in the fragmentation of elastic fibers, explaining the increase in 

vascular velocity of pulse wave and arterial hypertension. Interestingly, univariate correlation analysis 

showed that the inflammation markers and protease expression of WAT were associated with 

remodeling of the vascular wall. 

Our results suggest that the modifications induced by the absence of apelin particularly in WAT, could 

facilitate the expression of elastases and the rupture of elastic fibers, necessary to maintain elastance. 

This discovery is fundamental because the synthesis of elastic fibers stops as of adolescence and is not 

renewed during the entire life of human. The preservation of these fibers is therefore critical in 

maintaining vascular homeostasis. Thus, Apelin could be an interesting therapeutic route to protect 

the premature wear of elastic fibers. 
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INTRODUCTION 

A veritable global scourge, the metabolic syndrome, also known as X syndrome, denotes the 

coexistence of several health disorders of lipid (fatty liver), carbohydrate (insulin resistance) or vascular 

origin associated with excess weight (obesity) , in the same individual. Health authorities estimate that 

20% of the general population has at least 3 metabolic disorders among obesity, Non-Alcoholic 

SteatoHepatitis (NASH), dyslipidemia, insulin resistance or high blood pressure[1].All of these 

metabolic disorders considerably increase the risk of type 2 diabetes and cardiovascular complications 

including atherosclerosis, abdominal aortic aneurysm (AAA) and strokes. There is currently no drug 

treatment that can "cure" exclusively the metabolic syndrome. However, it is possible to specifically 

treat blood hypertension, cholesterol excess or even type 2 diabetes to limit the risk of cardiovascular 

disease. The lack of effective therapy resists in a still partial understanding of the mechanisms 

connecting the various pathologies. An international consensus is emerging on the fact that adipose 

tissue would be the main key of the solution. [2]. Indeed, the accumulation of fat in visceral adipose 

tissue is a predictor of metabolic but also inflammatory changes. Considered as an energy reserve 

tissue, white adipose tissue has been recognized for twenty years as an endocrine organ which plays a 

major role in the physiology of immunity and the pathophysiology of inflammation, by secreting 

hormones grouped under the term of adipokines such as leptin, adiponectin or apelin. Altered 

expression or secretion of these adipokines can be a vector of a low-level chronic inflammatory state 

which could play a central role both in the cardiovascular complications of obesity and in insulin 

resistance, a factor risk of type 2 diabetes. Among adipokines, apelin play a major role in chronic 

metabolic [3] as well as cardiovascular disorders. Indeed, this ligand for APJ receptor, a G protein-

coupled receptor, could regulate its downstream signaling and plays an important part in the 

occurrence and development of obesity, type 2 diabetes [4] , hypertension, and other cardiovascular 

diseases such as atherosclerosis [5]or AAA [6]. Nevertheless, the mechanism supposes a direct effect 

of apelin and APJ on cells of blood vessel. Thus, several study showed that the apelin/APJ system could 

decrease blood pressure through nitric oxide (NO)-dependent pathway [7]. Moreover, apelin could 

increase ACE2 promoter activity. This overexpression of ACE2 expression could accelerate the 

hydrolysis of angiotensin II (Ang-II), a strong vasoconstrictor. However, apelin is also a major regulator 

of inflammatory factors [8]. Therefore, it is conceivable that apelin could have another role via 

inflammatory modulation. Our hypothesis is that the inflammation generated by the absence of apelin, 

in particular in the adipose tissue could contribute to the recruitment of proteases. The proteases such 

as the neutrophil elastase, cathepsin S, MMP2, MMP9 ... are described as factors responsible for the 

fragmentation of elastic fibers [9]. Unlike many proteins, elastic fibers are complex multi-protein 

structures whose synthesis stops in adolescence. At this stage, any individual then presents a stock of 



defined fibers which will be subjected to mechanical and enzymatic stresses and resulting in more or 

less premature wear [10]. Thus, premature aging of these elastic fibers is responsible, among other 

things, for vascular stiffness, in particular of the aorta and is believed to be the cause of the vascular 

complications observed in obese patients [11]. Those diseases are major complications and the main 

causes of death observed in obese and / or diabetic subjects. To answer our hypothesis, we used mice 

lacking apelin and characterized their white adipose tissue as well as their aortic wall. 

 

RESULTS 

Apelin deficiency increases inflammatory status of white adipose tissue: While the weight (Figure 1A) 

and the lean mass (Figure 1B) measured from EchoMRI's approach, remain unchanged,  we 

demonstrate that KO mice develop their fat mass (Figure 1C) associated with an overexpression of 

adipokines mRNA such as leptin (Figure 1D). Hematoxylin -Eosin staining shows that the sizes of lipid 

droplets are increased (Figure 1E). This increase is also associated to increase of inflammatory markers 

such as macrophage (MCP1 or F4/80) and cytokines such as TNF, IL. TGF is not affected by the 

absence of apelin expression (Figure 1F). In several tissues, inflammation is known to favor the 

expression of proteases. Thus, in Apelin KO mice, the expressions of cathepsin S, neutrophil elastase 

or MMP9 are significantly increased (Figure 1G). In parallel, we observed that expression of their 

inhibitors, cystatin C, serpin and TIMP-1 respectively, are also influenced by apelin (Figure 1H). 

