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Abstract: The precise control for the equivalent circulating density (ECD) will lead to evade well control 

issues like loss of circulation, formation fracturing, underground blowout, and surface blowout. Predicting the 

ECD from the drilling parameters is a new horizon in drilling engineering practices and this is because of the 

drawbacks of the cost of downhole ECD tools and the low accuracy of the mathematical models. Machine 

learning methods can offer a superior prediction accuracy over the traditional and statistical models due to the 

advanced computing capacity. Hence, the objective of this paper is to use the artificial neural network (ANN) 

and adaptive neuro-fuzzy inference system (ANFIS) techniques to develop ECD prediction models. The novel 

contribution for this study is predicting the downhole ECD without any need for downhole measurements but 

only the available surface drilling parameters. The data in this study covered the drilling data for a horizontal 

section with 3,570 readings for each input after data preprocessing. The data covered the mud rate, rate of 

penetration, drill string speed, standpipe pressure, weight on bit, and the drilling torque.  The data used to 

build the model with a 77:23 training to testing ratio. Another data set (1,150 data points) from the same field 

was used for models` validation. Many sensitivity analyses were done to optimize the ANN and ANFIS model 

parameters. The prediction of the developed machine learning models provided a high performance and 

accuracy level with a correlation coefficient (R) of 0.99 for the models' training and testing data sets, and an 

average absolute percentage error (AAPE) less than 0.24%. The validation results showed R of 0.98 and 0.96 

and AAPE of 0.30% and 0.69% for ANN and ANFIS models respectively. Besides, a mathematical 

correlation was developed for estimating ECD based on the inputs as a white-box model. 

Keywords: Equivalent circulating density; real-time; drilling parameters, artificial intelligence 

1. Introduction 

Equivalent circulating density is an important parameter for monitoring the drilling operations especially for the 

narrow window between the formation and the fracture pressure. ECD is the total pressure of the mud 

hydrostatic column and the annular losses, and hence, it shows the mud pressure against the formation in the 

case of mud circulation1. Therefore, it is critical to estimate the ECD with a high degree of precision to avoid 

any well control issues like loss of circulation, formation fracturing, and underground blowout situations. 

During the drilling operations, several factors were found to have an impact on the ECD, and among them, the 

annular pressure losses, wellbore geometry, mud properties (density and viscosity), mud pumping rate, 

downhole pressure and temperature, and concentration of cuttings 2-5. 

ECD can be acquired by means of downhole measurements, estimation using mathematical models, and/or 

predicting with the help of artificial intelligence (AI) techniques. The new technology in the drilling tools 

assisted in implementing a continuous circulating tool to monitor the ECD and provide good control for the 

formation pressure 6. Downhole measurements of the ECD are available using downhole sensors as 

measurements while drilling and pressure while drilling 7,8. The downhole measurement is considered accurate 

and robust for ECD values, however, the implementation of these downhole tools is not common due to the 

expensive daily charge and operational limitations such as downhole pressure and temperature that cause the 

tool failures. 

Several mathematical correlations exist in the literature for estimating the ECD that are different in the fluid 

type and the parameters utilized as inputs. ECD estimation by implementing the material balance calculation for 
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mailto:elkatatny@kfupm.edu.sa
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the mud compositional analysis was studied in the literature 9,10. However, the models had many assumptions 

and limitations regarding the downhole pressure, temperature, mud types. Bybee 11 introduced a mathematical 

equation to calculate the ECD. The model considers the effect of concentration of solids in the annular, in 

addition to, the mud static density and other mud-related parameters. 

The developed mathematical correlations are limited to some applications, and it ignores a lot of other input 

parameters that have an impact on the ECD values. Such ignored parameters as well geometry, fluid rheological 

properties, the rotation of the drill string, downhole pressure and temperature conditions that affect the mud 

density, cuttings dispersion, hole cleaning, and swab and surge of drillpipe movements in the hole 12,13. Ignoring 

these parameters will affect the ECD prediction and lead to the inaccurate evaluation of ECD and causes well 

control problems during the drilling operations 14,15. 

1.1. Predicting ECD by Employing Machine Learning Techniques 

Predicting the ECD from the drilling parameters is considered a new outlook for drilling engineering practices 

in the petroleum industry and that because of the limitations of the downhole ECD tools and the low accuracy of 

the mathematical models.  

Artificial intelligence is a technique that utilized high computing capabilities for processing advanced 

algorithms to solve technical/problematic issues by simulating the human brain's thinking manner 16. AI has 

many tools like artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), support 

vector machine (SVM), and functional networks (FN) that showed high performance and accuracy level for 

prediction and classification problems 17. The implementation of AI has wide applications in many disciplines 

of engineering, economics, medicine, military, marine sectors, etc. 18,19. 

In the oil and gas industry, many studies utilized machine learning techniques for finding solutions for practical 

challenges 20-23. Intelligent models were accomplished by artificial intelligence tools for many purposes as 

identifying the formation lithology 24, predicting the formation and fracture pressures 25, 26, estimating the 

properties of reservoir fluids 27, estimating the oil recovery factor 28, 29, predicting the tops of the drilled 

formation 30, ROP prediction and optimization for different drilled formations and well profiles 31-33, 

determining the content of total organic carbon 34-36, and estimating the rock static Young’s modulus 37-40, 

predicting the compressional and shear sonic times 41, determining the rock failure parameters 42, detecting the 

downhole abnormalities during horizontal drilling 43, determining the wear of a drill bit from the drilling 

parameters 44, and predicting the rheological properties of drilling fluids in real-time 45-49. 

