
High-throughput discovery of chemical structure-
polarity relationships combining automation and
machine learning techniques
Fanyang Mo  (  fmo@pku.edu.cn )

Peking University https://orcid.org/0000-0002-4140-3020
Hao Xu 

Peking University
Jinglong Lin 

Peking University
Qianyi Liu 

Peking University
Yuntian Chen 

Yongriver Institute of Technology
Jianning Zhang 

Peking University
Yang Yang 

University of California, Santa Barbara https://orcid.org/0000-0002-4956-2034
Michael Young 

University of Toledo https://orcid.org/0000-0002-3256-5562
Yan Xu 

WuXi AppTec Headquarters
Dongxiao Zhang 

Southern University of Science and Technology

Physical Sciences - Article

Keywords: organic compound, thin layer chromatography, machine learning, compound polarity, Rf value

Posted Date: April 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1541871/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1541871/v1
mailto:fmo@pku.edu.cn
https://orcid.org/0000-0002-4140-3020
https://orcid.org/0000-0002-4956-2034
https://orcid.org/0000-0002-3256-5562
https://doi.org/10.21203/rs.3.rs-1541871/v1
https://creativecommons.org/licenses/by/4.0/


High-throughput discovery of chemical

structure-polarity relationships combining

automation and machine learning techniques

Hao Xu1,2†, Jinglong Lin1†, Qianyi Liu3, Yuntian

Chen4, Jianning Zhang1, Yang Yang5, Michael C.

Young6, Yan Xu7, Dongxiao Zhang8,9* and Fanyang Mo1*

1*School of Materials Science and Engineering, Peking University,
Beijing, 100871, P. R. China.

2BIC-ESAT, ERE, and SKLTCS, College of Engineering, Peking
University, Beijing, 100871, P. R. China.

3College of Chemistry and Molecular Engineering, Peking
University, Beijing, 100871, P. R. China.

4EIT Institute for Advanced Study, Yongriver Institute of
Technology, Ningbo, 315200, Zhejiang P. R. China.

5Department of Chemistry and Biochemistry, University of
California Santa Barbara, Santa Barbara, 93106, CA, U.S.
6Department of Chemistry & Biochemistry, School of Green
Chemistry & Engineering, The University of Toledo, 2801 W.

Bancroft St. Toledo, 43606, OH, U.S.
7Chemistry Service Unit, WuXi AppTec Headquarters,

Shanghai, 200131, , P. R. China.
8Department of Mathematics and Theories, Peng Cheng

Laboratory, Shenzhen, 518000, P. R. China.
9School of Environmental Science and Engineering, Southern

University of Science and Technology, Shenzhen, 518055, P. R.
China.

*Corresponding author(s). E-mail(s): zhangdx@sustech.edu.cn;
fmo@pku.edu.cn;

†These authors contributed equally to this work.

1



2 TLC prediction

Abstract

As an essential attribute of organic compounds, polarity has a profound
influence on many molecular properties such as solubility and phase
transition temperature. Thin layer chromatography (TLC) represents a
commonly used technique for polarity measurement. However, current
TLC analysis presents several problems, including the need for a large
number of attempts to obtain suitable conditions, as well as irrepro-
ducibility due to non-standardization. Herein, we describe an automated
experiment system for TLC analysis. This system is designed to conduct
TLC analysis automatically, facilitating high-throughput experimen-
tation by collecting large experimental datasets under standardized
conditions. Using these datasets, machine learning (ML) methods are
employed to construct surrogate models correlating organic compounds’
structures and their polarity using retardation factor (Rf ). The trained
ML models are able to predict the Rf value curve of organic com-
pounds with high accuracy. Furthermore, the constitutive relationship
between the compound and its polarity can also be discovered through
these modeling methods, and the underlying mechanism is rationalized
through adsorption theories. The trained ML models not only reduce the
need for empirical optimization currently required for TLC analysis, but
also provide general guidelines for the selection of conditions, making
TLC an easily accessible tool for the broader scientific community.

