1. Gast, M., et al. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 115, 1886-1906 (2019).
2. Gast, M., et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res 115, 302-314 (2019).
3. Gast, M., et al. Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. J Mol Cell Biol 8, 178-181 (2016).
4. Cremer, S., et al. Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation 139, 1320-1334 (2019).
5. Lancellotti, P., Marechal, P., Donis, N. & Oury, C. Inflammation, cardiovascular disease, and cancer: a common link with far-reaching implications. Eur Heart J 40, 3910-3912 (2019).
6. Poller, W., et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 39, 2704-2716 (2018).
7. Wilusz, J.E., Freier, S.M. & Spector, D.L. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919-932 (2008).
8. Kuhn, C.D., Wilusz, J.E., Zheng, Y., Beal, P.A. & Joshua-Tor, L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 160, 644-658 (2015).
9. Pickar-Oliver, A. & Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507 (2019).
10. Yuan, H., et al. Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc Natl Acad Sci U S A 110, E5059-5068 (2013).
11. Geirsson, A., Paliwal, I., Lynch, R.J., Bothwell, A.L. & Hammond, G.L. Class II transactivator promoter activity is suppressed through regulation by a trophoblast noncoding RNA. Transplantation 76, 387-394 (2003).
12. Sundaram, B. & Kanneganti, T.D. Advances in Understanding Activation and Function of the NLRC4 Inflammasome. Int J Mol Sci 22(2021).
13. Swanson, K.V., Deng, M. & Ting, J.P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19, 477-489 (2019).
14. Schnappauf, O., Chae, J.J., Kastner, D.L. & Aksentijevich, I. The Pyrin Inflammasome in Health and Disease. Front Immunol 10, 1745 (2019).
15. Sun, R., Hedl, M. & Abraham, C. Twist1 and Twist2 Induce Human Macrophage Memory upon Chronic Innate Receptor Treatment by HDAC-Mediated Deacetylation of Cytokine Promoters. J Immunol 202, 3297-3308 (2019).
16. Bailey, C.C., Zhong, G., Huang, I.C. & Farzan, M. IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. Annu Rev Virol 1, 261-283 (2014).
17. Ignatova, V.V., Jansen, P., Baltissen, M.P., Vermeulen, M. & Schneider, R. The interactome of a family of potential methyltransferases in HeLa cells. Sci Rep 9, 6584 (2019).
18. Godfrey, A.K., et al. Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. Genome Res 30, 860-873 (2020).
19. Aguilo, F., et al. Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1alpha. Cell Rep 14, 479-492 (2016).
20. Suzuki, T., et al. Complete chemical structures of human mitochondrial tRNAs. Nat Commun 11, 4269 (2020).
21. Van Haute, L., et al. NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Res 47, 8720-8733 (2019).
22. Hunsucker, S.A., Spychala, J. & Mitchell, B.S. Human cytosolic 5'-nucleotidase I: characterization and role in nucleoside analog resistance. J Biol Chem 276, 10498-10504 (2001).
23. Zhang, Q., et al. The long noncoding RNA ROCKI regulates inflammatory gene expression. EMBO J 38(2019).
24. Sadik, A., et al. IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 182, 1252-1270 e1234 (2020).
25. Liu, X., et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke 47, 498-504 (2016).
26. Kim, E.T., et al. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat Microbiol 6, 234-245 (2021).
27. Arslan, A.D., et al. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma. Oncogene 36, 6006-6019 (2017).
28. Fischietti, M., et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene 40, 3273-3286 (2021).
29. Metzner, F.J., Huber, E., Hopfner, K.P. & Lammens, K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res 50, 1147-1161 (2022).
30. Prabhudas, M., et al. Standardizing scavenger receptor nomenclature. J Immunol 192, 1997-2006 (2014).
31. Ley, K., Pramod, A.B., Croft, M., Ravichandran, K.S. & Ting, J.P. How Mouse Macrophages Sense What Is Going On. Front Immunol 7, 204 (2016).
32. Wang, J. & Li, Y. CD36 tango in cancer: signaling pathways and functions. Theranostics 9, 4893-4908 (2019).
33. Zhao, Y., et al. The immunological function of CD52 and its targeting in organ transplantation. Inflamm Res 66, 571-578 (2017).
34. Vitalle, J., et al. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 21(2020).
35. Vitalle, J., Terren, I., Orrantia, A., Zenarruzabeitia, O. & Borrego, F. CD300 receptor family in viral infections. Eur J Immunol 49, 364-374 (2019).