For ECD prediction, Table 1 represents recent works that were performed for ECD prediction from the drilling 

and mud parameters. Ahmadi 50 utilized the least square support vector machine (LLSVM), ANFIS, and 

enhanced particle swarm optimization PSO-ANFIS tools to estimate the ECD from only mud initial density, 

pressure, and temperature. The results showed the outperformance of ANN than the other tools.  Ahmadi et al. 
51 studied predicting ECD by employing PSO-ANN, fuzzy inference system (FIS), and a hybrid of genetic 

algorithm (GA) and FIS (GA-FIS) from the initial mud density, pressure, and temperature data. The PSO-ANN 

model presented a high degree of prediction performance in terms of coefficient of determination (R2) and 

average absolute percentage error between the actual and predicted values of ECD. 

Alkinani et al. 52 predicted the ECD using the ANN model that had only one hidden layer and 12 neurons and the 

study utilized drilling parameters in addition to the hydraulics and mud properties as mud pumping rate, 

properties of the mud (density, plastic viscosity, and yield point), total flow area for the bite nozzles (TFA), 

revolutions per minute for the drill pipe (RPM), and the weight on bit (WOB). Abdelgawad et al. 5 provided a 

model for ECD prediction using two AI techniques ANN, and ANFIS. The study provided an ECD-ANN model 

of one hidden layer with 20 neurons, while the ANFIS model was developed by utilizing five membership 

functions with gaussian membership function (gaussmf) as the input membership function and the output 

membership function was a linear type. Rahmati and Tatar 53 employed radial basis function (RBF) to build an 

ECD prediction model that showed a good prediction capability with R2 of 0.98 and AAPE of 0.22%. 

Table 1. ECD prediction models using AI among the literature 
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Ref. Model Model Inputs Data R2 AAPE 

Ahmadi 50 

LSSVM 
Pressure 

Temperature 

Initial density 

Not Available  

0.9999 0.000145 

ANFIS 0.8502 35.002 

PSO-ANFIS 0.869 
Not 

Available 

Ahmadi et al. 

51 

PSO-ANN Pressure 

Temperature 

Initial density 

664 points 

from literature 

0.9964 0.0001374 

FIS 0.7273 67.0907 

GA-FIS 0.9397 0.091 

Alkinani et al. 

52 
ANN 

Flow rate 

Mud weight 

Plastic viscosity 

Yield point 

TFA 

RPM 

WOB 

2000 wells 0.982 
Not 

Available 

Abdelgawad 

et al 5 

ANFIS 

Mud weight 

Drill pipe pressure 

ROP 

2376 data 

points 

 

8.5″ vertical 
hole section 

0.98 0.22 
ANN 

Rahmati and 

Tatar 53 

Radial Basis 

Function 

(RBF) 

Pressure 

Temperature 

Type of mud 

Initial density 

884 points 

from literature 
0.99 

MSE 

0.00000166 

It is clear from the literature that the AI models enhanced the ECD prediction, however, the models are different 

in terms of the input parameters, the data used to feed the models, and the methodology followed for the ECD 

prediction. One of the shortcomings found from many studies in the literature is that the downhole pressure and 

temperature are required as inputs in the prediction models, and from an operational view, downhole sensors are 

required to acquire these parameters with high accuracy for better ECD prediction, and this will add operational 

cost and time for the data collecting. Consequently, the new contribution of this study is to employ available 

real-time drilling parameters from surface rig sensors to build ECD prediction models using ANN and ANFIS 

techniques.  

The novel approach in this study is that the AI models are mainly dependent only on the mechanical drilling 

parameters that are mud pumping rate (GPM), rate of penetration (ROP), drillstring speed in revolutions per 

minute (RPM), stand-pipe pressure (SPP), weight on bit (WOB), and drilling torque (T). Besides, the study 

presented an empirical correlation that can be easily utilized for ECD estimation from only the drilling 

parameters. The AI models that were presented in this study were validated from another data set to ensure high 

and robust performance for ECD prediction. 

2. Materials and Methods 

The study utilized real drilling data that was collected from the drilling operations from real-time sensors. 

Figure 1 represents, in brief, the processing flow to provide robust ECD models starting from the data gathering, 

data cleaning and filtering to provide the model input parameters with good quality, the training process for the 

AI model and optimizing the model parameters with the trained algorithm, testing the accuracy for the model 

results and if the accuracy is low, then re-training process should be performed in order to get the optimum 

model parameters for high accuracy performance for the ECD prediction. 
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Figure 1: Processing flow chart for ECD AI models. 

2.1 Data Description 

The data obtained for the current study was collected during a drilling phase in the Middle East. The data 

covered the horizontal section for drilling the 5-7/8-inch hole. Total 3,570 points were obtained after the data 

preprocessing. The drilling parameters that were utilized as inputs for the model were collected from the surface 

rig sensors that represent GPM, ROP, RPM, SPP, WOB, and T. ECD data was collected from the downhole 

pressure tool and it was used for the model output estimation. Also, another cleaned data set (1,150 points) from 

the same drilling phase was employed for further model validation as unseen data set to ensure the model 

prediction performance. 

2.2 Data Cleaning and Statistical Analysis 

The obtained data are preprocessed by removing the missing points and the data outliers using MATLAB. As 

shown in Figure 2, the correlation coefficients (R) between the output (ECD) and drilling parameters after 

preprocessing the data. The relative importance of the data showed that SPP and T have the highest R of 0.87 

and 0.85 respectively with the ECD, while the WOB showed the least R (-0.01) with the ECD and that shows 

that the relationship might be a nonlinear type between ECD and WOB. It is noticed that T, SPP, and RPM 

showed a direct relationship with ECD, while GPM, ROP, and WOB presented an indirect relationship with 

ECD. 

Table 2 shows the statistical analysis for all parameters. The data showed the wide range for the parameters as 

GPM ranged from 249.4 to 296.6 with 47.2 gallons-per-minutes (gpm), ROP from 3.5 to 59.6 ft/hr, SPP from 
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2,379.7 to 3,632.1 psi, RPM from 59 to 141.3 revolutions-per-minute, T from 3.7 to 10 kft.Ib, WOB from 5.5 to 

20 kIb, and ECD has a range of 12.1 pcf from a minimum value of 83.4 to a maximum value of 95.5 pcf. 