Nevertheless, the ratios between the protease expression and its natural inhibitor show that the 

balance tilts towards protease activity (Figure 1I). These results confirm that apelin defect is 

responsible of lipogenic metabolism and inflammatory and protease expression phenotypes. Those 

data suggest that apelin expression favors an activation of lipogenic metabolism which may be 

responsible for vascular complications.  

Apelin deficiency impaired aorta rigidity:  Apelin has been described as  an hormone involved in the 

onset of atherosclerosis and abdominal aortic aneurysms (AAA). However, these cardiovascular 

pathologies are regularly the consequence of vascular rigidity and / or high blood pressure. 

Furthermore, one of the first cardiovascular complications seen in patients with diabetes and / or 

obesity is high blood pressure. Thus, we evaluated the arterial pressures on vigil animals with the 

method of “tail cuff blood pressure” carried out every day during 4 days (at the same period of the 

day). The diastolic pressures are similar between the group KO and WT with a value around 55 mmHg 

(Figure 2A, 2B). In contrast, the systolic (Figure 2A, 2B) and mean arterial (MAP, Figure 2C- 2E) levels 

were significantly elevated during the 4 days of measurements in the KO mice compared to the WT 

mice. These results show that the absence of apelin promotes arterial hypertension. In addition, we 



noted an increase in pulsed pressure (Figure 2E, 2F) in these mice which could mean an increase in 

vascular rigidity. While heart frequency (Figure 2G) is not modified, the measurement of the pulse 

wave velocity  (Figure 2H) carried out at the level of the descending thoracic aorta, increased in these 

same mice, we can affirm that the arterial hypertension can be explained by an increased rigidity of 

the descending aortic wall. These results suggest that the absence of apelin causes rigidity of aorta 

wall which may be related to the inflammation and/or protease expressions induced in the fatty tissue. 

Thus, Z-test shows that systolic, pulsed or pulse wave pressures can be correlated to the expression of 

inflammatory markers observed in adipose tissue such as MCP1 (Figure 2I to 2K) or elastases such as 

cathepsin S (Figure 2L to 2N) or neutrophil elastase (Figure 2O to 2Q).  

Apelin deficiency impaired collagen expression in aorta wall: Vascular stiffness can be explained by a 

remodeling of the vascular wall and in particular of the ECM. From protein constitutive of scaffold of 

extracellular matrix blood vessels, collagen molecules are one major components, involved in strength 

and resistance to stretching. These properties depend on the composition, as well as the diameter of 

the collagen fiber. We analyzed vascular collagen by measuring total collagen in aorta of mice 

expressing or not apelin. While collagen I mRNA is not overexpressed (figure 3A), an accumulation of 

collagen protein is observed by collagen assay (Figure 3B)  or by picrosirius staining (Figure 3C) in KO 

APL mice compared to the control condition. This collagen accumulation in adventice layer (Figure 3C 

and Figure 3E) may  be due to an over-expression of collagen III. Indeed,  observations of collagen 

under polarized light (Figure 3D) and semi-quantification (Figure 3F), show collagen accumulation 

corresponds mainly to collagen fibers of type III rather than type I. Interestingly, we performed a 

correlation study (univariate Z test) between the data concerning the characterization of collagen by 

histological approaches and molecular markers observed in adipose tissue. Therefore, we observed a 

good correlation between collagen expression and inflammation marker (MCP1, Figure 3G) and a high 

correlation with protease expressions (in particularly with neutrophil elastase (72.8%, Figure 3H),  

cathepsin S (82.9%, Figure 3I)or MMP9 (71.7%, Figure 3J)). Those correlations suggest in absence of 

apelin, a real association between ECM remodeling of adipose and vascular tissues. In parallel, we 

performed a  similar univariate correlative study (Z-test) to  determine a potential association between 

the evolution of aortic collagen , and  functional parameters observed in WT and APL-KO groups. Thus, 

the supplementary data 1 shows that the determination of the total collagen (suppl data 1A) or the 

quantification by the picrosirius (suppl data 1B) seem very few correlated with the systolic and pulsed 

pressures or  the pulse wave velocity. These different correlations suggest that the aortic stiffness 

demonstrated in Figure 2 could be generated by other proteins forming vascular ECM according to 

Duca et al[12]. 



Apelin deficiency impaired elastic lamella in aorta wall: In the arterial system, the ECM becomes more 

rigid with physiological or pathological aging, due to significant changes in its composition, such as the 

decrease of elasticity of lamellae[13]. With an histological approach (hematoxylin-eosin staining), on 

transverse sections of descending thoracic aorta (Figure 4A), we noted a slight increase in thickness of 

the tunica adventitia (which may be explained by the accumulation of collagen , Figure 2) and the 

tunica media in mice lacking apelin (Figure 4B), similar to what is found in elderly animals. The 

autofluorescence study of elastin (Figure 4C) shows no significant difference in the number and 

thickness of elastic fibers (Figure 4D). However, there are many ruptures of the elastic lamellas 

constituting the media (Figure 4C). The rupture quantification was carried out by dividing the vessel 

into 4 parts (quadrants) as described by Trachet et al[14]. We were thus able to count these ruptures 

by several approaches. This count by quadrant  shows an increase in the number of fractures per 

lamella in apelin deficient condition (Figure 4D). This count is inversely correlated with the decrease in 

autofluorescence of elastin observed in KO mice (Figure 4E). Interestingly, we noted that all the elastic 

lamellae are affected by the ruptures (Figure 4F), however the lamellae at the ends of the tunica media 