Keywords: organic compound, thin layer chromatography, machine learning,
compound polarity, Rf value

Introduction

Thin layer chromatography (TLC) is a commonly used technique in mod-
ern chemistry and biology laboratories. As a key chromatography technique,
the employment of a solid stationary phase and a liquid mobile phase allows
for the separation of individual components of a complex mixture on the
basis of their relative affinities for the two phases (Figure 1a)[1]. TLC analy-
sis is currently used routinely for reaction monitoring, product identification,
and determination of chromatography conditions for subsequent purification.
While highly experienced synthetic practitioners are able to use this tool, TLC
techniques often present a significant hurdle for scientists in synthesis-adjacent
fields. Furthermore, the identification of TLC conditions for new compound
classes requires the judicious selection of several variables, most notably the
mobile phases and their ratios, to achieve optimal separation. Traditionally,
such goals are accomplished through trial-and-error in an extremely time and
labor-intensive manner.

In recent years, cutting-edge techniques in artificial intelligence (AI) have
revolutionized the extrapolation of structure-property relationships in the
chemical sciences[2]. In particular, machine learning (ML) algorithms are able
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to solve complex chemical problems with respect to prediction, surrogate
model construction, and constitutive relationship discovery[3–6]. In this vein,
we postulated that a trained model might possibly work on predicting the
polarity and specifically the Rf value of organic compounds due to the strong
structure-property relationship in the physical mechanism underlying TLC.
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Fig. 1 Context of the work. a, Thin-layer chromatography (TLC) is a chromatography
technique used to separate non-volatile mixtures. Synthetic laboratories heavily use TLC
techniques to monitor reactions and identify compounds daily. Choosing suitable TLC con-
ditions is usually time-consuming for novices or for new compounds. The retardation factor
(Rf ) is the fraction of an analyte in the mobile phase of a chromatographic system. It is
defined as the ratio of the distance traveled by the center of a spot to the distance traveled
by the solvent front. b, A sigmoid function is a mathematical function having a characteris-
tic “S”-shaped curve, and has domain of all real numbers with a return value in the range 0
to 1. Considering that the Rf value also has the same value range, we deliberately associate
it with sigmoid function. c, The subjective and objective factors to compound Rf value
measurement. The subjective factors include the compound’s structure and other physical
properties, as well as elution solvents. The information can be mapped to a vector space via
feature engineering, and then fed to ML algorithms. Other factors like chamber size, humid-
ity, etc., can also affect the measurement. The influence of these objective factors should be
eliminated as much as possible to avoid their impact on model training.

Essentially, the task of prediction is to establish a certain mathematical
model that maps between input and output. We noted that the sigmoid func-
tion, a common activation function in neural network algorithms, is tightly
bound to the pair of horizontal asymptotes and highly useful in compressing
or squashing outputs within a 0 to 1 range. The output of TLC, Rf , is also a
value between 0 and 1. As such, we envisioned that Rf values could be reason-
ably fitted using a sigmoid function (Figure 1b). In this case, all the factors
that have an influence on Rf value will be selected and subject to a matrix
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operation through certain input forms to determine an x, and the output, Rf

value, will be the sigmoid function value of the x. Additionally, in a reverse
perspective, through such a transformative operation, the original range of 0
to 1 is extended to the entire real number domain. In other words, we can pre-
dict the Rf value by regression in a larger range to improve the accuracy of
the model (vide infra).

ML methods capture underlying patterns from a large amount of train-
ing data in order to make prediction. The availability of large, high-quality
datasets is the prerequisite for ML methods. Although the Rf value of newly-
prepared organic compounds are available in the chemical literature, the lack
of standardization often leads to inconsistent data, which impedes the devel-
opment of ML models. Generating a sufficient amount of highly standardized
data through conventional means is tedious and time-consuming. To address
this challenge, we sought to exploit automated instrumentation to accelerate
and standardize the measurement of Rf values of organic compounds in TLC
analysis. Furthermore, we use these data for ML model training to correlate
compound structures and their polarity (Figure 1c).

Data acquisition

The automation of chemical experimentation has been an expanding field in
the last decade[7–9]. These automated platforms enable standardization and
enhance reproducibility while reducing experimental costs. Most importantly,
automation allows for the generation of sufficient data for further statistical
analysis. The research paradigm combining automation and ML techniques
has already been successfully applied to chemical sciences in various scenarios
ranging from reaction condition optimization to mechanism interpretation[10–
15].