 

Figure 2. The correlation coefficients between the inputs and ECD after data preprocessing 

Table 2. Statistical analysis for the models' data. 

Statistical Parameter GPM 
ROP 

(ft/hr) 
RPM SPP, psi 

WOB 

(klb) 

T 

(kft.Ib) 

ECD, 

pcf 

Minimum 249.4 3.5 59.0 2379.7 5.5 3.7 83.4 

Maximum 296.6 59.6 141.3 3632.1 20.0 10.0 95.5 

Range 47.2 56.1 82.3 1252.4 14.6 6.3 12.1 

Mean 276.7 23.0 119.8 3035.3 15.2 6.9 90.4 

Median 281.0 23.7 120.0 3032.7 16.1 6.9 90.4 

Standard Deviation 10.3 6.2 16.9 258.0 3.0 1.2 3.2 

Kurtosis 1.11 1.88 1.28 -0.14 0.08 -0.87 -0.89 

Skewness -1.67 0.22 -0.93 -0.15 -0.96 -0.05 -0.39 

2.3 Building AI Models 

This study employed two techniques from the AI tools to develop ECD prediction models using only the 

drilling parameters. ANN and ANFIS techniques are trained using the input data by training and testing ratio of 

77 to 23. The training and testing data sets were randomly selected. The sensitivity analysis for each model 

parameter to have the best model architecture. The model prediction was evaluated with two statistical 

parameters in addition to the ECD profiles for the actual and the predicted data. The correlation coefficient (R) 

and the average absolute percentage error (AAPE) were calculated by Equations 1 and 2. 

   (1) 

        (2) 
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where N is the number of samples in the dataset,  is the actual output, i is the predicted output. 

   

2.3.1 Artificial Neural Network (ANN) Model 

ANN tool was utilized for solving engineering problems by its processing algorithms based on interconnected 

artificial neurons that mimic the biological neural networks 54,55. Three layers represented the common 

architecture for ANN which are the input layer, hidden layer, and output layer 56. These layers are connected by 

a set of weights and biases which are tuned during the optimization process of the network to control the 

prediction performance of the network 57. The network is usually trained with different learning algorithms to 

optimize the network and to control the processing of the neurons 58. These neurons are considered the 

elementary elements from which any neural network is constructed 59.  

Many parameters were tested to check its impact on the ANN model accuracy as the hidden layer/s number, the 

neurons` number, network, training, and transfer functions. Figure 3 shows the design of the developed ANN 

model in this study. 

 

Figure 3. The architecture of the developed ANN model. 

2.3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) Model 
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ANFIS is an adaptive neuro-fuzzy inference system that was established in the early 1990s 47. ANFIS is a type 

of ANN that depends on the Takagi–Sugeno fuzzy inference system 60. The interface of ANFIS utilized a set of 

fuzzy “if-then rules” that can learn and optimize the nonlinear functions 61. ANFIS architecture consists of four 

layers. The first layer, called the fuzzification layer, collects the inputs and determines the membership 

functions (e.g. sigmoid, gaussian, trapezoidal, or straight line). The second layer, denoted as “rule layer”, 
applies many fuzzy “if-then” rules. In the third layer, databases are employed for membership function rules, 

and the decision-making unit is developed for the inference operations, while in the last layer, the 

defuzzification interface is performed 61. 

ANFIS model was developed using the subtractive clustering method. The cluster radius and number of 

iterations are ANFIS parameters that were checked for the optimization process. 

3. Results and Discussion: 

This section discussed the obtained results from the two AI developed models for predicting the ECD from the 

real-time drilling parameters. 

3.1 ANN Results 

The designed ANN code was optimized by testing many scenarios to achieve the best model parameters that are 

listed in Table 3. For each code run, only one parameter option was tested and the results were compared in 

terms of R and AAPE. By the end of the optimization process, the best combination of the model parameters 

was recognized. Training to testing ratio for the data sets was found to be 77 to 23% as 2,743 data points for 

training and 827 points of data for the testing process, only one hidden layer with 15 neurons was efficient for 

better prediction accuracy, the best network, training, and transfer functions were fitting network (newfit), 

Levenberg-Marquardt backpropagation (trainlm), and softmax respectively, and 0.12 is the optimum learning 

rate. 

Table 3. Tested options for ANN parameters. 

Model Parameter Options 

Training/Testing ratio )70/30( – (90/10) 

Hidden layers 1 - 3 

Number of neurons 5 - 40 

Network Function 

fitnet newfit newcf 

newelm newlrn newpr 

newdtdnn newff  

newfftd newfit  

Training Function 
trainbr trainoss trainlm 

trainbfg traingdx  

Transfer Function 

tansig satlin purelin 

logsig netinv softmax 

hardlims radbas tribas 

Learning Rate 0.01 – 0.9 

 
Figure 4 represents the cross-plots for the ANN results for the model training and testing processes for 

estimating ECD values. the results showed a strong accuracy for the model in terms of R and AAPE for both 

training and testing as R was 0.99 between the real and predicted values for the ECD for training and testing, 

while the AAPE was 0.24 and 0.19 for training and testing respectively.  
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Figure 4. Cross-plots between the predicted and actual ECD results from the developed ANN model.      (a) 

training process, and (b) testing process. 

3.2 ANFIS Results 

The same procedures were followed for optimizing the model parameters, however, cluster radius and iterations 

number are the target parameters for the ANFIS model. After several runs for the ANFIS code, the optimum 

parameters were found as 0.8 for the cluster radius and 300 for the number of iterations. Figure 5 displays the 

ANFIS results for the model training and testing processes. 

 

Figure 5. Cross-plots between the predicted and actual ECD results from the developed ANFIS model. (a) 

training process, and (b) testing process. 

