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Abstract ICEEMDAN, a variant of Empirical Mode Decomposition (EMD), is used to ex-

tract temperature cycles with periods from half a year to multiple decades from the HadCRUT5

global temperature anomaly data. The residual indicates an overall warming trend. The anal-

ysis is repeated for the Southern and Northern Hemispheres as well as the Tropics, defined

as areas lying at or below 30 degrees of latitude. Multiannual cycles explain the apparently

anomalous pause in global warming starting around 2000. The previously identified multi-

decadal cycle is found to be the most energetic and to account for recent global warming

acceleration, beginning around 1993. This cycle’s amplitude is found to be more variable

than by previous work. Moreover, this variability varies by latitude. Sea ice loss accelera-

tion is proposed as an explanation for global warming acceleration.

Keywords global warming · climate cycles · global warming acceleration · time series

analysis · climate change · Hilbert-Huang transform

1 Introduction

Long-term variation in global temperatures is a well-known phenomenon. Improved Com-

plete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN, Colom-

inas Schlotthauer and Torres 2014), a variant of the Empirical Mode Decomposition (EMD,

Huang, Shen et al. 1998) decomposes time series of temperature anomalies into Intrinsic

Mode Functions (IMFs) representing noise, cyles of different and possibly nonconstant fre-

quencies and amplitudes and a residual. The last estimates the trend in temperature anoma-

lies. Colominas, Schlotthaurer and Torres 2014 developed ICEEMDAN as an improvement
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on prior EMD variants to more accurately reproduce the input signal and to reduce the re-

maining residual noise. They show that ICEEMDAN extracts signals more faithfully and

with less residual noise than Ensemble Empirical Mode Decomposition (EEMD) (Wu and

Huang 2009).1

The temperature anomaly data come from the Met Office Hadley Centre HadCRUT5

infilled observation datasets. (Dunn and Hogan in press) The data are for months between

January, 1850 and December, 2019. For each 5° by 5° cell of the Earth’s surface, the aver-

age temperature, 1961-1990, is computed. A monthly time series of temperature anomalies

is constructed for each cell by subtracting the 1961-1990 average from the monthly esti-

mated values. The averaged series are the averages of the anomalies for the area of interest,

weighted by surface area. All available averaged series are used: global and Northern and

Southern Hemispheres. In addition, a tabulation was obtained from the Met Office Hadley

Centre for the Tropics, defined as latitudes between 30°N and 30°S. The mean for each

series is used as the measure of temperature.

2 Previous Research

Previous research has followed four approaches. The first has concentrated on removing

noise by smoothing data. The popularly displayed annual averages of Lindsey and Dahlman

(2020) and others are simply the average of all months within a calendar year. Not only is

the choice of periods to smooth is arbitrary, the smoothed data prevent identification of bien-

nial, annual and subannual cycles. Moreover, identification of multiannual data is hampered

by preventing the contributions of individual months from being identified. Variations in the

timing of cycles with periods of a few years can result in their nonidentification. Hansen et

al. (2006) avoided this by focusing on the changes over time and not attempting any decom-

positions or forecasts. Hansen, Sato and Ruedy (2013) similarly use annual averages in an

analysis of climatic forcing. Hansen and Sato (2021) use a linear trend to identify putative

recent global warming acceleration. A 21-year weighted moving average has happily been

discontinued from the Internet.

The second approach is regression analysis. Foster and Rahmstorf (2011) and Zhou and

Tung (2013) use linear regression on global data to obtain linear trends after controlling

for forcing variables. The obvious criticisms are that the trends are not necessarily linear,

the forcing variables may not have linear effects, missing variables may be present and that

the time series structure is not used in any way. Lean and Rind (2008) partition the Earth’s

surface into cells, then run regressions within each cell and combine results. This approach

suffers from not explicitly incorporating the spatial structure in what is really a spatial panel

model. An additional weakness of regression is that statistical significance does not imply

practical significance (Ziliak and McCloskey 2004; McCloskey and Ziliak 2008). When a

variable lacks practical significance, controlling for it has no practical effect on regression

fit. Turner, Colwell et al. (2005) use regression analysis on monthly Antarctic temperature

and wind speed data to obtain linear trends. This approach has the defects of assuming

linearity and not accounting for time series structure. Thus, their results suffer from bias

and, at best, can only be interpreted qualitatively.