We realized that the most effective strategy would be to develop an auto-
mated robotic platform to collect the necessary TLC data. However, TLC
analysis requires several experimental steps, including dissolving the analyte,
spotting the analyte, developing the TLC plate, and ultimately measuring
and calculating the Rf value for each analyte, thus demanding sophisticated
automation.

To address the challenges mentioned above, we built a custom desktop
robot system for high-throughput collection of TLC data. Our robotic plat-
form is shown in Figure 2. Two collaborative robots are the core of this system,
which are able to accomplish complex actions like human arms with high pre-
cision and safety. The system also comprises two cameras, two lights, a router,
and a laptop (Figure 2a). The smaller robot, DOBOT MG400, is responsible
for drawing TLC samples on the sample tray (Figure 2b), and then spot-
ting samples onto the TLC plates (Figure 2c). Subsequently, the bigger robot,
AUBO i5, is responsible for gripping the TLC plate, and then putting it into
the chamber for development (Figure 2d & e). Upon completion, the TLC
plate is transferred to a box for visualizing and photographing under UV light
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Fig. 2 Automated thin layer chromatography robots and experimental station.

a, Schematic of the automated robotic platform for TLC data collection. b, The DOBOT
MG400 robot equipped with a capillary is drawing TLC samples on the sample tray. c, The
DOBOT MG400 robot is spotting samples onto the TLC plates. d, The AUBO i5 robot is
gripping a TLC plate prior to moving. e, The AUBO i5 robot is putting a TLC plate to
TLC chamber (or retrieving a plate from the chamber). f, After developing, the AUBO i5
robot is taking the TLC plate to a UV light box to visualize and photograph. g, The AUBO
i5 robot is retrieving a plate from storage. h, The AUBO i5 robot is placing a pristine TLC
plate onto the stand.

(Figure 2f). Finally, the AUBO i5 will retrieve a pristine plate from the stor-
age, and place it onto the stand for regenerating the system for the next usage
(Figure 2g & h). In order to increase throughput and efficiency, six chambers
are placed in the platform with different elution solvents in each. A Python
program was built to control the robots, cameras and lights, thus managing the
whole workflow. Through this robotic TLC experiment platform, we achieved
high-throughput standardized polarity measurements.

After the data collection is completed by the automated TLC system, the
Rf values can be automatically calculated by an image analysis computer pro-
gram, leading to highly standardized TLC runs. For UV-inactive compounds,
other visualization methods can be adopted. In a typical task, the Rf val-
ues of each compound under different elution solvent ratios are plotted, which
helps chemists find outliers based on intuition and experience. Through this
method, a high-quality dataset of compound Rf values is established, contain-
ing 4944 standardized polarity measurements from 387 organic compounds
(Figure 3a) under three elution solvent systems including hexane/ethyl acetate,
dichloromethane/methanol and hexane/diethyl ether with a total of 17 differ-
ent solvent composition (Figure 3b). These typical compounds were collected
deliberately based on their types to get better representation. This standard
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polarity dataset generated for the first time is very precious since the Rf val-
ues are usually sensitive to external factors in the experiments, which means
that statistically meaningful data can only be obtained through automated
high-throughput standardized experiments.
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Fig. 3 Description of obtained polarity dataset and data processing. a, The top
10 classes of the compounds in the dataset. b, The developing agent and their ratios utilized
in this work including EA, ethyl acetate, DCM, and dichloromethane. c, The input matrix
includes molecular fingerprints, several molecular descriptors and solvent information. The
label is the Rf value. DM, dipole moment; MW, molecular weight; TPSA, topological polar
surface area; NROTB, number of rotatable bonds; HBA, hydrogen bond acceptor; HBD,
hydrogen bond donor; LogP, lipid-water partition coefficient. d, The MACCS (Molecular
ACCess System) keys are one of the most commonly used structural keys. In these structural
keys, the structure of a molecule is encoded into a binary bit string (a sequence of 0’s and
1’s), each bit of which corresponds to a “pre-defined” structural feature. This binary bit
string makes up the fingerprint vector. e, Schematic diagram of weighted vectorization of 5
solvents.