3.3 ECD Empirical Correlation from ANN model 

An empirical correlation was developed for ECD estimation from the ANN model. The empirical correlation 

that can be employed to estimate the ECD using the input/drilling parameters and the weights and biases of the 

optimized ANN model. The developed empirical correlation can be used after normalizing the inputs to be in 

the range between -1 and 1 (Equation 3): 



 10 of 19 

 

    (3) 

 Where,  is the normalized value for variable ,  is the value of variable  at point i,  is the 

minimum value of variable ,  is the maximum value of variable .  

The minimum and maximum values for each parameter that are used for data normalization are presented in 

Table 4. 

Table 4: Minimum and maximum values for data normalization. 

Statistical Parameter GPM 
ROP 

(ft/hr) 
RPM SPP, psi 

WOB 

(klb) 

T 

(kft.Ib) 

ECD, 

pcf 

Minimum 249.4 3.5 59.0 2379.7 5.5 3.7 83.4 

Maximum 296.6 59.6 141.3 3632.1 20.0 10.0 95.5 

 

The proposed empirical correlation that can be used for ECD estimation in the normalized form is presented in 

Equation 4. The correlation uses the weights and biases that are shown in Table 5. 

 

              

 (4)                     

 where,  is the normalized ECD, is the number of neurons in the hidden layer, i.e. 15,  is the 

weight associated with each feature between the input and the hidden layers, is the weight associated with 

each feature between the hidden and the output layers,  is the bias associated with each neuron in the hidden 

layer,  is bias of the output layer. 

 

The obtained has to be to an actual ECD value, Equation 5 can be used:   

                     (5) 

 Where, is the normalized ECD obtained from the developed correlation,  is the actual value 

(pcf).  

Table 5: Weights and biases of the developed correlation (Equation 4). 

Neuron 

index (i) 

 

 

b1 b2 

      

1 -1.559 -0.878 -2.469 3.728 0.660 -2.934 3.901 1.884 -0.026 

2 3.088 0.828 1.482 3.334 -0.876 -1.382 -1.166 1.305 
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3 -0.577 -1.107 -0.642 2.227 0.848 -2.301 3.085 0.829 

4 -0.076 -0.686 2.224 2.787 0.975 -1.588 0.801 1.060 

5 0.181 -0.235 -1.104 1.483 -0.730 0.405 -1.537 0.537 

6 -1.279 -0.522 1.184 0.989 0.620 -1.746 1.699 -5.514 

7 -0.981 -3.708 1.505 -8.456 2.125 10.371 -4.956 0.692 

8 -0.268 1.731 -0.115 2.784 -1.303 1.669 -2.400 0.955 

9 -2.256 -0.347 0.825 2.623 0.254 0.474 2.534 1.094 

10 -1.321 -3.258 -0.466 0.450 -2.555 1.615 0.123 0.894 

11 2.167 2.173 0.892 -3.128 -3.853 3.017 -0.267 -0.529 

12 -0.547 -1.064 -2.841 1.685 0.678 -3.148 3.996 -1.138 

13 -3.168 -0.030 5.446 -0.513 0.475 -2.106 -1.710 1.673 

14 -3.154 -0.168 -0.546 -1.528 0.964 1.559 -1.091 -1.259 

15 8.828 0.759 -1.846 -1.541 -0.845 -0.325 -1.753 -0.952 

 

3.4 Models Validation 

The validation process for the developed models is essential especially for the practical operations in the oil and 

gas industry. The developed ANN and ANFIS models were validated to ensure the models' performance for 

predicting the ECD for unseen data. An unseen data set (1,150 points) from the same field was collected and 

cleaned to be fed to the models as inputs to estimate the ECD and compare the actual versus the predicted ECD 

from the models. Figure 6 represents the ECD prediction performance from the two developed models. ANN 

model provided a higher accuracy level than ANFIS, however, the two models showed a high ECD prediction 

that shows a correlation coefficient of 0.98 and 0.96, and AAPE of 0.3 and 0.69 for ANN and ANFIS 

respectively. 



 12 of 19 

 

 

Figure 5. ECD Profile for the validation data set. (a) ANN model, and (b) ANFIS model. 

3.5 Comparison of the Models Performance 

The two developed machine learning techniques showed a strong performance for the ECD prediction. 

However, ANN outperformed the ANFIS model especially for the validation process as the slight 

underestimating for the ECD prediction from the ANFIS model. Figure 6 shows the error histogram for the two 

models for the three stages (training, testing, and validation). Both models have a slight normal distribution for 

the errors for training and testing that ranged between -0.4 to 0.6 (pcf). The validation process showed different 

distribution for the histogram of the errors as ANN had a normal distribution with a range from -0.4 to 0.8 (pcf), 

while ANFIS showed a range for the errors between 0 to 1 (pcf) and this is attributed to the underestimating of 

the ECD.  

In addition, Figure 7 summarizes the performance of the two developed models in terms of the correlation 

coefficients and average absolute percentage error between the actual and predicted ECD values for Training, 

testing, and validation data sets. It is clear that the ANN model has a better performance that ANFIS for 

estimating ECD for the validation process as ANN provided a correlation coefficient of 0.98 while ANFIS had 

0.96, and for the AAPE, ANN had 0.3% while it was 0.69% for the ANFIS model.  
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Figure 6. Error Histogram. (a) ANN model, and (b) ANFIS model. 
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Figure 7. Models comparison. (a) Correlation coefficient (R), and (b) Average absolute percentage error 

(AAPE). 

