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Abstract 20 

Waddington’s epigenetic landscape is an abstract metaphor frequently used to explain cell fate 21 

decisions. Recent advances in single-cell genomics are altering our understanding of the 22 

Waddington landscape. Yet, the molecular regulations behind remain poorly understood. We 23 

construct a dynamic cell landscape of mouse lineage differentiation at the single-cell level and 24 

thereby reveal both lineage-common and lineage-specific regulatory programs during cell type 25 

maturation. We verify lineage-common regulatory programs that are universal during the 26 

development of invertebrates and vertebrates. In particular, we identify Xbp1 as an 27 

evolutionarily conserved regulator of cell fate determinations across different species. We 28 

demonstrate that Xbp1 transcriptional regulation is important for the stabilization of the genetic 29 

network for a wide range of cell types. Our results offer genetic and molecular insights into the 30 

gene regulatory programs systematically and provide resources to advance the understanding 31 

of the cell fate decisions. 32 

 33 

Introduction 34 

The high reproducibility of the developmental process for multicellular organisms suggests a 35 

dedicated regulatory program that governs the trajectories of cell fate decisions
1–3

. According 36 

to Waddington’s epigenetic landscape theory, various cell types arise from an unstable 37 

stem/progenitor state and eventually fall into stable cell fate attractors
4
. The emerging concept 38 

of the state manifold derived from single cell data further enhanced our understanding of 39 

lineage progression
5,6

. What are the gene regulatory programs behind the state manifolds? How 40 

are they regulated? These are two central questions puzzling the field. 41 

Transcription factors (TF) and gene regulatory networks (GRNs) are known to govern cell 42 

fate decisions
7
. GATA1/PU.1 system makes the binary choice in the process of hematopoietic 43 

differentiation
8
. MyoD system has critical roles in myogenic cell-lineage specification during 44 

development and trans-differentiation
9
. Oct4-Cdx2 makes the decisions between inner cell 45 

mass and trophectoderm cells
10

. These studies clarify the importance of lineage-specific 46 

transcriptional regulations in different systems. However, the focused analyses on specific 47 

regulatory network modules can’t show the complete topological structures of a genome scale 48 

high-dimensional GRNs. 49 

With breakthroughs in single-cell RNA sequencing (scRNA-seq), single-cell atlases of 50 

various developmental stages have been profiled at the organismal level
11–16

. Single-cell 51 

datasets offer unprecedented opportunities to systematically unravel the nature of cell fate 52 

regulatory programs
17,18

. A systematic and global view of multi-lineage, multi-species cell fate 53 

gene regulatory modules may help us to understand the lineage specification and maturation. 54 

In this study, we determined the molecular content of lineage-common and lineage-specific 55 

regulatory programs through multilineage and cross-species analysis. We constructed a time-56 

series mouse cell differentiation atlas (MCDA) to reveal the gene regulatory networks that 57 

govern cell fate decisions (Fig. 1a). We characterized a general feature of decreased entropy 58 

with less complexity in most lineages along with development. Through cross-species analysis, 59 

we summarized conserved features of cellular differentiation, one of which was that ribosomal 60 

genes are universally expressed at high levels in stem/progenitor cells. Importantly, we verified 61 

Xbp1 as a lineage-common master regulator that was involved in core fate-determining circuits. 62 



 63 

Results 64 

Construction of Mouse Cell Differentiation Atlas. 65 

We performed single-cell transcriptomic analysis on mice at seven life stages ranging from 66 

the early embryonic stage to the mature adult stage: embryonic day (E) 10.5, E12.5, E14.5, 67 

postnatal day (P) 0, P10, P21, and adult. Altogether, we profiled more than 520,000 single cells 68 

(Fig. 1b and Supplementary Table 1-3). The profiled organs, including the brain, heart, 69 

intestine, kidneys, liver, lungs, pancreas, stomach, testes, and uterus, spanned diverse systems. 70 

Previously published E14.5 and adult data
11,14

, represented approximately 30% of the cells in 71 

the entire dataset. Systemic mouse single-cell atlases of P0, P10, and P21 have not been 72 

depicted thus far. We projected all single cells on a t-distributed stochastic neighbor embedding 73 

(t-SNE) plot and obtained 95 transcriptionally distinct cell populations (Fig. 1c and 74 

Supplementary Table 4). Clusters that were composed of multiple tissues included immune 75 

cells (C9, C16, C18 C25, C29, C34), stromal cells (C13, C20, C22, C26, C28), muscle cells 76 

(C31), and endothelial cells (C8), while epithelial cells differed across tissues and formed 77 

separate clusters (C17, C19, C39) (Extended Data Fig. 1a-c, and Supplementary Table 5). 78 

Moreover, the clusters were arranged in chronological order, showing projections from fetal 79 

progenitors toward adult mature cell types (Fig. 1d). Analysis of differentially expressed genes 80 

in neighboring stages for each tissue showed that the critical period of tissue maturity varied 81 

among different stages. The transition from the E14.5 to P0 stage led to dramatic changes 82 

during development (Extended Data Fig. 1d). Changes from P0 to P10 were dominated by 83 

energy metabolism on account of the different energy sources
19

, while changes from P10 to 84 

adulthood focused on pathways of response, transport, and metabolism (Extended Data Fig. 1e 85 

and Supplementary Table 6). We observe lots of distinct clusters from P0 and P10 samples, 86 

indicating continuing cellular transitions after birth. Together, these data represent, to our 87 

knowledge, the systematic single-cell atlas of the complete mouse lineage differentiation from 88 

development to maturation. We also provide an interactive website http://bis.zju.edu.cn/MCA/ 89 

to enable public access to the data. 90 

 91 

Cellular changes during the mouse development. 92 

The tissue effect gave rise to 31.9% of the global variance, which is much more than variance 93 

from the stage and sex effects (Extended Data Fig. 1f, g). We studied dynamic changes in the 94 

kidneys as a representative. After analyzing kidney samples from the E10.5 to adult stages, we 95 

defined 30 clusters with canonical markers
20,21

 that included stromal cells, nephron epithelial 96 

cells, fenestrated endothelial cells, and immune cells (Fig. 2a, Extended Data Fig. 1h, and 97 

