[1] Strand J, Soares-Filho B, Costa MH, Oliveira U, Ribeiro SC, Pires GF, et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat Sustain 2018;1:657–64. https://doi.org/10.1038/s41893-018-0175-0.
[2] Nepstad DC, Stickler CM, Soares-Filho B, Merry F. Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philos Trans R Soc B Biol Sci 2008;363:1737–46. https://doi.org/10.1098/rstb.2007.0036.
[3] Aragão LEOC, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, et al. Environmental change and the carbon balance of Amazonian forests. Biol Rev 2014;89:913–31. https://doi.org/10.1111/brv.12088.
[4] Pereira EJ de AL, de Santana Ribeiro LC, da Silva Freitas LF, de Barros Pereira HB. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 2020;92:104491. https://doi.org/10.1016/j.landusepol.2020.104491.
[5] Artaxo P. Working together for Amazonia. Science (80- ) 2019;363:323. https://doi.org/10.1126/science.aaw6986.
[6] Rajão BR, Soares-filho B, Nunes F, Börner J, Machado L, Assis D, et al. The rotten apples of Brazil’s agribusiness 2020:0–3.
[7] Barona E, Ramankutty N, Hyman G, Coomes OT. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 2010;5:024002. https://doi.org/10.1088/1748-9326/5/2/024002.
[8] Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA. Climate change, deforestation, and the fate of the Amazon. Science (80- ) 2008;319:169–72. https://doi.org/10.1126/science.1146961.
[9] Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, et al. Pervasive transition of the Brazilian land-use system. Nat Clim Chang 2014;4:27–35. https://doi.org/10.1038/nclimate2056.
[10] Reay D, Smith P, van Amstel A. Methane and climate change. Earthscan; 2010.
[11] Steudler P a., Melillo JM, Feigl BJ, Neill C, Piccolo MC, Cerri CC. Consequence of forest-to-pasture conversion on CH 4 fluxes in the Brazilian Amazon Basin. J Geophys Res 1996;101:18547–54. https://doi.org/10.1029/96JD01551.
[12] Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC. Seasonal variation of soil chemical properties and CO 2 and CH 4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma 2002;107:227–41.
[13] Meyer KM, Morris AH, Webster K, Klein AM, Kroeger ME, Meredith LK, et al. Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environ Int 2020;145. https://doi.org/10.1016/j.envint.2020.106131.
[14] Kotsyurbenko OR, Chin KJ, Glagolev M V., Stubner S, Simankova M V., Nozhevnikova AN, et al. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 2004;6:1159–73. https://doi.org/10.1111/j.1462-2920.2004.00634.x.
[15] Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep 2009;1:285–92. https://doi.org/10.1111/j.1758-2229.2009.00038.x.
[16] Aronson EL, Allison SD, Helliker BR. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 2013;4:1–15. https://doi.org/10.3389/fmicb.2013.00225.
[17] McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH4 and N2O fluxes: a global meta-analysis. Ecosystems 2019;22:1424–43. https://doi.org/10.1007/s10021-019-00347-z.
[18] Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 2013;15:2395–417. https://doi.org/10.1111/1462-2920.12149.
[19] Tate KR. Soil methane oxidation and land-use change - from process to mitigation. Soil Biol Biochem 2015;80:260–72. https://doi.org/10.1016/j.soilbio.2014.10.010.
[20] Malyan SK, Bhatia A, Kumar A, Kumar D, Singh R, Kumar SS, et al. Methane production , oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of in fluencing factors. Sci Total Environ 2016;572:874–96. https://doi.org/10.1016/j.scitotenv.2016.07.182.
[21] Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014;24:291–307. https://doi.org/10.1016/S1002-0160(14)60016-3.
[22] Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere 2020;30:25–39. https://doi.org/10.1016/S1002-0160(18)60052-9.
[23] Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019;17:219–32. https://doi.org/10.1038/s41579-018-0136-7.
[24] Söllinger A, Urich T. Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 2019;47:1895–907. https://doi.org/10.1042/BST20180565.
[25] Rospert S, Linder D, Ellermann J, Thauer RK. Two genetically distinct methyl‐coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and ΔH. Eur J Biochem 1990;194:871–7. https://doi.org/10.1111/j.1432-1033.1990.tb19481.x.
[26] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 2015;6. https://doi.org/10.3389/fmicb.2015.01346.