4. Conclusions 

The equivalent circulating density (ECD) was predicted from the real-time recordings of the surface drilling 

sensors by employing two different machine learning techniques (ANN and ANFIS). The input drilling data are 

GPM, ROP, RPM, SPP, WOB, and T. The data (3570 points) was split to build the model with a 77: 23 training 

to testing ratio (2,743 data points for training and 827 points for testing). Another data set (1,150 points) from 

the same field was used for the validation process of models. Many sensitivity analyses were performed to 

optimize the ANN and ANFIS model parameters. The following conclusions represent the outputs from the 

work: 

 The statistical analysis data showed a wide range for all parameters that showed the solid 

data-base for the two AI models. 

 ANN model was optimized by one hidden layer, 15 neurons for the hidden layer, fitting network 

(newfit) network function, Levenberg-Marquardt backpropagation (trainlm) as a training 

function, and softmax as a transfer function for the model architecture. 
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 ANN results showed a high R of 0.99 for the training and testing, and a low AAPE of 0.24% for 

training and 0.19% for testing. 

 ANFIS model has the optimum parameters of 0.8 for the cluster radius and 300 for the iterations 

number and results showed that R was 0.99 for the training and testing, and AAPE of 0.23% for 

training and 0.18% for testing. 

 The models' validation showed a strong prediction performance for ANN and ANFIS as R was 

0.98 and 0.96, and AAPE was 0.30% and 0.69% for ANN and ANFIS respectively. 

 The developed empirical correlation for ECD based on the optimized ANN model showed high 

accuracy for predicting the ECD in real-time without the need for the ANN code. 

The new contributions from this study will save time and cost for estimating ECD in the real drilling operations 

as the machine learning models were built based on the drilling data collected by the drilling sensors. 
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Nomenclature 

ECD   Equivalent circulating density 

ANN  Artificial neural network 

ANFIS   Adaptive network-based fuzzy interference system 

R    Correlation coefficient 

AAPE   Average absolute percentage error 

AI    Artificial Intelligence 

SVM   Support vector machine 

FN   Functional networks 

LLSVM  Least square support vector machine 

PSO   Particle swarm optimization 

FIS   Fuzzy Inference System 

GA   Genetic algorithm 

R2   Coefficient of determination 

MSE   Mean squared error 

WOB   Weight on bit 

RPM   Rotating speed in revolutions per minute 

ROP   Rate of penetration 

GPM  Gallon per minute 

SPP    Standpipe pressure 

T    Torque 

Fitnet  Function fitting neural network 

newfit   Create fitting network 

newcf   Create cascade-forward backpropagation network 
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newelm   Create Elman backpropagation network 

newlrn   Layer-Recurrent Network 

Newdtdnn  Create distributed time delay neural network 

newff   Create feedforward backpropagation network 

newpr   Create pattern recognition network 

newfftd   Create feedforward input-delay backpropagation network 

trainbr   Bayesian regularization 

trainoss  One step secant backpropagation 

trainlm   Levenberg-Marquardt backpropagation 

trainbfg   BFGS quasi-Newton backpropagation 

traingdx       Gradient descent with momentum and adaptive learning rule backpropagation 

tansig   Hyperbolic tangent sigmoid transfer function 

logsig   Log-sigmoid transfer function 

hardlims   Hard-limit transfer function 

purelin   Linear transfer function 

softmax   Softmax transfer function 

tribas   Triangular basis transfer function 

satlin    Saturating linear transfer function 

netinv   Inverse transfer function 

radbas   Radial basis transfer function 

References 

1. Haciislamoglu, M. 1994. Practical Pressure Loss Predictions in Realistic Annular Geometries. Paper presented at 

the Annual Technical Conference and Exhibition, New Orleans, Louisiana, 25-28 September. SPE-28304-MS. 

https://doi.org/10.2118/28304-MS.  

2. Osman, E.A. and Aggour, M.A., 2003. Determination of drilling mud density change with pressure and 

temperature made simple and accurate by ANN. Paper presented at the Middle East Oil Show, Bahrain, 9-12 June. 

SPE-81422-MS. https://doi.org/10.2118/81422-MS.  

3. Hemphill, T., and Ravi, K. 2011. Improved Prediction of ECD with Drill Pipe Rotation. Paper presented at the 

International Petroleum Technology Conference, Bangkok, Thailand, 15-17 November. IPTC-15424-MS. 

https://doi.org/10.2523/IPTC-15424-MS.  

4. Zhang, H., Sun, T., Gao, D. and Tang, H., 2013. A new method for calculating the equivalent circulating density 

of drilling fluid in deepwater drilling for oil and gas. Chemistry and technology of fuels and oils, 49(5), 

pp.430-438. 

5. Abdelgawad, K.Z., Elzenary, M., Elkatatny, S., Mahmoud, M., Abdulraheem, A. and Patil, S., 2019. New 

approach to evaluate the equivalent circulating density (ECD) using artificial intelligence techniques. Journal of 

Petroleum Exploration and Production Technology, 9(2), pp.1569-1578. 

https://doi.org/10.1007/s13202-018-0572-y.  

6. Ataga, E., Ogbonna, J. and Boniface, O., 2012, January. Accurate estimation of equivalent circulating density 

during high pressure high temperature (HPHT) drilling operations. Paper presented in Nigeria Annual 

International Conference and Exhibition. Nigeria Annual International Conference and Exhibition, Lagos, 

Nigeria, 6-8 August. SPE-162972-MS. https://doi.org/10.2118/162972-MS. 

7. Rommetveit, R., Odegard, S.I., Nordstrand, C., Bjorkevoll, K.S., Cerasi, P.R., Helset, H.M., Fjeldheim, M. and 

Havardstein, S.T., 2010, January. Drilling a challenging HP/HT well utilizing an advanced ECD management 

system with decision support and real-time simulations. Paper presented at the IADC/SPE Drilling Conference 

and Exhibition, New Orleans, Louisiana, USA, 2-4 February. SPE-128648-MS. 

https://doi.org/10.2118/128648-MS.  