The third approach uses wavelet analysis. A full description of wavelet analysis is be-

yond the scope of the present paper. A short description is that a basis function is chosen

1 Torres, Colominas and Schlotthauer 2014, Figure 2, does not display ICEEMDAN’s two residual IMFs

for that example while displaying all five of EEMD’s residual IMFs.
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Temperature Anomalies 3

that, in turn, generates other basis functions that are used to form a wavelet representation

of a signal. The exact representation depends on the choice of initial basis function. Recov-

ering amplitude and frequency information is mathematically complicated. Lau and Weng

(1999), Silva, Silva et al. (2018) and Yang, Wang et al. (2015) are examples of applying

wavelet analysis to monthly temperature data. The starting dates of these analyses, 1884

(Silva, Silva et al. 2018) and 1955 (Lau and Weng 1999; Yang, Wang et al. 2015), show

an important limitation: these analyses do not use the full time series because of the initial

noise, as decribed in Section 4. Moreover, the trends are linear, a constraint that EMD lacks.

Empirical Orthogonal Functions (EOFs) appear to have fallen out of favor in climatic

research. EOFs are the principal components of spatiotemporal data (Björnsson and Venegas

2000). The components are called “modes of variability,” Their problem lies in their being

“primarily data modes, and not necessarily physical modes” (Björnsson and Venegas 2000,

p. 5, original emphasis). Without physical knowledge, they provide little information about

physical phenomena. Examples of their application to climatic data, including global warm-

ing, include Björnsson and Venegas (2000), Bretherton, Widman et al. (1999), Feldstein

(2002) and Wang and Mehta (2008).

The last approach uses the data-driven Empirical Mode Decomposition (EMD) or En-

semble Empirical Mode Decomposition (EEMD) (Wu and Huang 2009) and seems to be the

most popular recently. Section 3 delves into the technical details. Huang, Wu et al. (2009)

appear to have been the first. They use EMD to remove noise from monthly global temper-

ature anomaly series to derive annual series. Wu, Huang et al. (2011) essentially repeat the

analysis using EEMD and identify a nearly regular multidecadal cycle. Franzke (2010) uses

EEMD to remove noise from Antarctic temperature series to identify trends. Shi, Yang et

al. (2011) and Xing, Chen et al. (2016) apply EEMD to tree ring records. Qian (2015) uses

EEMD to remove noise from Shanghai, China temperature extreme series to identify the

effects of urbanization on them. Yang, Wu and Hu (2011) apply EMD to air temperature ob-

servations at Nanjing, China to find no detectable solar-driven variability, which the present

paper confirms globally. Mukherjee, Joshi et al. (2014) apply EEMD to daily Indian mon-

soon rain totals. Similarly, Sabzehee, Nafisi et al. (2019) analyze Caspian Sea catchment

rain totals.

3 Empirical Mode Decomposition

Huang, Shen et al. (1998) introduced the Empirical Mode Decomposition (EMD) as an adap-

tive, data-driven method to completely decompose time series using the Hilbert Transform.