Supplementary Table 7). Cells from diverse developmental stages of nephrogenesis were well 98 

captured in our single-cell data, with ureteric bud (UB) cells (Ret+, Gata3+), nephron 99 

progenitors cells (NPCs, Cited1+, Gdnf+, Six2+), proximal s-shaped body (SSB) cells (Lsp1+, 100 

Tmem100+), distal SSB cells (Lhx1+), podocytes (Podos, Podxl+), five types of proximal 101 

tubule (PT) cells, ascending and descending loop of Henle (ALOH and DLOH) cells, 102 

connecting nephron tubule (CNT) cells, distal collecting tubule (DCT) cells, two subsets of 103 

intercalated cells (ICs), and principal cells (PCs). Notably, UB cells and NPCs included cells 104 



at the P0 stage, while distal and proximal SSB cells included cells at the P10 stage (Fig. 2b). 105 

This result indicated that nephrogenesis continued postnatally instead of being completed 106 

before birth in the mice. Moreover, the maturation of renal function continues until the adult 107 

stage with gradual physiological changes (Extended Data Fig. 1i). 108 

We then performed cross-tissue single-cell analysis at different stage (Extended Data Fig. 2, 109 

Extended Data Fig. 3, and Supplementary Table 8-59) and uncovered 37 uncommon cell 110 

populations with interesting gene expression patterns with regard to mouse development 111 

(Supplementary Table 60). For example, several cell types were found for co-expressing 112 

markers of two cell types. We identified cells that co-expressed makers of myocytes (Myl9, 113 

Acta2) and endothelial cells (Esam, Gng11) in both brain and intestine at the P0 stage (Fig. 2c, 114 

d). The co-immunofluorescence of Myl9 and Esam further confirmed the scRNA-seq results 115 

(Fig. 2e, f). Myoendothelial cells may be endowed with multilineage potential like human 116 

myoendothelial cells as reported
22

. In the P10 lung, we verified a special club cell type 117 

(Scgb1a1, Scgb3a1) expressing goblet cell markers (Tff2, Muc5b) which may be an 118 

intermediate cell type during airway epithelial differentiation (Extended Data Fig. 4a, b). In 119 

addition, some tissue-specific markers showed ectopic expression in other tissues. For example, 120 

we discovered hepatocyte-like cells (Afp, Alb) in the pancreas at the both P0 and P10 stages, 121 

and immunofluorescence assays confirmed their existence (Extended Data Fig. 4c, d). They 122 

displayed different expression patterns from liver hepatocytes, and showed high expression of 123 

early hepatic stem or progenitor marker Hnf4a
23,24

 (Extended Data Fig. 4e, f). Together, 124 

progenitor pools with co-expression or ectopic expression patterns may be widely present in 125 

developing organs, suggesting the stochasticity of the mammalian state manifolds. 126 

 127 

Characterization of regulatory programs in MCDA. 128 

High-resolution MCDA offers a powerful resource for studying the molecular content of 129 

manifold attractors through various lineages. To reveal organism-wide characteristics, we 130 

applied different potency models based on entropy to qualify the state manifold landscape
25–29

. 131 

Entropy decreased continuously along with organ maturation in the most assayed lineages 132 

using different computational methods (Fig. 3a, b and Extended Data Fig. 5a-d), revealing a 133 

decrease in transcriptional plasticity and an increase in transcriptional stability. Cell type 134 

maturation appears to be an event associated with more singular transcriptomes and biological 135 

processes. 136 

Cell types represent high- dimensional attractor states of gene regulatory networks 137 

(GRNs)
30

. Transcription factors (TFs) function as important regulators in GRNs to specify cell 138 

types and differentiation patterns
31

. To identify critical TFs of cell identity, we took the 139 

advantages of both data-driven (SCENIC)
32

 and database-derived (VIPER-DOROTHEA)
33

 140 

methods to estimate the activities of TFs. We achieved over 75% sensitivity based on single-141 

cell datasets (Extended Data Fig. 5e). Over 900 TFs were identified with confidence levels 142 

ranging from A (high confidence) to C (low confidence) (Supplementary Table 61). 143 

Aggregated heatmaps were constructed to display the specific and common relationships of the 144 

TFs and their enriched lineages during development (Fig. 3c and Extended Data Fig. 5f). The 145 

neural lineage was characterized by Dlx1, Pou3f3, and Sox10. The Cebpa and interferon 146 

regulatory transcription factor (IRF) genes marked the immune lineage, while the endothelial 147 



lineage exhibited prominent Sox17 and Sox18 expression. Strikingly, hierarchical clustering 148 

analysis showed two modules of lineage-sharing TFs (modules 14 and module 15) that were 149 

enriched in adult tissues and fetal tissues respectively (Fig. 3c and Extended Data Fig. 5g). 150 

Enrichment and occupancy of Hox and zinc-finger families in fetal tissues have previously 151 

been associated with embryonic development
34,35

. The ubiquitous expression cluster in adult 152 

tissues was shared for a wide range of lineages, with extensive representation of Xbp1, genes 153 

of activator protein-1 (AP-1) family, and other molecules. Only 78/268 TFs in this adult 154 

multilineage cluster were housekeeping genes
36

 (Extended Data Fig. 5h). Jun and Fos gene 155 

families can dimerize and form AP-1, which has been reported to act as regulators in the 156 

differentiation of various cell types
37,38

. In addition, AP-1 family members have been recently 157 

suggested to act as central guardians of somatic cell fate
39,40

. These highlighted the important 158 

roles of AP-1 family members in cell type differentiation and cell identity maintenance. 159 