[27] McDonald IR, Bodrossy L, Chen Y, Murrell JC. Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2008;74:1305–15. https://doi.org/10.1128/AEM.02233-07.
[28] Banerjee R, Jones JC, Lipscomb JD. Soluble Methane Monooxygenase. Annu Rev Biochem 2019;88:409–31. https://doi.org/10.1146/annurev-biochem-013118-111529.
[29] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017;15:579–90. https://doi.org/10.1038/nrmicro.2017.87.
[30] Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EDC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 2013;110:988–93. https://doi.org/10.1073/pnas.1220608110.
[31] Mendes LW, de Lima Brossi MJ, Kuramae EE, Tsai SM. Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl Soil Ecol 2015;95:151–60. https://doi.org/http://dx.doi.org/10.1016/j.apsoil.2015.06.005.
[32] Navarrete AA, Taketani RG, Mendes LW, Cannavan F de S, Moreira FM de S, Tsai SM. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils. Rev Bras Ciência Do Solo 2011. https://doi.org/10.1590/S0100-06832011000500007.
[33] de Carvalho TS, da Conceição Jesus E, Barlow J, Gardner TA, Soares IC, Tiedje JM, et al. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 2016;97:2760–71. https://doi.org/10.1002/ecy.1513.
[34] Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 2014;23:2988–99. https://doi.org/10.1111/mec.12786.
[35] Meyer KM, Klein AM, Rodrigues JLM, Nüsslein K, Tringe SG, Mirza BS, et al. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms. Mol Ecol 2017;26:1547–56. https://doi.org/10.1111/mec.14011.
[36] Venturini AM, Dias NMS, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, et al. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environ Res 2022;212:113139. https://doi.org/10.1016/j.envres.2022.113139.
[37] Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, et al. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. ISME J 2020. https://doi.org/10.1038/s41396-020-00804-x.
[38] Oguike PC, Mbagwu JSC. Variations in some physical properties and organic matter content of soils of coastal plain sand under different land use types. World J Agric Sci 2009;5:63–9.
[39] Fiedler S, Vepraskas MJ, Richardson JL. Soil redox potential: importance, field measurements, and observations. Adv Agron 2007;94:1–54. https://doi.org/10.1016/S0065-2113(06)94001-2.
[40] Fonseca De Souza L, Obregon Alvarez D, Domeignoz-Horta LA, Gomes FV, De Souza Almeida C, Merloti LF, et al. Maintaining grass coverage increases methane uptake in Amazonian pasture soils. BioRxiv 2021:2021.04.26.441496.
[41] Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol 2020;4:376–83. https://doi.org/10.1038/s41559-020-1099-4.
[42] Ho A, Mendes LW, Lee HJ, Kaupper T, Mo Y, Poehlein A, et al. Response of a methane-driven interaction network to stressor intensification. FEMS Microbiol Ecol 2020;96. https://doi.org/10.1093/femsec/fiaa180.
[43] Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 2016;7:1–11. https://doi.org/10.3389/fmicb.2016.01285.
[44] Kotsyurbenko OR. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 2005;53:3–13. https://doi.org/10.1016/j.femsec.2004.12.009.
[45] Fowler SJ, Toth CRA, Gieg LM. Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Front Microbiol 2016;7:1–13. https://doi.org/10.3389/fmicb.2016.00562.
[46] Zhang CJ, Pan J, Liu Y, Duan CH, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 2020;8:1–12. https://doi.org/10.1186/s40168-020-00876-z.
[47] Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 2013;22:711–28. https://doi.org/10.1127/0941-2948/2013/0507.
[48] Embrapa. Empresa Brasileira De Pesquisa Agropecuaria-Embrapa Solos. Sistema brasileiro de classificação de solos. 5a edição,. Rio de Janeiro, Brazil: Embrapa soils; 2018.
[49] Feigl B, Cerri C, Piccolo M, Noronha N, Augusti K, Melillo J, et al. Biological survey of a low-productivity pasture in Rondônia state, Brazil. Outlook Agric 2006;35:199–208. https://doi.org/10.5367/000000006778536738.
[50] Ussiri DAN, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res 2009;104:39–47. https://doi.org/10.1016/j.still.2008.11.008.
[51] van Raij B, Andrade JC, Cantarella H, Quaggio JA. Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico de Campinas; 2001.