The Hilbert Transform is a more general version of the Fourier Transform, decomposing a

time series into the sum of series of the form

φ j(t) = a j(t)sin(ω j(t)t +θ j(t)) (1)

where a j is the amplitude of φ j, ω j is its possibly time-varying period and θ j is its possibly

time-varying phase shift. The true φ j are the modes of the input signal. The estimates φ̂ j

are Intrinsic Mode Functions (IMFs) which should satisfy the condition that the number of

extrema should differ from the number of zero-crossings by 0 or 1. Given a residue r j, with

r0, the initial residue equal to the input signal, EMD proceeds to sift r j to produce IMF j+1

and r j+1 by first constructing upper and lower envelopes by interpolating the local maxima

and minima, respectively, then subtracting their local means from r j to obtain h j. If h j is an

IMF, then it is output as IMF j+1 and r j+1 is set equal to r j − h j. Otherwise, the algorithm

repeats, using r j+1 and iterated until an IMF is produced or a stopping criterion is reached,
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in which case a defective IMF is output. IMFs are subsequently output until r j has 2 or 3

extrema, in which case it is output as the residual trend. EMD ideally outputs IMFs in order

of increasing period or, equivalently, decreasing frequency.

EMD is well-known for mode-mixing (outputting a single IMF for multiple φ j), mode-

splitting (outputting multiple IMFs for a single φ j) and producing spurious IMFs. Several

methods have been developed to remedy this, including EEMD, CEEMDAN (Schlotthauer,

Colominas et al. 2011), ICEEMDAN and MAEMD (Deering and Kaiser 2005). These meth-

ods are all ensemble methods that add a function to multiple copies of the input, then average

the outputs. This enables them to reduce EMD’s mode-mixing and mode-splitting (Huang,

Shen et al. 1998). The first two add white noise, ICEEMDAN adds IMFs derived from white

noise and MAEMD adds and subtracts a masking sinusoid. All average the results of their

decompositions. Ensemble methods have the further advantage of being able to separate the

noise which EMD lacks (Kim, Kim and Oh 2012). Ensemble methods are not guaranteed to

produce proper IMFs because the average of IMFs is not necessarily an IMF (Steven San-

doval personal communication). All EMD methods are subject to outputting residual IMFs

due to possible nonorthogonality of the IMFs that represent the input signal The summed

IMFs are subtracted from the temperature anomaly input to obtain the temperature trend,

with the obvious interpretation. Colominas et al. (2014) showed that ICEEMDAN outputs

IMFs in decreasing order of frequency with fewer residual IMFs than EMD, EEMD and

CEEMDAN and does not output residual IMFs before outputting all informative IMFs.

ICEEMDAN is run with 10,000 ensemble members and the default SNR of 0.2. The num-

ber of ensemble members was empirically determined to provide stable decompositions.

The number of IMFs was set to 8 to avoid residual IMFs and to include a residual ninth IMF

in the residual trend.

EMD has the further advantage of being applicable to any type of time series. Fourier

series have the tightest restrictions: linearity and stationarity. Wavelets permit nonstation-

arity but require linearity. Fourier series and wavelets require a priori bases, while EMD is

adaptive. EMD is chosen to minimize assumptions.

4 Results

This Section presents selected graphs illustrating the termperature anomaly decompositions

and provides some interpretations . The decompositions were performed for all downloaded

series. R (2020) codes, an R workspace and undisplayed graphs are in the Supplemental

materials. Additionally, for each decomposition, the Hilbert spectrum, the time-frequency-

amplitude spectrum associated with each IMF j, H j(ω, t), is defined as

H j(ω, t) =

⇢

a j(t), ω = ω j

0, otherwise
. (2)

Frequencies and amplitudes are displayed separately. Negative frequencies appear occasion-

ally as a result of a violation of the IMF condition. For example, a trough may occur at the

expected time but not cross zero (that is, remain positive). In the absence of a well-founded

interpretation, these should be ignored. They are only reported for completeness. As neces-

sary, the Marginal Hilbert Spectrum for an IMF is calculated as

h j(ω) =
1

T

Z 2021:12

1850:1
H j(ω, t)dt
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Temperature Anomalies 5

≈

1

172×12

2021:12

∑
t=1850:1

a j(t)I(ω = ω j(t)), (3)

where I is the indicator function and the limits have the format year:numeric month. The

final, presented h̃ j(ω) is then obtained by applying the Epannechnikov kernel smoother to

h j(ω) for all ω > 0. The smoothing turns the discontinuous h j(ω) into a continuous, more

interpretable function. The final result displays amplitude as a function of frequency, similar

to a Fourier Spectrum. Only the modes are analyzed, as they are invariant to expression

by frequency or period, unlike averages. They also have the interpretation of being spectral

peaks.