Moreover, these TFs exhibited increasingly upregulated gene expression levels during lineage 160 

maturation (Extended Data Fig. 5i), which coincided with decreased entropy in most lineages 161 

(Fig. 3a, b and Extended Data Fig. 5a-d). Together, we suspect that these lineage-common TFs 162 

function as vital common regulators during cell-type maturation in mouse. 163 

Global features during cell fate decisions across species. 164 

Given that the suite of regulatory genes that control development is ancient
41

, we wondered 165 

whether GRNs are conserved in invertebrates and vertebrates. We decided to investigate the 166 

lineage-specific and lineage-common regulatory elements during evolution. First, we 167 

performed a comparative analysis of gene regulation during development in seven species with 168 

varying evolutionary distances at single-cell resolution. Development atlases of four 169 

invertebrates and three vertebrates were involved, including Schmidtea mediterranea
12

, 170 

Caenorhabditis elegan
15

, Ciona intestinalis
16

, Hydra vulgaris
13

, Danio rerio
42

, Mus musculus
11

, 171 

and Homo sapiens
14

. More than 1,100,000 cells were collected and categorized into 665 cell 172 

type pairs for relatively differentiated states and undifferentiated states (Extended Data Fig. 6a 173 

and Supplementary Table 62). Partition-based graph abstraction (PAGA)
43

 was applied to map 174 

cell types along the developmental branch for invertebrates (Extended Data Fig. 6b-d). For 175 

vertebrates, to minimize the impact of tissue effects, we connected cell states of the same tissue 176 

across time based on gene expression similarity
44

, and cell hierarchies of the human lung were 177 

shown as an example (Extended Data Fig. 6e). 178 

To explore the common changes in cross-species development, we performed entropy 179 

analysis and found that entropy decreased in all seven species along with development, which 180 

suggested that the increase in transcriptional stability was evolutionarily conserved (Fig. 4a-f 181 

and Extended Data Fig. 7a, b). For the molecular changes, we performed differential gene 182 

expression analysis between corresponding cell types pairs and mapped homologous genes to 183 

the most advanced human gene symbols to find commonly regulated genes in multiple species 184 

(Extended Data Fig. 7c, d, and Supplementary Table 63-64). For all species, the numbers of 185 

conserved downregulated genes were greater than those of conserved upregulated genes, which 186 

suggests that stem/progenitors have more convergent expression patterns than differentiated 187 

cell types
45

 (Extended Data Fig. 7e). Both commonly downregulated and upregulated genes (in 188 

at least three species) tended to have more protein-protein interactions (PPIs) than other genes, 189 

which indicated that the common regulators were evolutionarily older
46

 (Extended Data Fig. 190 

7f, g). The genes downregulated during development were enriched with ribosomal protein 191 



genes, mitochondrial ribosomal protein genes, and small nuclear ribonucleoprotein genes (Fig. 192 

4g, Extended Data Fig. 7h, and Supplementary Table 65). Notably, Myc and Mycn, as 193 

regulators of ribosome biogenesis
47,48

, showed high activity scores in the early stages of mouse 194 

development (Fig. 4h). They were classified in the common (fetal) module (Supplementary 195 

Table 61). These findings were highly consistent with recent studies, which reported that 196 

ribosomal protein genes are specific network hubs as robust markers of differentiation 197 

potency
6,49

. In our cross-species entropy analysis, the conserved driving genes in more potent 198 

cells were also enriched in ribosomal biogenesis
50

 (Fig. 4i). Suppression patterns of ribosomal 199 

protein genes are also discovered in the differentiation of zebrafish hematopoiesis
51,52

. 200 

Ribosomal protein genes appear to be a conserved feature of stemness; they are downregulated 201 

during cell-type differentiation. On the other hand, the upregulated genes were highly enriched 202 

for immunity pathways (Extended Data Fig. 7i, j, and Supplementary Table 66), which was 203 

consistent with recent reports on human and mouse adult tissues
14,53

. Together, we present a 204 

catalog of common features during lineage development from invertebrates to vertebrates. 205 

 206 

Gene regulation networks of cell fate decisions across species. 207 

To search for lineage-specific regulators among different species, we systematically aligned 208 

cell lineage homologs from each species across massive evolutionary distances. Two strategies 209 

were used and compared with high thresholds to infer the reliable and plausible matches. 47/60 210 

cell lineages from seven species were characterized into eight meta-lineages (Extended Data 211 

Fig. 8a). The UMAP embedding based on pseudo-bulk cells per species proved the rationality 212 

of meta-lineages (Extended Data Fig. 8b, c). Then, the specificity of TFs was characterized 213 

with the modified regulon specific scores per species
54,55

. Lineage-specific TFs displayed 214 

sequence similarity within the meta-lineage across species (Extended Data Fig. 8d-j). 215 

Vertebrates tended to have more conserved species-specific TFs than invertebrates. 216 

For lineage-common regulators among different species, we found that several commonly 217 

upregulated TFs exhibited remarkable convergence, including XBP1, JUND, FOSB, JUN, 218 

BHLHE40, and others (Fig. 5a), consistent with the enriched TFs in various adult mouse tissues 219 

(Fig. 3c, Supplementary Table 61). These TFs also displayed strong negative correlations with 220 

TFs that were enriched in lineage-specific progenitor cells (GATA1, PAX6, NKX6-2, 221 

NEUROD1, SOX10, OLIGO2) in the Human Cell Landscape (HCL) (Fig. 5b, Supplementary 222 