(lamella 1 and 6) seem to be the least impacted. Finally, we measured the production of elastin derived 

peptides (EDP), resulting from the fragmentation of the elastic lamellae and found in the plasma 

(Figure 4G). Once again, we find more peptides released by these ruptures in individuals with deficient 

expression of apelin than in control animals. This data is strongly positively correlated with the count 

of lamellar ruptures and negatively with the autofluorescence of elastin, testifying that the histological 

and biochemical approaches are sufficient to assess the fragmentation of the elastic lamellae. 

Numerous studies mention that arterial stiffness is the consequence of an increase in collagen 

synthesis and a decrease in the elasticity of the media. To confirm that the absence of apelin is at the 

origin of this rigidity, we carried out a ratio between the quantifications of elastin (figure 4C) obtained 

by autofluorescence and the quantification of collagen obtained by labeling with picrosirius (figure 3C). 

Because the ratio is in favor of collagen in APL KO mice, Figure 4H demonstrates a vascular rigidity in 

our model. Interestingly, we performed a Z-test evaluation between this ratio and NE/serpin or 

Cathepsin S/Cystatin C determined in white adipose tissue and we observed in figure 4J, a correlation 

superior to 85% between the expression of elastase of white adipose tissue and the vascular rigidity 

index.  

Finally, an evaluation of the expression of the components of the elastic fibers was carried out by qPCR. 

While the expression of elastin is decreased, those of fibrillin 1 and fibulin 5 are significantly increased 

(Figure 4I). This expression could mean that the smooth muscle cells of the media or the fibroblasts of 

the adventitia would allow a neo-synthesis of microfibrils in order to compensate for the loss of 

elasticity by the number of ruptures of the elastic lamellae. From a functional point of view, we wanted 



to know if hypertension or increased aortic velocity could be attributed to the fragmentation of elastic 

fibers in KO APL mice. For this, we carried out a univariate correlation study (Z test) on the 8 KO animals 

and the 8 WT animals, between the different pressures measured in Figure 2 and the quantification of 

ruptures by the histological approach (Figure 4D) and by evaluation of EDP production (Figure 4E). The 

linear regression (suppl data 1C and 1D) shows a significant correlation, greater than 80% for systolic 

and pulsed pressures and almost 60% for pulse wave velocity. This statistical approach therefore 

demonstrates that the fragmentation of elastic fibers, potentially influenced by white adipose tissue, 

is responsible for vascular hypertension. 

ECM remodeling  may be explained by the increase of elastase activity:  A quarter of apelin KO 

animals present high ruptures of lamellae the most inner (near of luminar aorta, Figure 5A). This 

observation suggests that elastic lamellae fragmentations induced by the apelin expression deficiency, 

may responsible for severe aneurysms. Therefore, we studied the presence or not of proteases 

(elastinolytics, collagenolytics ...) which might explain the fragmentation of the elastic lamellae in our 

model. While the expression of MMP12 is significantly reduced (Figure 5B), proteases such as MMP9, 

the neutrophil elastase and cathepsin S expressions are drastically increased. This result suggests 

significant proteolytic activity in the vessel. Therefore, we measured the plasma activity of neutrophil 

elastase and Cathepsin S (Figure 5C) in our model and found that the activities were significantly 

increased in the absence of apelin. In addition, these activities are significantly correlated with the 

fragmentation of the elastic lamellae as well as with the production of EDP (Figure 5D and 5E). The 

immunostaining performed against cathepsin S (Figure 5F) shows that cathepsin S is essentially present 

in the junction between the adventitious tunica and tunica media (as shown by the arrowheads) and 

also in the lumen of the aorta in contact with the intima tunica and could explain elastin 

fragmentations (Figure 5H). This result therefore suggests that cathepsin could come from circulating 

inflammatory cells (such as macrophages) or MEC remodeling observed by the excess adipose tissue 

(Figure 1). In addition, we show also a strong increase of TGF expression in media (Figure 5G), 

correlated to lamellae ruptures on one hand (Figure 5I) and on the other hand to cathepsin S 

expression at 70% (p=0.0018) and picrosirius staining at 76.8% (p, 0.0063).  

Finally, we performed a  similar univariate correlative study (Z-test) to  determine a potential 

association between the evolution of aortic collagen , and  functional parameters observed in WT and 

APL-KO groups. Thus, the supplementary data 1 shows that the determination of the activity (suppl 

data 1E) or the expression of Cathepsin S (suppl data 1F) seem highly correlated with the systolic and 

pulsed pressures or the pulse wave velocity. These different correlations suggest that in our model, 

cathepsin S may be a major determinant of the aortic stiffness demonstrated in Figure 2. 