Machine learning model for polarity prediction

Before constructing the machine learning model, we first turned to selecting
suitable molecular descriptors to represent the compounds in the dataset. In
terms of mechanism, molecular polarity is a reflection of a compound’s polar
bonds and their spatial distribution, thus essentially, its structure. In addition,
TLC is based on the principle of separation through adsorption type. For this
reason, polarity represented by Rf value is also correlated with the proper-
ties that affect the molecular adsorption between stationary phase and mobile
phase, for example, hydrogen bonding and topological polar surface area, etc.
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While many molecular fingerprints have been developed, we pay more attention
to the ones that related to structure. Molecular Access System (MACCS) keys
are one of the most commonly used structural keys that are employed to repre-
sent molecular structure, fragments, and substructural information[16]. Each
compound can be converted into MACCS keys with 167 dimensions. Mean-
while, molecular properties such as molecular weight (MW), topological polar
surface area (TPSA), and many others, can also be conveniently extracted by
using RDKit software[17]. Moreover, another possible factor, dipole moment,
was calculated using Mopac2016 (PM6-D3)[18]. For the elution solvents, vec-
torization encoding technique was used to express mobile phase information.
The values in individual solvent column represent their ratio for a combina-
tion of an eluent. To avoid prohibitively time-consuming analysis and logging
of computational data, we developed software to automate feature generation.
The program requires only the input of SMILES strings[19] of compounds in
a Python script. The program then generates the data table that can be used
for modeling. In total, 179-dimensional input metrics were extracted by the
software to characterize each TLC set of conditions (Figure 3c-e). One of the
advantages of ML modeling is that one can define feature engineering rela-
tively freely without recourse to a specific hypothesis. This, to a certain extent,
allows the machine to discover the connection, or even knowledge hidden in
data without relying on human experience.

With these data in hand, we evaluated the predictive accuracies of a series
of ML methods including Bayesian regression, Random Forest (RF), Light-
GBM (LGB), XGBoost (XGB), and Artificial Neural Network (ANN). Here,
the dataset is randomly divided into training, validation, and test set accord-
ing to the ratio of 80%, 10%, and 10% by TLC data. Considering the physical
constraint that the range of Rf values is between 0 and 1, in the training pro-
cess of the above-mentioned ML algorithms, the output will be mapped from
the entire real number domain to [0,1] through the sigmoid function. It is dis-
covered that a deep learning-based algorithm like ANN and decision tree-based
algorithms like RF, LGB and XGB all show satisfactory prediction ability
with R2 over 0.93 (Figure 4a). To avoid randomness, 10 independent exper-
iments with different random seeds are conducted and the results are shown
in Extended Data Figure 1. On the basis of these techniques, an ensemble
method is proposed to form a better model and further improve the accuracy.
We are delighted to find that a predictive model with the highest accuracy
(R2 = 0.961) can be obtained by a simple weighted average of these methods.
This improvement may be attributed to the ablity of the ensemble algorithm
to avoid overfitting and decrease the risk of obtaining a local minimum[20].

Next, a more difficult and practical problem is considered, that of predicting
the Rf values of out-of-sample compounds under different solvent composition.
In this task, the dataset is randomly split into a training dataset with 3922 Rf

values from 308 compounds (80% of total compounds), a validation dataset
with 484 Rf values from 38 compounds (10% of total compounds), and an
out-of-sample test dataset with 473 Rf values from 38 compounds (10% of
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total compounds).The proposed ensemble model is trained and the prediction
performance on the test set is examined. On average, the MSE of the predicted
Rf values of the out-of-sample 38 compounds was 0.117, with an R2 value of
0.887 (Figure 4b). The effective out-of-sample prediction of the proposed model
suggests that the constitutive relationship between the input information and
output polarity measurements were captured well by the prediction model,
which means that it may be possible to predict the Rf values of compounds
under specified developing systems without experiments.

In order to explore the relationship between the predictive power of the
model and input data more deeply, different numbers of compounds are uti-
lized to train the model while the test set is fixed. It is surprising to discover
that the prediction model is able to maintain satisfactory predictive power
with a markedly smaller training data since the R2 of the model trained from
Rf values of 116 compounds (30% of total compounds) achieves 0.870, which is
only a decrease of 0.03 compared with the model trained from 70% of the total
compounds (Figure 4c). This indicates that there is a tight physical relation-
ship between the structure and properties of the compound and the Rf value
that could be learned by the proposed ensemble model through only 116 com-
pounds, so as to predict the polarity of countless kinds of organic compounds,
which provide an excellent annotation of “small data, big task”[21].