A final concept used is the energy or power of a signal. For a signal yt , its energy is the

integral of its squared amplitude:

e(y) =
1

T

Z

t
a2

t (t)dt, (4)

where T is the length of yt . Since an IMF is centered, its energy is equal to its variance.

A full analysis is provided only for the global data. Decompositions and trend analyses

only are provided for the other datasets.

4.1 Decompositions

Figure 1 displays the global median temperature anomaly for 1850-2021. Several things

are readily apparent. Average temperature is rising throughout the period, with sustained

declines during the approximate periods 1880-1910, 1940-1970 and 2000-2010. The series

is particularly noisy before 1900. The reduction of noise over time, especially during the

satellite era, reflects better measurements.

4.1.1 Global

Figure 2 displays the ICEEMDAN decomposition of median global termperature anomalies.

IMF 1 estimates the noise. IMFs 2-8 estimate the respective φ j, in descending order of

frequency. IMF 1’s amplitude is particularly high before around 1890. Figure 3 shows that

IMF 1’s amplitude rose to a sustained peak around the 1870s. The additional noise in IMF

1 spills over into the other IMFs, especially IMFs 2 and 3, which show amplitude peaks

coinciding with IMF 1’s early peak. Figure 4 displays the frequencies. IMF 1 is clearly

the noise mode with its greatest variation in frequency, ranging from near 0 to near 6, the

Nyquist frequency. IMFs 2 and 3 show clustering around 2 and 1 cycle(s) per year: these are

the semiannual and annual IMFs. IMFs 4-8 have frequencies of less than 1 per year.

To better understand the frequencies, Figure 5 shows the periods: the reciprocals of the

frequencies. IMF 4 is dominated by 2 year periods. IMF 5’s period fluctuates between 1 and

over 20 years. IMF 6 shows a peak period of over 3300 years in 2008 in the middle of a

surge from 2006 to 2011. This correspondes to a period of slowing, than decreasing decline

in IMF 6. IMF 7’s period generally varies between 10 and 20 with increases to around 60

years and declines below 5 years. IMF 8’s period generally lies between 50 and 90 years,

with an increase to almost 500 in 1992. While the subsequent decline is largely explained

by global warming acceleration, discussed below, its onset before acceleration is difficult to

understand.
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Figure 6 shows the smoothed Marginal Hilbert Spectra for IMFs 5-8. While this Figure

confirms that frequencies are decreasing, it is otherwise hard to interpret. Figure 7 displays

the inverted Marginal Hilbert Spectra. The horizontal axis has the natural interpretation of

being the period. IMF 5 shows a modal period of 7 years, with a positively skewed spread

of 3-17 years. IMF 6’s mode is 9 years, with a wider, similarly skewed spread of 7-25 years.

Its uppermost year is well to the right. IMF 7 shows the most variability, with its main mode

at 16-17 years, a nearly equal mode at 22 years, a major secondary mode at 37 years and

a minor mode at . IMF 7’s upper tail does not decay to 0 by 50 years. In fact, it remains

relatively high. IMF 8’s period peaks at 71 years, with a small skewness of -0.13 for the

periods displayed. No IMF corresponds to the 11-year solar cycle. Its energy is too low to

distinguish it from the noise. Table 1 shows that the multidecadal IMF 8 has the greatest

energy. This, and its timing, is consistent with Wu, Huang et al. (2011) with the exception

that its amplitude is even more variable. Moreover, IMF 8 accelerates beginning in 1993,

which will be explored more in Subsection 4.2.