[52] Teixeira PC, Donagemma GK, Fontana A, Teixeira WG. Manual de métodos de análise de solo. vol. Reporte de. 3a. Brasilia, DF: Embrapa; 2017.
[53] Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, Mandro JA, et al. Robust DNA protocols for tropical soils. Heliyon 2020;6. https://doi.org/10.1016/j.heliyon.2020.e03830.
[54] Meyer F, Paarmann D, Souza MD, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008;9:1–8. https://doi.org/10.1186/1471-2105-9-386.
[55] Cox MP, Peterson DA, Biggs PJ. SolexaQA : At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010;11:1–6.
[56] Gomez-Alvarez V, Teal TK, Schmidt TM. Systematic artifacts in metagenomes from complex microbial communities. ISME J 2009;3:1314–7. https://doi.org/10.1038/ismej.2009.72.
[57] Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N, et al. The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 2012;13:2–5. https://doi.org/www.biomedcentral.com/1471-2105/13/141.
[58] O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, Mcveigh R, et al. Reference sequence (RefSeq) database at NCBI : current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016;44:733–45. https://doi.org/10.1093/nar/gkv1189.
[59] Randle-boggis RJ, Helgason T, Sapp M, Ashton PD. Evaluating techniques for metagenome annotation using simulated sequence data. FEMS Microbiol Ecol 2016;92:1–15. https://doi.org/10.1093/femsec/fiw095.
[60] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:1–12. https://doi.org/genomebiology.com/2010/11/10/R106.
[61] Friedman J, Alm EJ. Inferring Correlation Networks from Genomic Survey Data. PLoS Comput Biol 2012;8:1–11. https://doi.org/10.1371/journal.pcbi.1002687.
[62] R Core Team. R: A language and environment for statistical computing. 2021.
[63] Newman MEJ. The mathematics of networks. New Palgrave Encycl Econ 2008;2:1–12. https://doi.org/10.1093/acprof:oso/9780199206650.003.0006.
[64] Cagua EF, Wootton KL, Stouffer DB. Keystoneness, centrality, and the structural controllability of ecological networks. J Ecol 2019;107:1779–90. https://doi.org/10.1111/1365-2745.13147.
[65] Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 2018;16:567–76. https://doi.org/10.1038/s41579-018-0024-1.
[66] Ruhnau B. Eigenvector-centrality — a node-centrality ? Soc Networks 2000;22:357–65.
[67] Bastian M, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks Gephi : An Open Source Software for Exploring and Manipulating Networks. Proc. third Int. Conf. weblogs Soc. media, ICWSM 2009, San Jose, California, USA, May 17-20, 2009, 2009, p. 4–6. https://doi.org/10.13140/2.1.1341.1520.
[68] Hammer Ø, Harper D, Ryan P. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 2001;4:9.
[69] Aitchison J. The Statistical Analysis of Compositional Data. GBR: Chapman & Hall, Ltd.; 1986.
[70] Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 2018;46:D633–9. https://doi.org/10.1093/nar/gkx935.
[71] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
[72] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995;57:289–300.
[73] Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia 2001;129:271–80. https://doi.org/10.1007/s004420100716.
[74] Legendre P, Oksanen J, ter Braak CJF. Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2011;2:269–77. https://doi.org/10.1111/j.2041-210X.2010.00078.x.
[75] ter Braak C, Šmilauer P. Canoco reference manual and user’s guide: software of ordination (version 5.0). Microcomputer Power (Ithaca, NY. USA) 2012.
[76] Burnham KP, Anderson DR. Model selection and multimodel inference. Ed., 2nd. New York: Springer-Verlag Inc; 2002. https://doi.org/10.1007/b97636.
[77] Pinheiro J, Bates D. nlme: linear and nonlinear mixed effects models 2019.
[78] Barton K. MuMIn: Multi-Model Inference 2019.
[79] Kanehisa M, Goto S. KEGG : Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30.
[80] Verchot L V., Davidson EA, Cattânio JH, Ackerman IL. Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems 2000;3:41–56. https://doi.org/10.1007/s100210000009.
[81] Dunfield PF, Yuryev A, Senin P, Smirnova A V., Stott MB, Hou S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007;450:879–82. https://doi.org/10.1038/nature06411.
[82] Conrad R, Erkel C, Liesack W. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 2006;17:262–7. https://doi.org/10.1016/j.copbio.2006.04.002.