Statistical analysis for descriptors

After having obtained a satisfactory predictive model, we sought to explore the
physical and chemical knowledge underlying the trained model. The molecular
descriptors that characterize molecular properties are contained in the input
information. As a consequence, the relative importance of utilized molecular
descriptors are evaluated by the percent increase in the predictive model’s
mean absolute error (MAE) when values of certain descriptors in the test set
are randomly reassigned according to data distribution. It was found that,
among these descriptors, TPSA shows significant importance over all others
(Figure 4d). The correlation coefficients between molecular descriptors was
also explored (Figure 4e). It was found that TPSA and HBA have a very strong
positive correlation. The TPSA of a molecule is defined as the surface sum
over all polar atoms, primarily oxygen and nitrogen, which is often used to
evaluate the transport properties of drugs in cells, and it is proven to have an
inseparable relationship with polarity in this work. We rationalize that a larger
TPSA leads to a stronger interaction between the adsorbate and the adsorbent
(e. g. silica gel), leading to smaller Rf values. This is proved in Figure 4f where
the spearman coef is -0.654, which indicates a strong negative correlation. As
for HBD and HBA, they indicate the number of hydrogen bond donors and
acceptors, respectively. Our results show that HBD is more relevant to Rf value
over HBA and the Rf values present a clear downward trend as HBD rises
which is illustrated in Figure 4g. The explanation is that the solid phase used
in this study is silica gel, which contains many bridge oxygens and hydroxyl
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Fig. 4 Polarity prediction with machine learning techniques and the analysis of

the descriptors. a, Observed versus predicted Rf values for different ML methods. For all
the models, an 80/10/10 random split of training, validation, and test data by TLC data
was performed to measure the prediction ability of each model. Only test set data are shown
in plots. The dashed line is the y = x line. b, Observed versus predicted Rf values for the
proposed ensemble method to predict out-of-sample compounds. The dataset is randomly
split into 80/10/10 by compounds and only test set data are shown in plots. The dashed
line is the y = x line. c, Test set performance of the ensemble prediction model with sparse
data. The smaller training sets were selected randomly from the entire compounds and
the test data are kept the same. A gradual erosion in predictive accuracy occurred from
70% of the entire compounds down to 2.5%. d, The relative importance of the molecular
descriptors utilized in this work. e, The heatmap of correlation coefficients between molecular
descriptors. f, The scatterplot of Rf values on TPSA of all compounds when PE/EA=5/1.
g, The boxplot of Rf values of the compounds with different HBD when PE/EA=5/1.
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groups on the surface acting as hydrogen bond accepters. As such, the analyte
will have more binding interactions with silica gel when it contains hydrogen
bond donors rather than hydrogen bond accepters. The relationship between
polarity and descriptors is indistinct before and is revealed statistically in this
work for the first time.

Application and expansibility

The predictive model has a wide range of applications that will facilitate the
acquisition of polarity data and deepen respective understanding. Its primary
utilization is to predict the Rf curve of a given compound. Three out-of-sample
compounds where the Rf curves present different patterns are examined. The
predicted and experimental Rf curves under three elution solvent systems are
illustrated in Figure 5. It is discovered that the predicted curves have achieved
satisfactory accuracy in all systems although the patterns of curves are differ-
ent. On this basis, the predictive model is able to provide prior information of
the Rf values in different elution solvent systems before chemical experiments,
which averts repreated trails for selecting an appropriate system in common
practice. Furthermore, from the predicted Rf curves, it is easy to discover
the optimal elution solvent system for seperating two compounds, which is a
common and significant requirement in organic chemistry and an example is
provided in the supplementary information.

Considering the wide variety of organic compounds, it is difficult to
complete a sweep of all classes of compounds, therefore, we select some rep-
resentative classes such as Ketone, Aldehyde, Phenol and others to form the
polarity dataset. Although the predicted model has been proven to possess a
satisfactory accuracy when predicting the Rf curves of the classes involved
in the dataset, the expansibility for other classes that have never appeared
in the dataset is also a challenge. As a consequence, the predictive model is
employed to predict the polarity of saccharides and the results are displayed
in Extended data Figure 2. Properties of saccharides are totally different from
the classes considered in the dataset, which brings a challenge to the predic-
tive model. However, it is surprising to find that the accuracy of prediction is
slightly affected faced with compounds of new classes, which means that it has
great expansibility and can be adapted to predict other classes in some degree.
The result implies that the ML model actually learns the strong relationship
between the compound properties and polarity, and thus achieving the ability
for making reasonable extrapolations.