Table 67-68). We suspect that these TFs may function as evolutionarily conserved regulators 223 

to guide multilineage cells to differentiation and maturity. We found that only one TF, Xbp1, 224 

stands out in all seven species (Fig. 5a and Extended Data Fig. 7d). Therefore, we attempt to 225 

unravel the role of Xbp1 in cell type maturation. Previous work has emphasized functions of 226 

the basic helix-loop-helix (bHLH) transcription factor Xbp1 for cell differentiation in various 227 

cell types including secretory cells
56

, plasma cells
57

, T cells
58

, neurons
59

, hepatocytes
60

, etc. As 228 

a putative common regulator, Xbp1 showed an upregulated expression pattern in most lineages 229 

of MCDA (Fig. 5c). We further dissected its regulatory role from a global perspective and 230 

found that stem regulators such as SOX4, SON, and HES1 are the most negatively correlated 231 

with XBP1 in the HCL (Fig. 5d). In addition, the XBP1 binding motif in hematopoietic 232 

progenitors and neural progenitors was less accessible than their corresponding mature cell 233 



types in the single-cell assay for transposase accessible chromatin using sequencing (scATAC-234 

seq) data of the mouse and human
61–63

 (Fig. 5e, f). 235 

 236 

Xbp1 as a common regulator in multi-lineage progression. 237 

To dissect the mechanistic roles of the potential lineage-common regulators Xbp1, we used 238 

CRISPR/Cas9 to disrupt the Xbp1 locus in mice (Fig. 6a, Extended Data Fig. 9a, b and 239 

Supplementary Table 69). As most Xbp1
-/-

 embryos died at E13.5, we applied scRNA-seq to 240 

analyze embryos at E12.5 from Xbp1
+/-

 heterozygous crosses before massive embryonic 241 

lethality
60

 (Fig. 6b, c, Extended Data Fig. 9c and Supplementary Table 70). We found that 242 

increased cell groups after Xbp1 disruption are all related with progenitor and immature cells 243 

(e.g., fetal mesenchymal progenitors, early primitive erythroid progenitor, muscle progenitors, 244 

radial glia, oligodendrocyte progenitors, and immature neurons) (Extended Data Fig. 9d). In 245 

addition, when compared to wild-type cells, Xbp1
-/-

 cells displayed higher entropy in a broad 246 

range of lineages which may lead to the eventual failure of cell type maturation (Fig. 6d and 247 

Extended Data Fig. 9e, f). Then we performed differential expression analysis and observed 248 

that a group of ribosomal protein genes (e.g., Rps3a1 and Rps7) were specifically upregulated 249 

in Xbp1
-/-

 cells. Moreover, progenitor markers such as Sox4, Id2, Son, and the imprinted gene 250 

H19 were enriched in Xbp1
-/-

 cells. The lineage-common regulators Fosb and Jun were 251 

downregulated in Xbp1
-/-

 cells (Fig. 6e, Supplementary Table 71). Thus, disruption of Xbp1 252 

caused mouse embryos to acquire a more stem-cell-like state. 253 

To characterize the loss of function changes at protein levels, we performed liquid 254 

chromatography-mass spectrometry (LC-MS) proteomic analysis on both WT and KO 255 

embryos (Supplementary Table 72). Xbp1
-/-

 embryos exhibited higher expression level of 256 

pluripotency-related proteins such as Lin28a, Lin28b
64

, Pcgf6
65

, and Jarid2
66

 and lower 257 

expression level of cell type-specific proteins such as Snca in neural cells, Clu in stromal cells, 258 

Afp in hepatocytes, C1qb in macrophages, and Blvrb in erythroid cells (Fig. 6f and Extended 259 

Data Fig. 10a). In addition, canonical Xbp1 targets related to the unfolded protein response 260 

(UPR)
67–69

 displayed no significant changes at the protein level (Extended Data Fig. 10b). 261 

Furthermore, Xbp1 disruption in mouse embryonic stem cells did not alter stem cell culture and 262 

pluripotent gene expression, indicating that Xbp1 transcriptional regulation of lineage decision 263 

is not downstream of UPR (Extended Data Fig. 10c, d, and Supplementary Table 73).  264 

We applied VarID
70

 to qualify lineage-determining factor changes in scRNA-seq datasets. 265 

These significantly variable TFs in Xbp1
-/-

 samples displayed an Xbp1 binding motif in both 266 

scATAC-seq and chromatin immunoprecipitation sequencing (ChIP-seq) data (Fig. 6g and 267 

Supplementary Table 74). Our results indicate a direct role of Xbp1 in lineage maturation via 268 

transcriptional regulation, during which Xbp1 functions through a noncanonical mechanism 269 

that is independent of the UPR. 270 

 271 

Discussion 272 

Overall, our comprehensive atlas of mouse cell differentiation and maturation offers a powerful 273 

resource for investigating cell fate decisions. We characterize a general feature of decreased 274 



entropy in most lineages along with development. Our analysis of gene network dynamics 275 

reveals both lineage-common and lineage-specific regulators that contribute to cell fate 276 

decisions. The proposal and definition of lineage-common regulators further refine a new 277 

functional classification of gene regulatory programs. We highlight that Xbp1 is a critical and 278 

conserved transcriptional regulator of cell-type attractors in many lineages. A comprehensive 279 

and high-resolution analysis of the phenotype of Xbp1 knockout was carried out in mouse 280 

embryonic development at the multi-omics level. However, the regulatory mechanisms of 281 

lineage-common regulators still require further research and functional validation on other 282 

systems such as in vitro differentiation, de-differentiation, and trans-differentiation. 283 