[83] Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 2012;6:847–62. https://doi.org/10.1038/ismej.2011.141.
[84] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220–30. https://doi.org/10.1038/nature11550.
[85] Petersen IA, Meyer KM, Bohannan BJ. Consistent bacterial responses to land use change across the tropics. Front Ecol Evol 2019;7:600924. https://doi.org/10.1101/600924.
[86] De Souza Braz AM, Fernandes AR, Alleoni LRF. Soil attributes after the conversion from forest to pasture in Amazon. L Degrad Dev 2013;24:33–8. https://doi.org/10.1002/ldr.1100.
[87] Fujisaka S, Bell W, Thomas N, Hurtado L, Crawford E. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agric Ecosyst Environ 1996;59:115–30. https://doi.org/10.1016/0167-8809(96)01015-8.
[88] Navarrete AA, Tsai SM, Mendes LW, Faust K, De Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 2015;24:2433–48. https://doi.org/10.1111/mec.13172.
[89] Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species cooccurrence in diverse microbial communities. Proc Natl Acad Sci U S A 2015;112:E7156. https://doi.org/10.1073/pnas.1522642113.
[90] Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 2004;6:111–20. https://doi.org/10.1046/j.1462-2920.2003.00543.x.
[91] Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 2013;4:1–7. https://doi.org/10.1038/ncomms3785.
[92] Karwautz C, Kus G, Stöckl M, Neu TR, Lueders T. Microbial megacities fueled by methane oxidation in a mineral spring cave. ISME J 2018;12:87–100. https://doi.org/10.1038/ismej.2017.146.
[93] Ho A, Lüke C, Reim A, Frenzel P. Selective stimulation in a natural community of methane oxidizing bacteria: Effects of copper on pmoA transcription and activity. Soil Biol Biochem 2013;65:211–6. https://doi.org/10.1016/j.soilbio.2013.05.027.
[94] Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 2009;1:336–46. https://doi.org/10.1111/j.1758-2229.2009.00047.x.
[95] Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN. Methylocella silvestris sp. nov., a novel methonotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 2003;53:1231–9. https://doi.org/10.1099/ijs.0.02481-0.
[96] Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugère JF, Gribaldo S. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 2013;5:1769–80. https://doi.org/10.1093/gbe/evt128.
[97] Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 2016;1:16170. https://doi.org/10.1038/nmicrobiol.2016.170.
[98] Buan NR. Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2018;2:629–46. https://doi.org/10.1042/etls20180031.
[99] Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6:579–91. https://doi.org/10.1038/nrmicro1931.
[100] Feldewert C, Lang K, Brune A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol Lett 2020;367:1–7. https://doi.org/10.1093/femsle/fnaa137.
[101] Navarrete AA, Cannavan FS, Taketani RG, Tsai SM. A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity 2010;2:787–809. https://doi.org/10.3390/d2050787.
[102] Navarrete AA, Soares T, Rossetto R, van Veen JA, Tsai SM, Kuramae EE. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 2015;108:741–52. https://doi.org/10.1007/s10482-015-0530-3.
[103] Ranjan K, Paula FS, Mueller RC, Jesus E da C, Cenciani K, Bohannan BJM, et al. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Front Microbiol 2015;6:1–9. https://doi.org/10.3389/fmicb.2015.00779.
[104] Ghashghavi M, Jetten MSM, Lüke C. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 2017;7:162. https://doi.org/10.1186/s13568-017-0466-2.
[105] Semrau JD, Dispirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev 2010;34:496–531. https://doi.org/10.1111/j.1574-6976.2010.00212.x.
[106] DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 2016;80:387–409. https://doi.org/10.1128/MMBR.00058-15.
[107] Murreil JC, Gilbert B, McDonald IR. Molecular biology and regulation of methane monooxygenase. Arch Microbiol 2000;173:325–32. https://doi.org/10.1007/s002030000158.
[108] Valladares GS, Batistella M, Pereira MG. Alterações ocorridas pelo manejo em latossolo, rondônia, amazônia brasileira. Bragantia 2011;70:631–7. https://doi.org/10.1590/s0006-87052011000300019.
[109] Conrad R, Klose M, Noll M. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 2009;11:1844–53. https://doi.org/10.1111/j.1462-2920.2009.01909.x.