Conclusion

TLC experiments are performed extensively every day in synthetic labora-
tories around the world. Determination of suitable TLC conditions usually
requires ample experience of chemists, and a large number of attempts would
be inevitable. Here we have built a robotic experimentation platform and its
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Fig. 5 Predicted Rf curves. Predicted Rf curves and experimental Rf curves for three
out-of-sample compounds under three elution solvent systems including hexane/ethyl acetate
(upper), dichloromethane/methanol (middle) and hexane/diethyl ether (lower). The log ratio
is calculated as log(r + 1) where r is the ratio of eluent.

software for TLC data collection, which generates a large amount of stan-
dardized compound’s structure-polarity data automatically. Using the dataset,
we further developed ML models that can predict compound’s Rf values and
experiments have proved that the proposed predictive model shows satisfac-
tory accuracy and expansibility, which has a hopeful prospect for facilitating
the acquirements and application of Rf values. From the analysis of descrip-
tors, the influencing factors of polarity are revealed statistically. Meanwhile,
the success of the predictive model also indicates that the strong relation-
ship between the compound properties and polarity has been learned well.
We expect that this TLC prediction approach will prove to be useful to the
synthetic community in facilitating laboratory efficiency.

Supplementary information. Supplementary files will be available along
with the publication of this article.
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Methods

The automation platform for TLC data collection

In this work, an automated TLC analysis system (Auto-TLC system) that
can automatically complete the entire TLC analysis process is developed. The
core of Auto-TLC system is two collaborative robots DOBOT MG400 robot
equipped with a capillary and AUBO i5 robot equipped with a mechanical
gripper and a sucker driven by air pump. The solution sample stored on the
sample tray is dipped by the capillary and then spotted onto the TLC plates
placed on the rack. It is worth noting that the special rack is customized and
can place several TLC plates at the same time for high-throughput experi-
mentation. Then, the AUBO i5 robot uses the gripper to transfer the spotted
TLC plates to a TLC chamber. The sucker is employed to open or close the
chamber lid. It is worth noting that there are multiple TLC chambers here,
which can be utilized with different elution solvents at the same time, which
greatly improves the efficiency of the system. When the developing time
reaches the designated value (300 seconds in this work), AUBO i5 robot will
retrieve the corresponding TLC plate from the chamber and send it to the
ultraviolet and visible light camera devices respectively to take photos and
record the result. The visible light camera device is utilized to record the
position of the frontier of the developing eluent and the ultraviolet camera
device is employed to visualize and photograph the spot on the TLC plate.
The used TLC plate is dropped into the waste container and pristine TLC
plates are retrieved from storage via the sucker. This cycle will continue until
all samples have been tested.

The image recognition algorithm for calculating the Rf values

In the Auto-TLC system, the Rf values are calculated automatically from an
image recognition algorithm based on the recorded photos, which is shown in
Extended data Figure 3. For each experiment, four samples are spotted on one
TLC plate and two photos are taken from ultraviolet and visible light camera
devices, respectively. Benefitting from the Auto-TLC analysis platform, the
TLC plate is spotted standardized so that the initial position of TLC spot
(xs, HL) (s = 1, 2, 3, 4) fixed beforehand. In order to calculate the Rf value,
the height of each TLC spot Hs, and the height of solvent front HFa and HFb

are identified by the projection method. Prior to the projection, the main part
of the TLC board can be easily distinguished from the black background by
the threshold method. In order to prevent the four TLC spots from interfer-
ing with each other during recognition, the projection is made merely in the
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neighborhood of each TLC spot [xs −∆x, xs +∆x], and the size of the neigh-
borhood ∆x is selected according to the distance between the points which is
fixed in advance. The projection curve of the first TLC spot is taken as an
example in Extended Data Figure 3. It is obvious that the curve has two min-
imum values and HFa and Hs can be identified from them, since only these
two positions can appear black under ultraviolet light in the neighborhood,
thereby significantly reducing the average pixel value under the y-axis projec-
tion. In the same way, under visible light irradiation, the solvent front is the
brightest, so its y-axis projection curve has a maximum value at this position,
which corresponds to the value of HFb. Considering that the solvent front is
not apparent in some cases and cannot be accurately identified under ultravi-
olet light, the HFb identified from the photo taken under visible light can play
an important complementary role.