 

DISCUSSION 

With 17.7 million deaths per years, cardiovascular diseases (CVD) are the leading cause of decease in 

the world accounting for 31% of total global mortality [10, 15]. Among those diseases, atherosclerosis 

and abdominal aortic aneurysms (AAA) are particularly deadly and only surgical repairs are approved 

medical therapies and practiced[16, 17]. The other therapeutic approaches have unfortunately not 

brought obvious improvements.. This is the reason why a better understanding of cell deregulation 

and of the signaling networks responsible for the formation and progression of CVD is necessary for 

the discovery of new and effective therapies. It is now clearly established that the metabolic syndrome, 

including obesity and / or diabetes, is a key element in the development of CVD [7, 18, 19]. Among the 

adipocyte factors involved the secretion of apelin could play a major protective role. Apelin is an 

adipokine, involved in the regulation of obesity, insulin resistance and also the inflammatory factors 

[20, 21]. In addition, we show in this study that apelin plays a major role in extracellular matrix 

remodeling of WAT, in particular in the production of proteases and their natural inhibitors. Thus, the 

absence of apelin expressions is in favor of the synthesis of proteases such as neutrophil elastase or 

cathepsin S considered as a marker of obesity [22, 23] while inhibitors such as serpin is reduced. The 

increased cystatin C, described as correlated with inflammation could be explained as an upward 

adaptation of cathepsin S in order to limit its impact on adipose tissue and the surrounding ones. It is 

now accepted that obesity is strongly associated with the degree of CVD. However, the molecular 

players associating adipose tissue and the vascular compartment remain to be determined. In our 

study, we demonstrate a strong association between the level of expression of proteases such as 

cathepsin S and neutrophil elastase in adipose tissue and vascular parameters in particular the aorta 

stiffness. Clinically, the stiffness of the arteries is a predictor of death from stroke or AAA, 

independently of any other predictor [23]. The cytokines IL6, IL1 or TNF have been widely described 

as factors responsible for the progression of those vascular diseases. These inflammatory factors, 

regulated by the presence of Apelin, induce within vascular tissue or macrophages, the expression and 

secretion of many proteases including metalloproteases (MMP2, MMP9) or cathepsins. 

 Under physiological conditions, cathepsins are essentially lysosomal proteases active in an acidic 

environment. This family includes 11 subtypes and most are cysteine proteases. Unlike the majority of 

these proteases, cathepsin S can be activated at neutral pH, thus extending its biological role to the 

extracellular compartment. In obese patients and animal models, the cathepsin S is expressed mainly 

in the vascular stroma fraction of adipose tissue, in particular at the level of the macrophages, but also 

in the adipocytes themselves [24].  The overexpression of cathepsin S in the obese adipose tissue is 

therefore based both on the increased presence of macrophages and on the increase in adipocyte 



expression. While, the secretion of proinflammatory cytokines (TNF, IL1, IL6,....) by macrophages 

could stimulate the expression of cathepsin S, the factors responsible involved in adipose tissue during 

obesity are still poorly understood.  The results obtained in this study show for the first time that the 

apelin expression would be decisive in the rise of proinflammatory factors. At the basal membrane of 

the blood vessels, secreted cathepsin S cleaves several extracellular matrix proteins, including laminin, 

collagen, and, preferentially, elastin, which generate bioactive elastin peptides [10]. This remodeling 

of ECM contributes to atherosclerotic lesions and inflamed valves, and in the disruption of the tissue 

layer, mesenchymal cells [vascular smooth muscle cells (SMCs) or valvular myofibroblasts] proliferate 

and calcify. 

Elastin is a fibrillar protein found in elastic tissues, such as the large vessels, the lung and the skin. At 

the level of the aorta, elastin forms with the fibrillar proteins (ie. Fibulin 4/5, fibrillin 1/2, LTBP) the 

concentric elastic laminae at the level of the media [25]. This set, elastin and fibrillar proteins, confer 

the resilience of the tissues and thus transforms the intermittent blood flow coming from the heart 

into a continuous flow in the arterioles or the capillaries. Therefore, the elastin integrity is determinant 

to regulation of blood pressure [12]. Elastin has remarkable physicochemical properties such as 

hydrophobicity, thus explaining its elastic power, but also resistance to extreme thermal and chemical 

conditions. This is why elastin is the most durable element of ECM with a half-life of 70 years. Elastin, 

like fibrillar proteins, is synthesized until puberty and their neo-synthesis in adults and the elderly is 

almost zero. Thus, during the whole of his life, the individual lives with a defined stock of elastic 

lamellae. This means that the physiological alternation between stretching and loosening of the elastic 

lamellae causes mechanical wear. The chronic inflammation induced by insulin resistance and / or 

obesity and the release of elastase like cathepsin S  could accelerate and increase the ruptures of the 

lamellae as we demonstrate in this study. In addition, the absence of an effective neosynthesis of 

elastic fibers generates rigidity but also fragility of the aortic wall, leading to blood hypertension on 

the one hand and on the other hand to the progression of CVD [12]. Moreover apelin has been 

described in many models as a negative regulator of fibrosis. The cellular mechanisms show that 

activation of the APJ receptor leads to a reduction in the fibrotic response induced by TGF-β. However, 

recent studies[5, 26-28] have shown that cathepsin S (such as TNF, IL1) plays a role in the signaling 

of TGF-β, the differentiation of myofibroblasts and the creation of ECM, in particular in the synthesis 

of collagen. Finally, to make the system more complex, TGF-β is also an activator of cathepsin S. 