4.1.2 Regional

Figures 8, 9 and 10 display the monthly average temperature anomalies and their decompo-

sitions for the Northern Hemisphere, Southern Hemisphere and Tropics, respectively. With

the exception of IMF 8’s amplitudes, as explained in Subsubsection 4.2, they are generally

similar. Table 2 shows the trend increases in the temperature anomalies, globally and region-

ally. It shows two effects. First, warming is greater at higher latitudes as shown by the greater

temperature increase globally compared to the Tropics when they have approximately the

same share of land area: 29.2% globally and 28.6% in the Tropics.2 Excluding ice-covered

surfaces from the calculation only increases this effect. Second, greater surface land area

increases warming. Land covers 29.3% of the Northern Hemisphere compared to 19.1% of

the Southern Hemisphere. Again, excluding ice-covered surfaces increases this latter effect.

4.2 Global Warming Acceleration and Hiatus

By decomposing temperatures into their constituent modes we can obtain insights into

observed phenomena and new phenomena. The most important is a fuller explanation of

Hansen and Oh’s (2021) finding of recent global warming acceleration. We find that this

warming begain around 1993, which is not apparent from their graphs that show a recent,

possibly temporary, increase above above a linear trend. We posit that accelerating sea ice

decline is the cause of global warming acceleration. We also find that the Global Warm-

ing Hiatus that first appeared in the media and Internet (Easterling and Wehner 2009) and

was subsequently analyzed by many is at least mostly a mirage caused by the confluence of

multiannual cycles.

Figure 11 displays IMF 8 globally and for each region studied. Close examination shows

a recent acceleration in the global cycle, which is harder to discern regionally. Figure 12

shows the derivative of each corresponding IMF 8 with respect to time. In each geography,

IMF 8 is sinusoidal with varying amplitudes and a 50-year period. However, the first peak

corresponds to a flatter, declining period in the Tropics. The derivative of global IMF 8

presents a point of inflection in 1993, which leads to a slowing of the rate of temperature

increase, then accelerating increase. The regional graphs are more subtle. Each derivative of

2 I’d like to thank D.W. Rowlands for calculating the latter figure.
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IMF 8 is sinusoidal (except, of course, the Tropics before around 1900) until 1993 when,

outside of the Southern Hemisphere, they turn into roughly straight lines above the expected

continuations of the sinusoids. The Northern Hemisphere has an accelerating temperature

increase, while the Tropics has a decelerating decrease. These are all equivalent to, and

contributing to global temperature warming acceleration. The weakness or absence of the

acceleration in the Southern Hemisphere may indicate more specifically that it is the decline

in Northern sea ice that is driving acceleration. Hansen and Oh (2021) extrapolate a linear

approximation of a 132 running mean of global temperatures, 1970-2015, to find that tem-

peratures afterwards are above expectation. They conclude that global warming acceleration

began in 2015 based on Loeb, Johnson et al.’s (2021) interpretation of CERES (Clouds and

the Earth’s Radiant Energy System) satellite data. Instead, we propose that increasing loss

of sea ice has been causing global warming acceleration. Sea ice is an excellent candidate

because ice reflects more sunlight than seawater. Thus, its loss increases global warming.

beyond that caused by any other forcings (Dai, Luo et al. 2019). According to National

Snow and Ice Data Center (2020) Figure “Mean sea ice anomalies, 1953-2018,” Northern

Hemispheric sea ice started declining around 1988 with evidence of acceleration.

Figure 13 shows the sum of the multiannual median IMFs 5-8, and residual trend. The

cooling period during the 2000s now appears. It is clear that this global waming hiatus,

originally analyzed by Easterling and Wehner (2009), occurred as a result of the multiannual

cycles corresponding to IMFs 5-7 being in declining phases, even while IMF 8, the most

energetic IMF, was increasing. When these cycles resumed increasing, the cooling period

ended. IMF 7 peaks around 2000, though it alone is not enough to account for the pause due

to its low amplitude.