8. Erge, O., Vajargah, A. K., Ozbayoglu, M. E., & van Oort, E. 2016. Improved ECD Prediction and Management in 

Horizontal and Extended Reach Wells with Eccentric Drillstrings. Paper presented at the IADC/SPE Drilling 



 17 of 19 

 

Conference and Exhibition, Fort Worth, Texas, USA, 1-3 March. SPE-178785-MS. 

https://doi.org/10.2118/178785-MS. 

9. Hoberock, L.L., Thomas, D.C. and Nickens, H.V., 1982. Here's how compressibility and temperature affect 

bottom-hole mud pressure. Oil Gas J.;(United States), 80(12) 159-164. 

10. Peters, E.J., Chenevert, M.E. and Zhang, C., 1990. A model for predicting the density of oil-base muds at high 

pressures and temperatures. SPE drilling engineering, 5(02), pp.141-148. 

11. Bybee, K., 2009. Equivalent-circulating-density fluctuation in extended-reach drilling. J Petrol Technol 

61:64–67. https://doi.org/10.2118/0209-0064-JPT.  

12. Hemphill, T., Ravi, K., Bern, P.A. and Rojas, J., 2008. A simplified method for prediction of ECD increase with 

drillpipe rotation. Paper presented at the Annual Technical Conference and Exhibition, Denver, Colorado, USA, 

21-24 September. SPE-115378-MS. https://doi.org/10.2118/115378-MS.  

13. Ahmed, R.M., Enfis, M.S., El Kheir, H.M., Laget, M. and Saasen, A., 2010. The effect of drillstring rotation on 

equivalent circulation density: modeling and analysis of field measurements. Paper presented at the Annual 

Technical Conference and Exhibition, Florence, Italy, 19-22 September. SPE-135587-MS. 

https://doi.org/10.2118/135587-MS. 

14. Costa, S.S., Stuckenbruck, S., Fontoura, S.A. and Martins, A.L., 2008, January. Simulation of transient cuttings 

transportation and ECD in wellbore drilling. Paper presented at Europec/EAGE Conference and Exhibition, 

Rome, Italy, 9-12 June 2008. SPE-113893-MS. https://doi.org/10.2118/113893-MS.  

15. Caicedo, H. U., Pribadi, M. A., Bahuguna, S., Wijnands, F. M., & Setiawan, N. B. 2010. Geomechanics, ECD 

Management, and RSS to Manage Drilling Challenges in a Mature Field. Paper presented at SPE Oil and Gas 

India Conference and Exhibition, Mumbai, India, 20-22 January. SPE-129158-MS. 

https://doi.org/10.2118/129158-MS.  

16. Kalogirou, S. 2003. Artificial intelligence for the modeling and control of combustion processes: a review. 

Progress in Energy and Combustion Science, 29(6), pp.515-566. 

https://doi.org/10.1016/S0360-1285(03)00058-3.    

17. Shahab, M. 2000. Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Artificial Neural 

Networks. Journal of Petroleum Technology, 52(9). https://doi.org/10.2118/58046-JPT.  

18. Hag Elsafi, S., 2014. Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River 

Nile, Sudan. Alexandria Engineering Journal 53, 655–662. https://doi.org/10.1016/j.aej.2014.06.010.  

19. Babikir, H.A., Abd Elaziz, M., Elsheikh, A.H., Showaib, E.A., Elhadary, M., Wu, D., and Liu, Y., 2019. Noise 

prediction of axial piston pump based on different valve materials using a modified artificial neural network 

model. Alexandria Engineering Journal 58, 1077–1087, https://doi.org/10.1016/j.aej.2019.09.010.  

20. Rolon, L., Mohaghegh, S.D., Ameri, S., Gaskari, R. and McDaniel, B., 2009. Using artificial neural networks to 

generate synthetic well logs. Journal of Natural Gas Science and Engineering, 1(4-5), pp.118-133. 

https://doi.org/10.1016/j.jngse.2009.08.003.  

21. Tariq, Z., Elkatatny, S., Mahmoud, M., Ali, A.Z. and Abdulraheem, A., 2017, May. A new technique to develop 

rock strength correlation using artificial intelligence tools. This paper was presented at the SPE Reservoir 

Characterisation and Simulation Conference and Exhibition. SPE-186062-MS. 

https://doi.org.extoljp.kfupm.edu.sa/10.2118/186062-MS.  

22. Elkatatny, S., Mahmoud, M., Tariq, Z. and Abdulraheem, A., 2017. New insights into the prediction of 

heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural 

Computing and Applications, 30(9), pp.2673-2683. https://doi.org/10.1007/s00521-017-2850-x.  

23. Mousa, T., Elkatatny, S.M., Mahmoud, M.A. and Abdulraheem, A., 2018. Development of new permeability 

formulation from well log data using artificial intelligence approaches. Journal of Energy Resources Technology. 

https://doi.org/10.1115/1.4039270.  

24. Ren, X., Hou, J., Song, S., Liu, Y., Chen, D., Wang, X., and Dou, L., 2019. Lithology identification using well 

logs: A method by integrating artificial neural networks and sedimentary patterns. Journal of Petroleum Science 

and Engineering 182, 106336. https://doi.org/10.1016/j.petrol.2019.106336.  

25. Ahmed, A.S., Mahmoud, A.A., and Elkatatny, S., 2019. Fracture Pressure Prediction Using Radial Basis 

Function. In Proceedings of the AADE National Technical Conference and Exhibition, Denver, CO, USA, 9–10 

April. AADE-19-NTCE-061. 

26. Ahmed, A.S., Mahmoud, A.A., Elkatatny, S., Mahmoud, M., and Abdulraheem, A., 2019. Prediction of Pore and 

Fracture Pressures Using Support Vector Machine. In Proceedings of the 2019 International Petroleum 



 18 of 19 

 

Technology Conference, Beijing, China, 26–28 March. IPTC-19523-MS. 

https://doi.org/10.2523/IPTC-19523-MS.  