Tissue development and maturation atlases may provide global views of cell fate decision 284 

process. Using our atlas data, we verified novel cell types with co-expression and ectopic 285 

expression patterns during mouse development. We hypothesize that early transitional cell 286 

types may serve as a pool of tissue-specific progenitors to widely support the normal 287 

progression of functional tissue formation. We also observe cell types that can’t be annotated 288 

with existing knowledge. Lots of these unknown populations are seen in the neonatal mice. 289 

They need to be verified and explored in the future. By integrating developmental atlases across 290 

species, we illustrate common characteristics at varying evolutionary distances during 291 

development. We characterize a general feature of decreased entropy in most lineages along 292 

with development across species. Entropy is a concise, independent, and robust measurement 293 

for differentiation potential and we further associated it with ribosomal protein gene expression 294 

in evolutionarily distant species.  295 

We identify Xbp1 as a representative lineage-common regulator. We then used whole 296 

embryo scRNA-seq analysis to investigate the role of Xbp1 across different lineages and cell 297 

types. The strategy provides a systematic insight into the gene function at organism level. 298 

Similar strategies can be applied to a series of knockout embryos for the dissection of a 299 

functional GRN during the development. It would also be interesting to compare quantitative 300 

gene function across different model systems.  301 

In this study, we propose a systematic view of the cross-species state manifold landscape. 302 

Cells gradually progress from a stem/progenitor state towards specific cell fates with decreased 303 

entropy. During the process, there is an explosion of GRN diversity following lineage-specific 304 

differentiation. Importantly, we identify examples of common GRNs as conserved regulators 305 

of cell fate stabilization (Fig. 6h). In conclusion, the interpretation of our cell differentiation 306 

atlases leads to new understandings of cell fate decisions and the cellular state manifolds. 307 
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Figure 334 

 335 

Figure 1. Single-cell transcriptional atlas of mouse differentiation. 336 

a, Overview of the experimental and bioinformatics analysis workflow. b, A total of 10 organs 337 

were analyzed at 7 different time points. The bar plot shows the number of sequenced cells per 338 

organ prepared by Microwell-seq. c, t-SNE visualization of 520,801 single cells from the 339 

Mouse Cell Differentiation Atlas, colored by cluster identity. d, t-SNE visualization of 520,801 340 

single cells from different developmental stages of mice, colored by stages. Fig. 1b, d share the 341 

share the same color legend of stages. 342 

 343 



 344 

Figure 2. Cellular heterogeneity in mouse tissues. 345 

a, UMAP visualization of 57,118 single cells in the kidneys at 7 different time points, colored 346 

by cluster identity. b, Dot plot visualization of representative markers expression in each cell 347 



type in the kidney single-cell data. The size of the dot encodes the percentage of cells within 348 

the cell type, and the color encodes the average expression level. Heatmap showing the cell 349 

number of corresponding cell types at each time point. c, d, Feature plots in the t-SNE map of 350 

P0 intestine (c, n = 9,265 cells) and P0 brain (d, n = 9,101 cells). Cells are colored according 351 

to the expression of the indicated marker genes or two genes. The red boxes magnify the co-352 

expressed cell types in the tissues. e, f, Immunofluorescence assay for the cells that co-353 

expressed makers of myocytes (Myl9) and endothelial cells (Esam) in both intestine (e) and 354 

brain (f) at the P0 stage. The blue marks the cell nucleus using DAPI. The red boxes indicate 355 

the co-expressed locations. The experiment was replicated three times with similar results. 356 

Scale bar, 20 µm. 357 

 358 

 359 

Figure 3. Analysis of regulatory programs in MCDA. 360 

a, Entropy measurement of MCDA using the CCAT method in different development stages 361 

(n = 520,801 cells). P-values are from a two-sided Wilcoxon rank sum test comparing entropies 362 

of two different development stages (ns: no significance, p-value > 0.05, * p-value <= 0.05, ** 363 

p-value <= 0.01, *** p-value <= 0.001, **** p-value <= 0.0001). The exact p values were 364 



displayed in the Source Data. Box plots: center line, median; boxes, first and third quartiles of 365 

the distribution; whiskers, highest and lowest data points within 1.5 × IQR. The same statistical 366 

analysis was performed for Fig. 3a, b. b, Entropy measurement of each lineage in MCDA using 367 

the CCAT method in different development stages (epithelial: n = 116,436 cells, neuron: n = 368 

41,342 cells, immune: n = 75,433 cells, muscle n = 17,909 cells, stromal: n = 106,955 cells, 369 

endothelial: n = 23,243 cells, other: n = 30,575 cells, erythroid: n = 41,683 cells, proliferating: 370 

n = 16,567 cells, secretory: n= 15,161 cells, germline: n = 35,497 cells). c, Heatmap of 371 

aggregated module activities of TFs clustered by fuzzy c-means showing variations by stage 372 

and lineage from SCENIC. Representative TFs of each lineage in MCDA are listed. Blue marks 373 

the TFs in collection A (high confidence) and green (medium confidence) marks the TFs in 374 

collection B.  375 

 376 



 377 

Figure 4. Global characteristics of the cell differentiation across species. 378 

a-f, Entropy measurement of cells in H. sapiens (a, n = 85,181 cells), D. rerio (b, n= 76,838 379 

cells), C. intestinalis (c, n = 90,579 cells), C. elegans (d, n=61,810 cells), S. mediterranea (e, 380 

n = 21,612 cells) and H. vulgaris (f, n = 25,052 cells) using the CCAT methods. The color 381 

represents the stage. P-values are from a two-sided Wilcoxon rank sum test comparing 382 

entropies of two different development stages (ns: no significance, p-value > 0.05, * p-value 383 

<= 0.05, ** p-value <= 0.01, *** p-value <= 0.001, **** p-value <= 0.0001). The exact p 384 

values were displayed in the Source Data. Box plots: center line, median; boxes, first and third 385 



quartiles of the distribution; whiskers, highest and lowest data points within 1.5 × IQR. g, 386 