Consequently, in such apelin-deficient model, the induced inflammation could promote self-

amplification of the TGF-β - Cathepsin S axis, thus contributing to the development of blood 

hypertension and/or the aggravation of atherosclerosis and AAA.  



To conclude, we have shown in this study that the absence of apelin plays a major role in the induction 

of vascular stiffness, the first factor involved in the occurrence of arterial hypertension and its 

complications. The fragmentation of the elastic fibers by the local or remote induction (ie, WAT) of 

elastases such as cathepsin S is believed to be the cause of this vascular stiffness. We propose that the 

inflammation caused by the absence of apelin could then be decisive for the activation of elastases. It 

would therefore be appropriate to consider apelin as a possible therapeutic way, which might limit / 

protect inflammation and therefore the activation of proteases in adipose and / or vascular tissues. 

 

MATERIALS AND METHODS 

Animal models: All animal experiments were performed in compliance with the French Institute of 

Medical Research (INSERM) guidelines and were approved by the  animal ethics committee of 

Toulouse university on the use and care of animals for animal research. Moreover, the study was carried 

out in compliance with the ARRIVE guidelines. Twelve-week-old apelin knock-out (n=8) and wild-type 

mice (n=8) were caged in a 12:12 hour light/dark cycle in a temperature- and humidity-controlled 

environment. All mice were allowed ad libitum access to normal diet (AIN-93M rodent diet, Special 

Diet Service, UK) and water during the experimental period.  

Plasma assays. According to Blaise et al. [29],  evaluations of EDP concentrations were performed using 

commercially available kits (Biocolor, County Antrim, UK; respectively). NE activity assay and Cathepsin 

activity assay commercialized by Abcam (Cambridge, U.K.) were used to measure neutrophil elastase 

and Cathepsin S activities, respectively, according to Romier et al[9]. 

 

Blood pressure assay by tail-cuff: Mice systolic blood pressure was monitored by the tail cuff 

technique with the aid of a computerized system (BP 2000 Blood Pressure Analysis System, Visitech 

System, Apex, NC). Preconditioning of mice was performed during the week before the final blood 

pressure measurements.  On each day of blood pressure determination, 10 measurements were 

obtained and averaged for each mouse. All animals were tested by an investigator blinded to the 

treatment of the animals.  We measured blood pressure one time per day for four consecutive days. If 

the systole measurements of the KO mice were higher than those of the control mice on each of the 

four days, we considered the mice to be hypertensive.  

 

Velocity assay: Doppler ultrasound (Indus Mouse Doppler System, Webster, TX) was performed under 

gas anesthesia with 2% isoflurane (Centravet). Mice were placed supine on a heating board with legs 

fixed on electrocardiographic electrodes to follow vital constants. Doppler probes were placed on the 



transverse aortic arch (10 MHz) and abdominal aorta (20 MHz) and the distance between the probes 

was determined with a precision caliper. Pre-ejection time, the time between the R-wave of the 

electrocardiogram and the foot of the Doppler signal, was determined by using at least 8 signals for 

each measure. Aortic PWV (aPWV) was calculated by dividing the distance (cm) between the probes 

by the difference in pre-ejection times (milliseconds) of the thoracic and abdominal regions. 

 

Body fat mass composition. To determine fat and lean mass, mice were placed in a clear plastic holder 

without anesthesia or sedation and inserted into the EchoMRI-3-in-1 system from Echo medical 

systems (Houston, TX, USA). 

Histology: Aorta samples were embedded in paraffin. Three transversal aorta sections were stained 

with hematoxylin and eosin (H&E) or with picrosirius as described previously by Pooya et al.[30] . 

Picrosirius staining was observed by microscopy under polarized light or not (Leica). Picrosirius 

staining, thickness of tunica media and adventice were quantified using the ImageJ software from 

three distinct sections per animal (n=16). Expression of cellular and ECM proteins were assessed by 

immunolabeling aortic tissue sections (4µm) with primary antibodies targeting Cathepsin S (sc-271619, 

Santa Cruz). Visualization and image acquisition were achieved through microscopy and analyzed with 

ImageJ software. Elastin was measured by autofluorescence recorded by excitation at 488nm in tissue 

sections according to Romier et al[9]. Each aorta section was divided in four quadrants as descripted 

by Trachet et al.[14], favoring the quantifications of lamellar rupture, thickness and number of fibers 

and autofluorescence of elastin by ImageJ software. 

 

Gene expression analysis: Analysis by qPCR was performed as previously described. Briefly, total RNA 

were extracted using Trizol reagent (Eurobio Scientific). RNA concentration was measured using a 

Nanodrop system (ThermoFisher Scientific). The 260/280 ratio calculated from Nanodrop software 

was also used to evaluate protein contamination. Complementary DNA (cDNA) was generated using 

Verso cDNA kit (ThermoScientific). Real-time PCR was performed using SYBR Green on a BioRad CFX96 

Real Time System. 5 µl of cDNA (1/10) and 0.7 µl of each forward and reverse primers at 3 µM were 

used for qPCR, with cycling conditions: 95 °C for 15 min, and 40 cycles of 95 °C for 10 sec, 60 °C for 60 

sec. RNA expression was normalized to the housekeeping gene 36B4 and RPS26 and relative gene 

expression was calculated using 2−ΔΔCT method. Sequences for qPCR primers are listed in Table 1. 