5 Discussion

We have used ICEEMDAN to decompose the Met Office Hadley Centre’s median monthly

temperature anomaly into noise, cycles and a residual trend. Our most important finding is

global warming acceleration beginning around 1993,3 The global cooling hiatus of the early

2000s is coincidental, being the result of cyclic downturns.

The multidecal cycle with a period of 50 years is responsible for global warming accel-

eration. We hypothesize that this is due to accelerating sea ice loss, which is documented

to have begun around 1988, two decades earlier than the start of Hansen and Sato’s (2021)

claim. This is supported by Hugonnet, McNabb et al. (2021), who find that global glacier ice

mass loss has been accelerating during 2000-2019, providing confirmation of global warm-

ing acceleration during this period.4 These three accelerations suggest some sort of linkage.

Hu Hansen and Sato (2021) use linear regression to produce a smooth trend for the global

average temperature anomaly, 1970-2015.5 This is based on the 132 month running mean,

which appears close to linear, during 1970-2015. They then find that the global temperature

anomaly after 2015 is completely above this trend. They hypothesize that this is due to in-

creased atmospheric aerosols increasing temperature forcing, leading to accelerated global

warming. However, lacking information about temperature cycles, they cannot determine

whether they are truly observing acceleration, a temporary or permanent change in trend or

an anticipable peak in an underlying cycle. Their inability to precisely identify whatever they

3 Due to estimation error, the precise timing in unavailable. Fortunately, this error is in the range of months.
4 Glacier ice mass loss is linearly proportionate to local temperature increase (Hugonnet, McNabb et al.

2021). Accelerating loss can only be caused by accelerating increase.
5 Unfortunately, Hansen and Sato (2021) do not cite their data source.
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found precludes policy prescriptions. Instead, our evidence provides actionable information:

Sea ice restoration should be a part of global warming mitigation. IMF 8’s early Tropical

nonappearance and early weak appearance at other latitudes is worthy of investigation.

The global cooling pause has a simple explanation in decreases in global multiannual

cycles, which can be seen individually in Figure 2. IMFs 5-8 and in their sum including the

residual trend in Figure 13. Each of these IMFs has a particularly low trough after 2000,

consistent with a negative forcing. Ridley, Solomon et al. (2014) provide evidence for this

forcing in the form of increased and variable stratospheric volcanic aerosols. Coincidence

with a modal trough can lower that trough. Militating against this is the accelerating global

glacier ice loss during this period. The increased CO2 uptake of Keenan, Prentice et al.

(2016) and the similar increased photosythesis hypothesis of Leggett and Ball (2015) have to

be rejected because these would have been reflected in sustained decreases in low frequency

IMFs in the ICEEMDAN decompositions.

The first three cycles have clear physical intepretations. The semiannual and annual

cycles (IMFs 2 and 3) capture the seasonal variations in average temperature driven by

changes in absorbed insolation. The biennual cycle reflects the Quasi-Biennial Oscillation

possibly interacted with other phenomena with approximately biennal cycles.

Pooling observations, in this case, 5° by 5° latitude-longitude cells, reduces the relative

noise, thus increasing identifiability of cycles and trends. As is visible in the early decades of

the series, noise can spillover into low frequency cycles. As the noise increases, increasingly

lower frequency cycles can become unidentifiable. Moreover, except for the very lowest

frequency cycle, the lowest frequencies have the least energy per Table 1. Their low energies

are additional impediments to their identification in the presence of noise. Thus, EMD and

its derivatives have to be used on temperature series that have pooled enough observations to

reduce noise to a manageable level. It may be possible to use a spatiotemporal generalization

of EMD on a grid, provided that the spatial structure enables canceling enough noise to

improve identifiability. Coarser grids may accomplish this at the potential risk of producing

too little spatial detail. An improved version of the spatial EMD of Fauchereau, Pegram, and

Sinclair (2008) may be able to do this. A requirement is the ability to draw strength across

space to reduce noise.

6 Conclusions and Extensions

Understanding multiannual temperature cycles can shed new light on the climate in general.