Since the focal lengths of the cameras are predetermined, the mapping
relationship between the pixel distance on the photo and the actual distance
can be determined in advance. Here, the mapping functions for ultraviolet and
visible light camera device are referred as fa and fb, respectively. Therefore,
the actual height of the solvent front HF is expressed as:

HF =

{

1
2 (fa (HFa) + fb (HFb)) , if |fa(HFa)−fb(HFb)|

fb(HFb)
< 5%

fb (HFb) , other condition

Here, other conditions includes the difference between HFa and HFb is large,
or HFa is not identified successfully. With the calculated Hs and HF, the Rf

value can be finally calculated as:

Rfs =
fa (Hs)− fa (HL)

HF − fa (HL)

With the image recognition algorithm, Rf values can be identified quickly
and automatically. During the experiments, there may emerge some extreme
situations that the algorithm is difficult to judge, such as tailing and fusion
of two TLC points. As a consequence, after the high-throughput experiment
is completed, the entire result will be manually verified by expert’s expe-
rience to deal with the extreme situations mentioned above to guarantee
the accuracy and reliability of the obtained datasets. A program of visual
interface is developed that makes manual verification easy by simply clicking
on the correct TLC spot, starting point and solvent front on the image and
the image recognition algorithm will correct the mistakes automatically. It is
worth mentioning that the extreme situations are rare since the correct Rf

value can be obtained through image recognition in most experiments.

Description of the polarity dataset

In this work, a valuable dataset of compound polarity is obtained from
Auto-TLC analysis platform. In order to ensure the diversity of compounds,
the Rf curves of 387 organic compounds, including ketone, aldehyde, ether,
halide, alcohol and other categories, under 17 different solvent composition
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are measured, thereby collecting 4944 standardized polarity measurements
after removing outliers. Some of the compounds are shown in Extended
data Figure 4. Three elution solvent systems including hexane/ethyl acetate
(EA), dichloromethane (DCM)/methanol (MeOH) and hexane/diethyl ether
(Et2O) are utilized in this work. For hexane/EA system, eight proportions are
employed, namely 1:0, 50:1, 20:1, 5:1, 3:1, 1:1, 1:2 and 0:1. For DCM/MeOH
system, six proportions are employed including 1:0, 100:1, 50:1, 30:1, 20:1 and
10:1. For hexane/Et2O system, three proportions are employed including 2:1,
1:1, 0:1.

Dataset preprocessing

Before machine learning, the dataset acquired from Auto-TLC analysis plat-
form needs preprocessing. Considering that chemical formulas cannot be
directly used as input for machine learning, the molecular fingerprint and
descriptors are extracted in advance. In this work, the molecular fingerprint
Molecular Access System (MACCS) keys are employed to represent molecu-
lar structure, fragments or substructure information. MACCSkeys is a one-hot
vector with a length of 167 bits, each bit represents a specific molecular struc-
ture, 1 represents the structure exists, and 0 represents the structure does not
exist. The meaning of each bit can be found in open resource. It is worth men-
tioning that although each compound corresponds to a unique MACCkeys,
each MACCkeys may correspond to several compounds with a similar struc-
ture. For example, 134th bit represents the existence of halogen (Cl, Br, I).
Therefore, bromobenzene and chlorobenzene have the same MACCkeys since
the 134th bit of both is 1 while other substructure is the same. This feature
of MACCkeys allows it to extract common features (such as the presence or
absence of certain substructure) from countless compounds to predict polarity,
thereby achieving the goal of “small data, big tasks”. This is why the polar-
ities of new compounds can be well predicted by only relying on hundreds of
different kinds of compounds.