Statistical analyses: Statistical analyses were conducted using Statview Software. Comparisons 

between groups (8 KO mice and 8 WT mice) are presented as mean ± standard error of the mean 

(SEM). Univariate correlation was performed by a Z-test regressions. Comparisons among normal 



distributions were made by t-test, and by Mann-Whitney U test among non-normal distributions. 

P<0.05 was considered to indicate significance. 
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FIGURE LEGENDS 

Figure 1: Biochemical markers  of adipogenicity and inflammatory in Apelin KO mice (n=8 

/group): A, Body weight. B-C, Lean (B) and Fat (C) weights obtained by  NMR-MRI-based technology.  

D, mRNA expression of leptin and resistin in perigonadic white adipose tissue. E, mRNA expression of 

inflammatory markers including F4/80, MCP1 (monocyte chemoattractant protein 1), TNF (Tumour 

Necrosis Factor), IL1 (interleukin) and TGF (transforming growth factor). G, mRNA expression of 

proteases such as neutrophil elastase (NE), Cathepsin S, MMP9 (metalloprotease). WT, white bars; KO-

APL, grey bars. H, mRNA expression of protease inhibitors (serpin, cystatin C, TIMP1 (tissue inhibitors 

of metalloproteinase)). I, ratio between protease and its natural inhibitors. Results are the mean +/- SEM. 

Statistically significant differences (Mann-Whitney). 

 

Figure 2: Apelin deficiency induce an arterial hypertension (n=8 /group): A, diastole and systole 

pressures measured by the tail cuff approach and performed one time per day for 4 days. WT, white 

bars; KO-APL, grey bars. B, mean arterial pressure (MAP) calculated from diastole and systole 

pressures. C, Pulse pressure correspond to the difference between systole and diastole pressures. D, 

Mean of pressures (systole and diastole) obtained on the 4 day of measures (ref to A panel). E, Mean of 



MAP obtained on the 4 day of measures (ref to B panel). F, Mean of pulse pression obtained on the 4 

day of measures (ref to C panel). G, Heart Rate expressed in beat per minutes (BPM). H, Velocity of 

Propagation (VOP) of aorta measured by the pulse wave speed.  I to K, Correlation between MCP1 

mRNA expression issue to white adipose tissue (wat i.e. fig 1F) with systole (I, i.e. fig 2D) and pulse (J, 

i.e. fig 2F) pressures and VOP (K, i.e. fig 2H). L to N, Correlation between (Cathepsin S-Cystatin C) 

ratio issue to white adipose tissue (wat, i.e. fig 1I) with systole (L) and pulse (M) pressures and VOP 

(N). O to Q, Correlation between (Neutrophil Elastase (NE) – Serpin) ratio issue to white adipose tissue 

(wat, i.e. fig 1I) with systole (O) and pulse (P) pressures and VOP (Q). Results are the mean +/- SEM. 

Statistically significant differences (Mann-Whitney). 

 

Figure 3: Collagen expression in aorta of Apelin KO mice (n=8/group): A,  Total collagen assay. B, 

mRNA expression of collagen I alpha. WT, white bars; KO-APL, grey bars. C, Representative of 

picrosirius staining observed by non-polarized light and obtained on 8 slices per mice and condition 

(panel a and b). Scale bars for panels a to d correspond to 250 µm. Panel c and d correspond to zoom of 

panel a and b.  Scale bars correspond to 60 µm. D, Representative of picrosirius staining observed by 

polarized light (panel a and b). Scale bars correspond to 250 µm. Panel c and d correspond to zoom of 

panel a and b.  Scale bars correspond to 60 µm. Scale bars for panels a to d correspond to 250 µm. Scale 

bars for panels e to h correspond to 60 µm. E, Semi-quantification of total collagen from picrosirius 

staining from panel C. F, Semi-quantification of collagen I and III from picrosirius staining from images. 

G, Correlation between MCP1 mRNA expression issue to white adipose tissue (wat, i.e. fig 1F) with 

collagen stained by picrosirius (i.e. fig 2C-E). H to J, Correlation between protease / inhibitor ratio 

determined in fig 1I with collagen stained by picrosirius (i.e. fig 2C-E). Results are the mean +/- SEM. 

Statistically significant differences (Mann-Whitney). 