27. Elkatatny, S. and Mahmoud, M., 2018. Development of new correlations for the oil formation volume factor in oil 

reservoirs using artificial intelligent white box technique. Petroleum, 4(2), pp.178-186. 

https://doi.org/10.1016/j.petlm.2017.09.009.  

28. Mahmoud, A.A., Elkatatny, S., Abdulraheem, A., and Mahmoud, M., 2017. Application of Artificial Intelligence 

Techniques in Estimating Oil Recovery Factor for Water Drive Sandy Reservoirs. This paper was presented at the 

2017 SPE Kuwait Oil & Gas Show and Conference, Kuwait City, Kuwait, 15–18 October, SPE-187621-MS. 

https://doi.org/10.2118/187621-MS.  

29. Mahmoud, A.A., Elkatatny, S., Chen, W., and Abdulraheem, A., 2019. Estimation of Oil Recovery Factor for 

Water Drive Sandy Reservoirs through Applications of Artificial Intelligence. Energies 12, 3671. 

https://doi.org/10.3390/en12193671.  

30. Elkatatny, S., Al-AbdulJabbar, A., and Mahmoud, A.A., 2019. New Robust Model to Estimate the Formation 

Tops in Real-Time Using Artificial Neural Networks (ANN). Petrophysics 60, 825–837. 

https://doi.org/10.30632/PJV60N6-2019a7.  

31. Al-Abduljabbar, A., Gamal, H. and Elkatatny, S. 2020. Application of artificial neural network to predict the rate 

of penetration for S-shape well profile. Arab J Geosci 13, 784. https://doi.org/10.1007/s12517-020-05821-w.    

32. Gamal, H., Elkatatny, S. and Abdulraheem, A., 2020, November. Rock Drillability Intelligent Prediction for a 

Complex Lithology Using Artificial Neural Network. Paper presented in Abu Dhabi International Petroleum 

Exhibition & Conference, Abu Dhabi, UAE, 9-12 November. SPE-202767-MS. 

https://doi.org/10.2118/202767-MS.  

33. Mahmoud, A.A., Elkatatny, S., Al-AbdulJabbar, A., Moussa, T., Gamal, H. and Shehri, D.A., 2020, September. 

Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate 

Formations. In 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association. 

ARMA-2020-1694. 

34. Mahmoud, A.A., Elkatatny, S., Abdulraheem, A., Mahmoud, M., Ibrahim, O., and Ali, A., 2017. New Technique 

to Determine the Total Organic Carbon Based on Well Logs Using Artificial Neural Network (White Box). This 

paper was presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 

Dammam, Saudi Arabia, 24–27 April. SPE-188016-MS. https://doi.org/10.2118/188016-MS.  

35. Mahmoud, A.A., Elkatatny, S., Ali, A., Abouelresh, M., and Abdulraheem, A., 2019. New Robust Model to 

Evaluate the Total Organic Carbon Using Fuzzy Logic. This paper was presented at the SPE Kuwait Oil & Gas 

Show and Conference, Mishref, Kuwait, 13–16 October. SPE-198130-MS. https://doi.org/10.2118/198130-MS.  

36. Mahmoud, A.A., Elkatatny, S., Mahmoud, M., Abouelresh, M., Abdulraheem, A., and Ali, A., 2017. 

Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. 

International Journal of Coal Geology 179, 72–80. https://doi.org/10.1016/j.coal.2017.05.012.  

37. Mahmoud, A.A., Elkatatny, S., and Al-Shehri, D., 2020. Application of Machine Learning in Evaluation of the 

Static Young’s Modulus for Sandstone Formations. Sustainability 12(5). https://doi.org/10.3390/su12051880.  

38. Mahmoud, A.A., Elkatatny, S., Ali, A., and Moussa, T., 2019. Estimation of Static Young’s Modulus for 
Sandstone Formation Using Artificial Neural Networks. Energies 12, 2125, https://doi.org/10.3390/en12112125.  

39. Tariq, Z., Elkatatny, S., Mahmoud, M. and Abdulraheem, A., 2016, November. A holistic approach to develop 

new rigorous empirical correlation for static Young's modulus. This paper was presented at Abu Dhabi 

International Petroleum Exhibition & Conference. Abu Dhabi, UAE, 7-10 November. SPE-183545-MS. 

https://doi.org/10.2118/183545-MS.  

40. Elkatatny, S., Mahmoud, M., Mohamed, I. and Abdulraheem, A., 2018. Development of a new correlation to 

determine the static Young’s modulus. Journal of Petroleum Exploration and Production Technology, 8(1), 
pp.17-30. https://doi:10.1007/s13202-017-0316-4.   

41. Elkatatny, S., Tariq, Z., Mahmoud, M., Mohamed, I. and Abdulraheem, A., 2018. Development of new 

mathematical model for compressional and shear sonic times from wireline log data using artificial intelligence 

neural networks (white box). Arabian Journal for Science and Engineering, 43(11), pp.6375-6389. 

https://doi.org/10.1007/s13369-018-3094-5.   

42. Tariq, Z., Elkatatny, S., Mahmoud, M., Ali, A.Z. and Abdulraheem, A., 2017, June. A new approach to predict 

failure parameters of carbonate rocks using artificial intelligence tools. This paper was presented at SPE Kingdom 

of Saudi Arabia Annual Technical Symposium and Exhibition. Dammam, Saudi Arabia, 24-27 April. 

SPE-187974-MS. https://doi.org/10.2118/187974-MS.    



 19 of 19 

 

43. Alsaihati, A., Elkatatny, S., Mahmoud, A.A. and Abdulraheem, A., 2020. Use of Machine Learning and Data 

Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study. Journal of 

Energy Resources Technology, 143(4). https://doi.org/10.1115/1.4048070.  