Heatmap showing the cell type frequencies of commonly downregulated ribosomal protein 387 

genes, mitochondrial ribosomal proteins, and small nuclear ribonucleoprotein genes in at least 388 

four species. More genes are included in the Supplementary Table 64. h, Heatmap showing the 389 

activity scores of Mycn and Myc in different stages and lineages in MCDA. i, Gene enrichment 390 

analysis of the driving genes in CCAT method. The top 30 enriched biological processes were 391 

displayed. Red marks the GO terms related to the ribosome biogenesis. 392 

  393 



 394 

Figure 5. Inference of gene regulation during cell fate decisions across species. 395 

a, Heatmap showing the cell type frequencies of commonly upregulated TFs in 7 species. b, 396 

Regulator network showing the top 20 most negatively relevant TFs in the HCL for the 397 

commonly upregulated TFs in Fig. 5a, (Pearson correlation p-value <=0.05). c, Scatter plot 398 

showing aggregated Xbp1 expression patterns in MCDA per lineage. Lines were estimated 399 

through linear regression and the 95% confidence interval is shown in blue with the mean value 400 

in grey points. d, Heatmap showing the top 10 TFs most correlated with XBP1 in the HCL. e-401 

f, Box plot showing the z scores of Xbp1 motif enrichment in neural cell types and hemopoietic 402 

cell types in the human (e) and mouse (f) in scATAC-seq data (Human neural cell types: n = 403 



22,075 cells, Human hemopoietic cell types: n = 16,133 cells, mouse interneurons: n = 5,134 404 

cells, mouse granule cells: n = 25,155 cells, mouse GABAergic neurons: n = 2,041 cells, mouse 405 

hemopoietic cell types: n = 24,125 cells). P-values are from a two-sided Wilcoxon rank sum 406 

test comparing the Xbp1 enrichment score between the progenitor cell types (the first box) and 407 

other cell types (ns: no significance, p-value > 0.05, * p-value <= 0.05, ** p-value <= 0.01, 408 

*** p-value <= 0.001, **** p-value <= 0.0001). The exact p values were displayed in the 409 

Source Data. Box plots: center line, median; boxes, first and third quartiles of the distribution; 410 

whiskers, highest and lowest data points within 1.5 × IQR. 411 



 412 



Figure 6. scRNA-seq and high-resolution MS revealed gene and protein changes in 413 

Xbp1
-/-

 embryos. 414 

a, Overview of the CRISPR/Cas9 experiment. Xbp1
-/-

 and wild-type embryos at E12.5 were 415 

prepared and processed by Microwell-seq and liquid chromatography-mass spectrometry (LC-416 

MS). b, c, UMAP visualization of 93,246 single cells from Xbp1
-/-

 and wild-type embryos at 417 

E12.5, colored by cluster identity (b) and genotype (c) (KO: n =49, 498, WT: n =43,748). d, 418 

Entropy measurement of each cluster in Xbp1
-/-

 and wild-type embryos using the CCAT 419 

method (n = 93,246 cells). The color represents the genotype. P-values are from a two-sided 420 

Wilcoxon rank sum test comparing entropies of two groups with different genotypes from the 421 

same cluster (ns: no significance, p-value > 0.05, * p-value <= 0.05, ** p-value <= 0.01, *** 422 

p-value <= 0.001, **** p-value <= 0.0001). The exact p values were displayed in the Source 423 

Data. Box plots: center line, median; boxes, first and third quartiles of the distribution; whiskers, 424 

highest and lowest data points within 1.5 × IQR. e, Dot plot showing representative 425 

differentially expressed genes (ribosomal protein genes, progenitor marker genes, and lineage-426 

common regulators) of each cluster in KO and WT cells. f, Bar plot showing representative 427 

protein expression levels (for pluripotency-related proteins and cell type-specific proteins) 428 

between Xbp1
-/-

 and wild-type mice (KO: n = 3, WT: n = 3, mean ± s.d.). A two-sided t-test 429 

was performed to determine the statistical significance. The illustrative genes were manually 430 

selected from the full heatmap, which is shown in Extended Data Figure. 10a. g, Heatmap 431 

showing significantly variable TFs in Xbp1
-/-

 samples. Green and purple indicate the chromatin 432 

accessibility of the Xbp1 binding motif as determined by scATAC-seq and ChIP-seq, 433 

respectively. The Xbp1 binding motif of the mouse was from CisBP database. Representative 434 

TFs are marked and were manually selected from Supplementary Table 74. h, Schematic of 435 

cross-species state manifold landscape. 436 

 437 
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 575 

Methods 576 

Mouse experiments to supplement the MCDA database 577 

Wild-type C57BL/6J mice were ordered from Shanghai Laboratory Animal Center (SLAC, 578 

Shanghai). All mice were housed at Zhejiang University Laboratory Animal Center in a 579 

specific pathogen-free (SPF) facility with individually ventilated cages. The room had a 580 

controlled temperature (20-22 °C), humidity (30-70%), and light program (12 h light-dark 581 

cycle). The mice were provided ad libitum access to a regular rodent chow diet. 582 

To obtain embryonic samples (E10.5 embryos, E12.5 embryos), C57BL/6 mice were mated. 583 

Noon on the day the vaginal plug was visible was considered to be E0.5. Sex was not 584 

determined before tissue pooling due to the small sample sizes for E10.5, E12.5, and P0 585 

samples (except for the gonads). Embryos were collected from at least three independent litters 586 

per development stage. For P10 and P21 samples, testes were collected from male mice, and 587 

all the other tissues were collected from female mice. 588 



All experiments performed in this study were approved by the Animal Ethics Committee of 589 