Figure 4: Spatial distribution of laminar ruptures in KO Apelin mice (n=8): A, Representative 

Hematoxin–Eosin (H&E). Scale bar represents 250 μm. B, Scatter plots show the intima–media 

thickness and adventitia thickness. The mean and 95% confidence interval are calculated in the normal 

domain after a log transformation. Three stains, each obtained by image-guided histology, were 

averaged per animal to account for intrasubject variation. C, Representative autofluorescence of elastin 

(image of top panel). Scale bar represents 250 μm. Images of panel bottom correspond to a zoomed 

sections. Scale bar represents 60 μm. D, Bar plots indicate the number and thickness of lamina per aorta 

quadrant defined by Trachet al.[14]. Autofluorescence of elastin of full aorta section is quantified by 

Image-J. Three aorta section were averaged per animal to account for intrasubject variation. Laminar 

ruptures were calculated from 4 quadrants of 3 aorta sections per animals. E, Graph depicting linear 

relationships between measured elastin autofluorescence mean and mean of laminar rupture number 

obtained for each animal studied (WT, white dot and Ko, grey dot). F,  Representation of numeration of 

elastic lamellae (L1 to L6, left panel). Lum, luminar. Number of laminar ruptures per quadrant (right 



panel). G, Plasma EDP assay (left), graphs depicting linear relationships 1- (middle panel) between 

measured plasma EDP  and mean of laminar rupture number obtained for each animal studied; 2-  

between plasma EDP and measured elastin autofluorescence mean obtained for each animal studied 

(WT, white dot and Ko, grey dot). H, Ratio calculated between measured elastin autofluorescence mean 

obtained for each animal and picrosirius staining obtained in figure 2. I, Univariate correlation obtained 

by Z-test between the ratio Elastin/Collagen obtained in figure 4H and the ratio Protease/its inhibitor 

determined in figure 1I. J, mRNA expression of Elastin, Fibrillin-1, Fibulin-5, obtained by real-time 

qPCR. Results are the mean +/- SEM. Statistically significant differences (Mann-Whitney).  

 

Figure 5: Apelin deficiency increase the activity of Cathepsin S in wall of aorta (n=8/group): A, 

Hematoxylin-Eosin staining and autofluorescence of elastin show a dissection in which the inner 

laminae (L1–L4) were affected, synonym to aneurism development. B, mRNA expressions of matrix 

metalloproteinase (MMP) -9 and 12, Neutrophil Elastase (NE), Cathepsin S (Cath. S). C, Bar plots 

indicate neutrophil elastase activity (left) and cathepsin S activity (right). D, Graph depicting linear 

relationships between measured neutrophil elastase activity and plasma EDP level, one the hand (right) 

and other the hand, mean of laminar rupture number obtained for each animal studied (right, WT, white 

dot and KO, grey dot). E, Graph depicting linear relationships between measured cathepsin S activity 

(left) and plasma EDP level, one the hand and other the hand, mean of laminar rupture number obtained 

for each animal studied (right, WT, white dot and KO, grey dot). F, Immunostanning against cathepsin 

S showing an accumulation in luminar (L) near tunica intima and also between tunica media and tunica 

adventice (arrows). G, graph depicting linear relationships between measured cathepsin S staining and 

laminar rupture number (left) and  elastin autofluorescence (right, WT, white dot and KO, grey dot). H, 

Immunostanning against TGF showing an accumulation in media in KO apelin mice. I, Graph 

depicting linear relationships between measured TGF staining and laminar rupture number (left) and  

elastin autofluorescence (right, WT, white dot and KO, grey dot). Results are the mean +/- SEM. 

Statistically significant differences (Mann-Whitney).  
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Figures

Figure 1

Biochemical markers of adipogenicity and in�ammatory in Apelin KO mice (n=8 /group): A, Body weight.
B-C, Lean (B) and Fat (C) weights obtained by NMR-MRI-based technology. D, mRNA expression of leptin
and resistin in perigonadic white adipose tissue. E, mRNA expression of in�ammatory markers including



F4/80, MCP1 (monocyte chemoattractant protein 1), TNFα (Tumour Necrosis Factor), IL1β (interleukin)
and TGFβ (transforming growth factor). G, mRNA expression of proteases such as neutrophil elastase
(NE), Cathepsin S, MMP9 (metalloprotease). WT, white bars; KO-APL, grey bars. H, mRNA expression of
protease inhibitors (serpin, cystatin C, TIMP1 (tissue inhibitors of metalloproteinase)). I, ratio between
protease and its natural inhibitors. Results are the mean +/- SEM. Statistically signi�cant differences
(Mann-Whitney).

Figure 2



Apelin de�ciency induce an arterial hypertension (n=8 /group): A, diastole and systole pressures
measured by the tail cuff approach and performed one time per day for 4 days. WT, white bars; KO-APL,
grey bars. B, mean arterial pressure (MAP) calculated from diastole and systole pressures. C, Pulse
pressure correspond to the difference between systole and diastole pressures. D, Mean of pressures
(systole and diastole) obtained on the 4 day of measures (ref to A panel). E, Mean of MAP obtained on
the 4 day of measures (ref to B panel). F, Mean of pulse pression obtained on the 4 day of measures (ref
to C panel). G, Heart Rate expressed in beat per minutes (BPM). H, Velocity of Propagation (VOP) of aorta
measured by the pulse wave speed. I to K, Correlation between MCP1 mRNA expression issue to white
adipose tissue (wat i.e. �g 1F) with systole (I, i.e. �g 2D) and pulse (J, i.e. �g 2F) pressures and VOP (K,
i.e. �g 2H). L to N, Correlation between (Cathepsin S-Cystatin C) ratio issue to white adipose tissue (wat,
i.e. �g 1I) with systole (L) and pulse (M) pressures and VOP (N). O to Q, Correlation between (Neutrophil
Elastase (NE) – Serpin) ratio issue to white adipose tissue (wat, i.e. �g 1I) with systole (O) and pulse (P)
pressures and VOP (Q). Results are the mean +/- SEM. Statistically signi�cant differences (Mann-
Whitney).