44. Arehart, R.A., 1990. Drill-bit diagnosis with neural networks. SPE Computer Applications 2, 24–28. 

https://doi.org/10.2118/19558-PA.  

45. Abdelgawad, K., Elkatatny, S., Moussa, T., Mahmoud, M., and Patil, S., 2018. Real Time Determination of 

Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique. Journal of 

Energy Resources Technology. https://doi.org/10.1115/1.4042233.  

46. Elkatatny, S.M., 2017. Real Time Prediction of Rheological Parameters of KCl Water-Based Drilling Fluid Using 

Artificial Neural Networks. Arabian Journal of Science and Engineering 42, 1655–1665. 

https://doi.org/10.1007/s13369-016-2409-7.  

47. Alsabaa, A., Gamal, H., Elkatatny, S. and Abdulraheem, A., 2020. Real-Time Prediction of Rheological 

Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System. Sensors, 20(6), p.1669. 

https://doi.org/10.3390/s20061669.  

48. Alsabaa A, Gamal H, Elkatatny SM, Abdulraheem A. Real-Time Prediction of Rheological Properties of All-Oil 

Mud Using Artificial Intelligence. This paper was presented at the 54th US Rock Mechanics/Geomechanics 

Symposium 2020 Sep 18. American Rock Mechanics Association. ARMA-2020-1645. 

49. Elkatatny, S., Tariq, Z. and Mahmoud, M., 2016. Real time prediction of drilling fluid rheological properties using 

Artificial Neural Networks visible mathematical model (white box). Journal of Petroleum Science and 

Engineering, 146, pp.1202-1210. https://doi.org/10.1016/j.petrol.2016.08.021.  

50. Ahmadi, M.A., 2016. Toward reliable model for prediction Drilling Fluid Density at wellbore conditions: A 

LSSVM model. Neurocomputing, 211, pp.143-149. https://doi.org/10.1016/j.neucom.2016.01.106.  

51. Ahmadi, M.A., Shadizadeh, S.R., Shah, K. and Bahadori, A., 2018. An accurate model to predict drilling fluid 

density at wellbore conditions. Egyptian Journal of Petroleum, 27(1), pp.1-10. 

http://dx.doi.org/10.1016/j.ejpe.2016.12.002.  

52. Alkinani, H.H., Al-Hameedi, A.T.T., Dunn-Norman, S., Al-Alwani, M.A., Mutar, R.A. and Al-Bazzaz, W.H., 

2019, October. Data-Driven Neural Network Model to Predict Equivalent Circulation Density ECD. Paper 

presented at the Gas & Oil Technology Showcase and Conference, Dubai, UAE, 21-23 October. 

SPE-198612-MS. https://doi.org/10.2118/198612-MS.  

53. Rahmati, A.S. and Tatar, A., 2019. Application of Radial Basis Function (RBF) neural networks to estimate oil 

field drilling fluid density at elevated pressures and temperatures. Oil & Gas Science and Technology–Revue 

d’IFP Energies nouvelles, 74, p.50. 
54. Bello, O., Holzmann, J., Yaqoob, T. and Teodoriu, C. 2015. Application of Artificial Intelligence Methods in 

Drilling System Design and Operations: A Review of the State of The Art”. Journal of Artificial Intelligence and 
Soft Computing Research, 5(2), pp.121-139. https://Doi.org/10.1515/jaiscr-2015-0024.  

55. Abbas, A., Rushdi, S., Alsaba, M. and Al Dushaishi, M. 2019. Drilling Rate of Penetration Prediction of 

High-Angled Wells Using Artificial Neural Networks. Journal of Energy Resources Technology, 141(11). 

https://doi.org/10.1115/1.4043699.  

56. Cevik, A., Sezer, E.A., Cabalar, A.F. & Gokceoglu, C. 2011. Modeling of the uniaxial compressive strength of 

some clay-bearing rocks using neural network. Applied Soft Computing, 11, 2587–2594, 

https://doi.org/10.1016/j.asoc.2010.10.008.  

57. Lippman, R.P. & Lippman, R.P. 1987. An Intrduction to Computing with Neural Nets. In: Mag, A. (ed.) IEEE 

ASSP Magazine. IEEE, 4–22., https://doi.org/10.1109/MASSP.1987.1165576.  

58. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H. & Schmidhuber, J. 2009. A Novel Connectionist 

System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 31, 855–868, https://doi.org/10.1109/TPAMI.2008.137.  

59. Nakamoto, P. Neural Networks and Deep Learning: Deep Learning Explained to Your Granny a Visual 

Introduction for Beginners Who Want to Make Their Own Deep Learning Neural Network (Machine Learning); 

CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. 

60. Jang, J.-S.R. (1993). "ANFIS: adaptive-network-based fuzzy inference system". IEEE Transactions on Systems, 

Man and Cybernetics. 23 (3): 665–685. https://psycnet.apa.org/doi/10.1109/21.256541.  

61. Abraham A. 2005. Adaptation of Fuzzy Inference System Using Neural Learning. In: Nedjah N., Macedo 

Mourelle L. (eds) Fuzzy Systems Engineering. Studies in Fuzziness and Soft Computing, vol 181. Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/11339366_3. 



Figures

Figure 1

Processing �ow chart for ECD AI models.



Figure 2

The correlation coe�cients between the inputs and ECD after data preprocessing



Figure 3

The architecture of the developed ANN model.



Figure 4

Cross-plots between the predicted and actual ECD results from the developed ANN model. (a) training
process, and (b) testing process.

Figure 5

Cross-plots between the predicted and actual ECD results from the developed ANFIS model. (a) training
process, and (b) testing process.



Figure 6

ECD Pro�le for the validation data set. (a) ANN model, and (b) ANFIS model.



Figure 7

Error Histogram. (a) ANN model, and (b) ANFIS model.



Figure 8

Models comparison. (a) Correlation coe�cient (R), and (b) Average absolute percentage error (AAPE).