The global warming acceleration that began in 1993 is only visible in the multidecadal cy-

cle. This acceleration is proposed to be due to accelerating sea ice loss beginning around

1988, particularly in the Northern Hemisphere. This improves on Hansen and Sato’s (2021)

claimed recent global warming acceleration based on extrapolating a trend. By using cycli-

cal information, we have avoided the biases from not accounting for cyclical information

when forecasting. Moreover, we have pinpointed, within estimation variation, the beginning

of this acceleration. The strongest evidence of global warming acceleration lies in accelerat-

ing global glacial ice mass loss during 2000-2019. Confirmatory research is needed to verify

that sea ice loss has indeed been accelerating and to fully incorporate Southern Hemispheric

sea ice loss into explanations of global temperature warming acceleration. The policy impli-

cation is clear: sea ice restoration is a necessary part of global warming mitigation.

The Global Warming Hiatus has been shown to be, at most, the effect of volcanic forc-

ings. It may very well have been a mirage. Again, this was only made possible by decom-

posing global termperature changes into their underlying trend and cycles. The Hiatus had
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Table 1 IMF Energies

IMF Energy * 1000

1 3.8

2 2.1

3 2.3

4 2.9

5 2.6

6 2.2

7 1.4

8 8.0

Table 2 Temperature Anomaly Residual Trend Changes

Region Degrees Celsius

Global 0.76

Northern Hemisphere 0.92

Southern Hemisphere 0.58

Tropics 0.62

minimal, if any, effect on global glacial ice mass loss. Accelerating global glacial ice loss

provides evidence against the hiatus.

ICEEMDAN, the technique we used, is superior to EMD and EEMD, the previous

EMD-based methods to analyze global temperature changes due to its abiity to handle noise,

output informative IMFs in decreasing order of frequency and reduction of residual IMFs.

All of these techniques share the advantages of being data-driven, having minimal assump-

tions and being applicable to almost any kind of time series. In particular, they do not require

assuming particular functional forms for the cycles or trends. They can be used to improve

climate models by identifying temperature and other cycles with variable amplitudes and

frequencies. Even the estimated noise can inform these models. It may be possible to de-

velop a spatial method that accounts for spatial correlations and draws strength across space

to provide local EMD-style decompositions.6 These can provide local information to better

improve climatic understanding and inform climate models.
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Global and hemispheric source data are from the Met Office Hadley Centre observations

datasets at

https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html, downloaded Febru-

ary 17, 2022. Tropical data are from a file emailed by the Met Office Hadley Centre on the

same date. All data are included in the supplemental materials.

6 Fauchereau, Pegram, and Sinclair (2008) is a first step in this direction.
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Fig. 1 Mean Average Global Temperature Anomalies, 1850-2021
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Fig. 2 ICEEMDAN Decomposition of Mean Average Global Temperature Anomalies (°C), 1850-2021
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Fig. 3 Amplitudes of Mean Average Global Temperature Anomalies IMFs (°C), 1850-2021
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Fig. 4 Frequencies of Mean Average Global Temperature Anomalies IMFs (cycles/year), 1850-2021
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Fig. 5 Periods of Mean Average Global Temperature Anomalies, IMFs 4-8 (years), 1850-2021
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Fig. 6 Marginal Hilbert Spectra, IMFs 5-8
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Fig. 7 Inverted Marginal Hilbert Spectra, IMFs 5-8
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Fig. 8 Average Mean Northern Hemisphere Temperature Anomalies with ICEEMDAN Decomposition (°C),

1850-2021
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Fig. 9 Average Mean Southern Hemisphere Temperature Anomalies with ICEEMDAN Decomposition (°C),

1850-2021
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Fig. 10 Average Mean Tropical Temperature Anomalies with ICEEMDAN Decomposition (°C), 1850-2021
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Fig. 11 IMF 8, Globally and Regionally (°C), 1850-2021
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Fig. 12 First Derivative of IMF 8, Globally and Regionally (°C), 1850-2021
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