Zhejiang University. All experiments conformed to the relevant regulatory standards at 590 

Zhejiang University Laboratory Animal Center. 591 

 592 

Generation of Xbp1 knockout mESC and mouse models 593 

SgRNAs targeting exon 2 of Xbp1 were designed using the Zhang laboratory CRISPR design 594 

website tool (http://crispr.mit.edu/). Oligonucleotides were synthesized and then cloned into an 595 

epiCRISPR/Cas9 vector
71

. The vector was extracted using an EndoFree Mini Plasmid Kit II 596 

(4992422, Tiangen Biotech) following the manual. Approximately 4×10
5
 E14 mouse 597 

embryonic stem cells were transfected with 2 µg of the vector with Lipofectamine 3000 598 

(L3000001, Life Technologies) based on an online protocol. At days 2-10, cells were selected 599 

with puromycin (0.5-1.0 µg/ml). Then, single cells were reseeded in a 6-well plate and cultured 600 

in mESC mediums for 7-10 days. Individual colonies were picked and genotyped. The gRNA 601 

target sites and oligonucleotides used in this study can be found in Supplementary Table 73. 602 

Xbp1 knockout C57BL/6J mice were generated by Nanjing Gempharmatech. Mice were 603 

genotyped by PCR using genomic tail DNA. To obtain live knockout embryos at E12.5 for 604 

scRNA-seq, we used a Scientific™ Phire ™ Animal Tissue Direct PCR Kit (F140WH, Thermo) 605 

to genotype embryos quickly. All primers used for knockout and genotyping are listed in 606 

Supplementary Table 69. 607 

 608 

Immunofluorescent staining 609 

Fresh mouse tissues were frozen in disposable molds containing OCT. Frozen sections were 610 

cut at 10 µm in CryoStar NX50 (Thermo), mounted on microscope slides and stored at -80 °C. 611 

Before staining, the sections were thawed for 20 min and 4% formaldehyde in PBS was added 612 

to cover the sections. Tissues were fixed for 15 min at room temperature. After fixation, 613 

sections were washed three times with PBS. Cells were permeabilized by covering the sections 614 

with 0.1% Triton X-100 in PBS for 10 min. Then, the sections were washed three times with 615 

PBS and blocked with 3% BSA in PBS for 1 h at room temperature. Primary antibodies (anti-616 

ESAM (1:50, MA5-24072; Thermo), anti-Myl9 (1:400, ab187152; Abcam), anti-Scgb1a1 617 

(1:50, MAB4218-SP; R&D), anti-tff2 (1:200, 13681-1-AP; ProteinTech), anti-AFP (1:200, 618 

AF5134; Affinity)) diluted in blocking solution were added to cover the sections. The slides 619 

were placed in a wet box and incubated overnight at 4 °C. Relevant AlexaFluor488/594-620 

conjugated secondary antibodies (1:1,000, A-21208, A-21206 and A-11037, Thermo) were 621 

used for labeling. The slides were then washed three times with blocking solution and stained 622 

with DAPI. Glass coverslips were then attached to the slides using mounting mediums. 623 

Immunofluorescence images were obtained using Olympus VS200. 624 

 625 

Western blot 626 

The mouse embryos were solubilized in RIPA lysis buffer (20mg/200ul, P0013D, Beyotime). 627 

The mixture was lysed using a homogenizer for 5 min on ice. Tissue lysates were then cleared 628 

by centrifugation at 14, 000g for 10 min at 4 °C. Equal amounts of total protein were used for 629 

experimental and control. Samples were fractionated by SDS-PAGE and transferred to 630 

polyvinylidene-fluoride (PVDF) membrane. After blocking with 5% milk in TBST for 1 h at 631 

room temperature, the membranes were probed with the corresponding primary and secondary 632 

antibodies. Primary antibodies (anti-Xbp1 (1:1000, ab37152; Abcam), anti-β-tubulin (1:3000, 633 



EM0103; HUABIO)) and secondary antibodies (anti-mouse IgG (1:5000, HS201-01; 634 

TransGen Biotech), anti-rabbit IgG (1:5000, GAR007; Multi Science)) diluted in TBST were 635 

used. 636 

 637 

Cell preparation 638 

Mouse tissues were minced into pieces of ~1 mm on ice using scissors. The tissue pieces were 639 

transferred to a 15 ml centrifuge tube, rinsed twice with cold DPBS, and suspended in 5 ml of 640 

a solution containing dissociation enzymes. The samples were treated with various enzymes 641 

for different amounts of time (Supplementary Table 3). During dissociation, the tissue pieces 642 

were pipetted up and down gently several times until no tissue fragments were visible. The 643 

dissociated cells were centrifuged at 300×g for 5 min at 4 °C and then resuspended in 3 ml of 644 

cold DPBS. After passage through a 40-µm strainer (Biologix), the cells were washed twice, 645 

centrifuged at 300×g for 5 min at 4 °C, and resuspended at a density of 1×10
5
 cells/ml in cold 646 

DPBS containing 2 mM EDTA.  647 

 648 

Single-cell RNA-sequencing 649 

Single-cell cDNA libraries were prepared using the Microwell-seq. Briefly, cells were loaded 650 

on the microwell plate and extra cells were washed away using ice-cold PBS gently. Then bead 651 

suspension (sequences listed in Supplementary Table 2) was loaded on the plate and extra 652 

beads were washed away on a magnet. The plate was covered using cold lysis buffer (0.1 M 653 

Tris-HCl pH 7.5, 0.5 M LiCl, 1% SDS, 10 mM EDTA, and 5 mM dithiothreitol) and incubated 654 

on ice for 12 min. Then, beads were collected and washed using 6× SSC and 50 mM Tris-HCl 655 

pH 8.0. After washing, beads were resuspended in RT mix and incubated at 42°C for 90 min. 656 