In addition to MACCkeys, several other molecular descriptors that may
affect polarity are employed in this work, including molecular weight (MW),
the number of hydrogen bond acceptors (HBA), the number of hydro-
gen bond donors (HBD), lipid-water partition coefficient (LogP), rotatable
key (NROTB) and topological polar surface area (TPSA). These molecular
descriptors contain some physical and chemical properties of the molecule,
which may contribute to the polarity of the compound. MACCkeys and
molecular descriptors utilized in this work can be easily accessed from the
python package RDKit, which is a widely utilized tool combining computa-
tional chemistry and machine learning. Moreover, another property closely
related to polarity, the dipole moment (DM), has also been derived through
computational chemistry in this work.

In addition to compound-related information, eluent solvents-related infor-
mation will also be imported into the machine learning model. Considering
that there are multiple developing agent systems in the dataset, a five-length
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vector [Hexane, EA, DCM, MeOH, Et2O] that represents the proportion of
each eluent solvent, is employed to describe the solvent composition. For
example, [0.75, 0.25, 0, 0, 0] represents the eluent is Hexane/EA = 3/1. With
this method, the influence of solvent composition on the Rf values can also
be extrapolated through machine learning.

The ensemble method

In this work, an ensemble method is proposed to improve the stability and
accuracy of the prediction performance. The formula of our proposed ensemble
method is written as:

upred = wRFuRF + wLGBuLGB + wXGBuXGB + wANNuANN

wRF + wLGB + wXGB + wANN = 1

where upred is the prediction of the ensemble method; uRF, uLGB, uXGB

and uANN are the prediction of RF, LGB, XGBoost and ANN, respectively.
wRF, wLGB, wXGB, wANN are the respective weights.

The hyperparamters utilized in this work

There are many hyperparameters used in machine learning methods, which
are often selected based on the experience of scientists and trial-and-errors
to search for a better model. Therefore, the selection of hyperparameters is
of great importance to the repeatability of research. Here, the utilized hyper-
paramters in this work that are selected by grid-search and repeated trails, are
presented below.

For XGBoost, the number of estimators is 200, maximum depth is 3 and
the learning rate is chosen to be 0.1.

For LGB, the number of estimators is 1000, random state is 1 and the
number of jobs is chosen to be 1.

For RF, the number of estimators is 1000,the random state is 1, the number
of jobs is chosen to be 1 and the criterion is MSE loss.

For ANN, the number of hidden layers is 4 with 128 neurons in each hidden
layer, the number of input neurons is 179 and the number of output neurons
is 1. The optimizer is chosen to be Adam with the learning rate 0.005. The
maximum training epoch is 5000 and the early stop technique is adopted to
prevent overfitting on the basis of the training loss and validating loss.

For the ensemble method, wRF = wLGB = wXGB = 0.2 and wANN = 0.4.
In addition, in order to avoid the influence of the selection of random seeds,

different random seeds are used to conduct multiple experiments and take the
statistical average.
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Extended Data Figure 1 The boxplot of the R2 of different machine learning

techniques in multiple trails when the dataset is split by TLC data. The blue
triangles are the means of the R2 for each machine learning technique and the black plus
signs are the outliers.
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Extended Data Figure 2 The performance of the predictive model for pre-

dicting the polarity of saccharides. a, Observed versus predicted Rf values for the
predictive model to predict four different saccharides under hexane/ethyl acetate and
dichloromethane/methanol systems. The dashed line is the y = x line. b, Predicted Rf

curves and experimental Rf curves for one of the saccharides under two elution solvent sys-
tems including hexane/ethyl acetate (upper) and dichloromethane/methanol (lower). The
log ratio is calculated as log(r + 1) where r is the ratio of eluent.
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Extended Data Figure 3 Calculation of the Rf values. a, and b, The photos pho-
tographed for the same TLC plate under ultraviolet light and visible light, respectively. a
is photographed from the frontal angle and b is photographed from the back angle. c, The
average pixel value after y-axis projection performed on the neighborhood of the first TLC
spot. d, The average pixel value after y-axis projection performed on the TLC plate photoed
under visible light. In this figure, HFa and HFb refers to the height of solvent front in both
photos respectively, HL refers to the initial height of the TLC spot, Hs refers to the height
of TLC spot and xs represents the horizontal position of the TLC spot. H is the position of
pixel and P is the average pixel value after y-axis projection.
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