36. Lewis Marffy, A.L. & McCarthy, A.J. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 11, 857 (2020).
37. Griffiths, M.R., Botto, M., Morgan, B.P., Neal, J.W. & Gasque, P. CD93 regulates central nervous system inflammation in two mouse models of autoimmune encephalomyelitis. Immunology 155, 346-355 (2018).
38. McCormack, R. & Podack, E.R. Perforin-2/Mpeg1 and other pore-forming proteins throughout evolution. J Leukoc Biol 98, 761-768 (2015).
39. Mikulska, M., et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin Microbiol Infect 24 Suppl 2, S71-S82 (2018).
40. Bassilana, F., Nash, M. & Ludwig, M.G. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 18, 869-884 (2019).
41. Pereira, M., et al. m(5)U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs. Int J Mol Sci 22(2021).
42. Yue, T., et al. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity. Science 372(2021).
43. Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13, 621-634 (2013).
44. Nimmerjahn, F. & Ravetch, J.V. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8, 34-47 (2008).
45. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379, 346-349 (1996).
46. Sun, Y., et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci Transl Med 13(2021).
47. Kielar, M., et al. Soluble Complement Component 1q Receptor 1 (sCD93) Is Associated with Graft Function in Kidney Transplant Recipients. Biomolecules 11(2021).
48. Tosi, G.M., et al. CD93 as a Potential Target in Neovascular Age-Related Macular Degeneration. J Cell Physiol 232, 1767-1773 (2017).
49. Oosting, M., et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A 111, E4478-4484 (2014).
50. Pyonteck, S.M., et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19, 1264-1272 (2013).
51. Sjaarda, J., et al. Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease. J Am Coll Cardiol 72, 300-310 (2018).
52. Gao, Y., et al. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma. Mol Immunol 117, 20-28 (2020).
53. Lino Cardenas, C.L., et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9, 1009 (2018).
54. Li, X., Ye, S. & Lu, Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. J Clin Lab Anal 34, e23023 (2020).
55. Boros, F.A., Maszlag-Torok, R., Vecsei, L. & Klivenyi, P. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson's disease. Brain Res 1730, 146672 (2020).
56. Knutsen, E., et al. The expression of the long NEAT1_2 isoform is associated with human epidermal growth factor receptor 2-positive breast cancers. Sci Rep 10, 1277 (2020).
57. Apostolakis, S., Vogiatzi, K., Amanatidou, V. & Spandidos, D.A. Interleukin 8 and cardiovascular disease. Cardiovasc Res 84, 353-360 (2009).
58. Velasquez, I.M., et al. Association of interleukin 8 with myocardial infarction: results from the Stockholm Heart Epidemiology Program. Int J Cardiol 172, 173-178 (2014).
59. Szomjak, E., et al. Immunological parameters, including CXCL8 (IL-8) characterize cerebro- and cardiovascular events in patients with peripheral artery diseases. Scand J Immunol 71, 283-291 (2010).
60. An, Z., et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-kappaB signaling in macrophages. Cell Cycle 18, 2928-2938 (2019).
61. Gerszten, R.E., et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718-723 (1999).
62. Lu, X., et al. The tRNA-like small noncoding RNA mascRNA promotes global protein translation. EMBO Rep 21, e49684 (2020).
63. Wilusz, J.E., Whipple, J.M., Phizicky, E.M. & Sharp, P.A. tRNAs marked with CCACCA are targeted for degradation. Science 334, 817-821 (2011).
64. Puck, A., et al. Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol 5, 23-32 (2015).
65. Geirsson, A., Bothwell, A.L. & Hammond, G.L. Inhibition of alloresponse by a human trophoblast non-coding RNA suppressing class II transactivator promoter III and major histocompatibility class II expression in murine B-lymphocytes. J Heart Lung Transplant 23, 1077-1081 (2004).
66. Kawase, T., et al. p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 27, 3797-3810 (2008).
67. Roberts, O. & Paraoan, L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 1874, 188393 (2020).
68. Cruikshank, W.W., Kornfeld, H. & Center, D.M. Interleukin-16. J Leukoc Biol 67, 757-766 (2000).
69. Wang, Z., et al. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 5, 148 (2020).
70. Kraler, S., et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. Eur Heart J (2022).
For the complete set of references see Supplement.