Figure 3

Collagen expression in aorta of Apelin KO mice (n=8/group): A, Total collagen assay. B, mRNA expression
of collagen I alpha. WT, white bars; KO-APL, grey bars. C, Representative of picrosirius staining observed
by non-polarized light and obtained on 8 slices per mice and condition (panel a and b). Scale bars for
panels a to d correspond to 250 μm. Panel c and d correspond to zoom of panel a and b. Scale bars
correspond to 60 μm. D, Representative of picrosirius staining observed by polarized light (panel a and b).



Scale bars correspond to 250 μm. Panel c and d correspond to zoom of panel a and b. Scale bars
correspond to 60 μm. Scale bars for panels a to d correspond to 250 μm. Scale bars for panels e to h
correspond to 60 μm. E, Semi-quanti�cation of total collagen from picrosirius staining from panel C. F,
Semi-quanti�cation of collagen I and III from picrosirius staining from images. G, Correlation between
MCP1 mRNA expression issue to white adipose tissue (wat, i.e. �g 1F) with collagen stained by
picrosirius (i.e. �g 2C-E). H to J, Correlation between protease / inhibitor ratio determined in �g 1I with
collagen stained by picrosirius (i.e. �g 2C-E). Results are the mean +/- SEM. Statistically signi�cant
differences (Mann-Whitney).



Figure 4

Spatial distribution of laminar ruptures in KO Apelin mice (n=8): A, Representative Hematoxin–Eosin
(H&E). Scale bar represents 250 μm. B, Scatter plots show the intima–media thickness and adventitia
thickness. The mean and 95% con�dence interval are calculated in the normal domain after a log
transformation. Three stains, each obtained by image-guided histology, were averaged per animal to
account for intrasubject variation. C, Representative auto�uorescence of elastin (image of top panel).



Scale bar represents 250 μm. Images of panel bottom correspond to a zoomed sections. Scale bar
represents 60 μm. D, Bar plots indicate the number and thickness of lamina per aorta quadrant de�ned by
Trachet al.[14]. Auto�uorescence of elastin of full aorta section is quanti�ed by Image-J. Three aorta
section were averaged per animal to account for intrasubject variation. Laminar ruptures were calculated
from 4 quadrants of 3 aorta sections per animals. E, Graph depicting linear relationships between
measured elastin auto�uorescence mean and mean of laminar rupture number obtained for each animal
studied (WT, white dot and Ko, grey dot). F, Representation of numeration of elastic lamellae (L1 to L6, left
panel). Lum, luminar. Number of laminar ruptures per quadrant (right panel). G, Plasma EDP assay (left),
graphs depicting linear relationships 1- (middle panel) between measured plasma EDP and mean of
laminar rupture number obtained for each animal studied; 2- between plasma EDP and measured elastin
auto�uorescence mean obtained for each animal studied (WT, white dot and Ko, grey dot). H, Ratio
calculated between measured elastin auto�uorescence mean obtained for each animal and picrosirius
staining obtained in �gure 2. I, Univariate correlation obtained by Z-test between the ratio
Elastin/Collagen obtained in �gure 4H and the ratio Protease/its inhibitor determined in �gure 1I. J,
mRNA expression of Elastin, Fibrillin-1, Fibulin-5, obtained by real-time qPCR. Results are the mean +/-
SEM. Statistically signi�cant differences (Mann-Whitney).



Figure 5

Apelin de�ciency increase the activity of Cathepsin S in wall of aorta (n=8/group): A, Hematoxylin-Eosin
staining and auto�uorescence of elastin show a dissection in which the inner laminae (L1–L4) were
affected, synonym to aneurism development. B, mRNA expressions of matrix metalloproteinase (MMP) -9
and 12, Neutrophil Elastase (NE), Cathepsin S (Cath. S). C, Bar plots indicate neutrophil elastase activity
(left) and cathepsin S activity (right). D, Graph depicting linear relationships between measured neutrophil



elastase activity and plasma EDP level, one the hand (right) and other the hand, mean of laminar rupture
number obtained for each animal studied (right, WT, white dot and KO, grey dot). E, Graph depicting linear
relationships between measured cathepsin S activity (left) and plasma EDP level, one the hand and other
the hand, mean of laminar rupture number obtained for each animal studied (right, WT, white dot and KO,
grey dot). F, Immunostanning against cathepsin S showing an accumulation in luminar (L) near tunica
intima and also between tunica media and tunica adventice (arrows). G, graph depicting linear
relationships between measured cathepsin S staining and laminar rupture number (left) and elastin
auto�uorescence (right, WT, white dot and KO, grey dot). H, Immunostanning against TGFβ showing an
accumulation in media in KO apelin mice. I, Graph depicting linear relationships between measured TGFβ
staining and laminar rupture number (left) and elastin auto�uorescence (right, WT, white dot and KO, grey
dot). Results are the mean +/- SEM. Statistically signi�cant differences (Mann-Whitney).
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