After RT, beads were washed in TE-TW and 10 mM Tris-HCl pH 8.0. Beads were resuspended 657 

in exonuclease I mix and incubated at 37°C for 30 min. Then, beads were washed in TE-SDS, 658 

TE-TW, and 10 mM Tris-HCl pH 8.0. Beads were resuspended in PCR mix with TSO primer 659 

to amplify the cDNA. After PCR, beads were removed and cDNA products were purified using 660 

0.8 X VAHTS DNA Clean Beads (N411-01, Vazyme). A more detailed version of the 661 

Microwell-seq protocol is available in Han et al
14

. Then, the purified cDNA libraries were 662 

fragmented using a customized transposase that carries two identical insertion sequences. The 663 

customized transposase was included in the TruePrep Homo-N7 DNA Library Prep Kit for 664 

Illumina (TD513, Vazyme) or TruePrep Homo-N7 DNA Library Prep Kit for MGI (L-665 

N7E461L0, Vazyme). The fragmentation reaction was performed according to the instructions 666 

provided by the manufacturer. We used customed P5 primer (listed in Supplementary Table 2) 667 

and VAHTS RNA Adapters set 3-set 6 for Illumina (N809/N810/N811/N812, Vazyme) or our 668 

MGI P7 primers (N8XX, listed in Supplementary Table 2) to specifically amplify fragments 669 

that contain the 3’ ends of transcripts. Other fragments will form self-loops, impeding their 670 

binding to PCR primers. The PCR program was as follows: 72°C for 3 min; 98°C for 1 min; 671 

five cycles of 98°C for 15 s, 60°C for 30 s, and 72°C for 3 min; 72°C for 5 min; and a 4°C hold. 672 

The PCR product was purified using 0.9X VAHTS DNA Clean beads (N411-01, Vazyme). 673 

Then, a 25 µL PCR mix (1×HiFi HotStart Readymix and 0.2 µM 2100 primer) was added to 674 

each sample. The PCR program was as follows: 95°C for 3 min; five cycles of 98°C for 20 s, 675 

60°C for 15 s, and 72°C for 15 s; 72°C for 3 min; and a 4°C hold. To eliminate primer dimers 676 

and large fragments, 0.55-0.15X VAHTS DNA Clean beads were then used to purify the cDNA 677 

library. The size distribution of the products was analyzed on an Agilent 2100 bioanalyzer, and 678 



a peak in the 400 to 700 bp range was observed. Finally, the samples were subjected to 679 

sequencing on the Illumina HiSeq (data for MDCA) or MGI DNBSEQ-T7 (data for Xbp1 680 

knockout experiment). For MGI sequencing, we applied the protocol provided by VAHTS 681 

Circularization Kit for MGI (NM201-01, Vazyme) to obtain single-stranded circular cDNA 682 

available for DNB (DNA Nanoball) generation. We also replaced the official R1 sequencing 683 

primers with our custom R1 sequencing primers A&B (listed in Supplementary Table 2) to 684 

ensure the completion of the sequencing.  685 

 686 

Processing of Microwell-seq data 687 

Microwell-seq data sets were processed as described
11

. Reads were aligned to the 688 

Mus_musculus. GRCm38.88 genome using STAR
72

 (v2.5.2a). The DGE data matrices were 689 

obtained using the Drop-seq core computational protocol (available at website 690 

http://mccarrolllab.org/dropseq/) with the default parameters. For quality control, we filtered 691 

out cells with detection of fewer than 500 transcripts. Cells with a high proportion of transcript 692 

counts (>20%) derived from mitochondria-encoded genes were also excluded. Cells were also 693 

corrected for RNA contamination and background-removed DGE data were constructed
14

. The 694 

SCANPY
73

 (v1.6.0) python package and Seurat
74

 (v3.2.2) R package were used to load the 695 

cell-gene count matrix and perform downstream analysis. 696 

 697 

Clustering of the single-cell data matrix 698 

For clustering of the complete mouse tissue dataset (520,801 cells), qualified cells were 699 

processed using SCANPY in a Python environment. Background-removed DGE data for cells 700 

analyzed in each tissue and genes expressed in at least 20 cells were used as inputs
14

. Then, 701 

DGE data were ln(CPM/100 + 1) transformed. We selected approximately 3,000 highly 702 

variable genes according to their average expression and dispersion. We then regressed out 703 

UMI and gene numbers and scaled each gene to unit variance and the values beyond a standard 704 

deviation of 10 were clipped. For the mouse tissue dataset, we chose PCs for PCA according 705 

to elbow plots, and 50 PCs were used to create a neighborhood graph for the cells. We then 706 

used Leiden clustering to cluster with resolution = 8 and k = 25. Marker genes were calculated 707 

by the Wilcoxon rank-sum test (two-sided) and p-value adjustment was performed using 708 

benjamini-hochberg correction. For visualization, t-distributed stochastic neighbor embedding 709 

(t-SNE) was used. 710 

For kidney data, bbknn
75

 (v1.4.0) was performed by using ridge regression to remove batch 711 

effects. For clustering of single tissues, the Seurat pipeline was used with the default parameters 712 

for fewer cells. Cell type and lineage information of each cell type were manually annotated 713 

according to the marker genes reported in the previous paper
11

. A hierarchical tree of the 714 

MCDA was computed using the correlations of average gene expression of 95 clusters with 715 

highly variable genes. 716 

 717 

Estimation of the variance of the MCDA 718 

To estimate the variance in the data depending on age, tissue, or sex, we first aggregated the 719 

gene expression for each tissue at multiple time points. Using the above metadata as input, we 720 

performed principal variance component analysis (PVCA) using R Package pvca (v1.26.0, 721 

https://www.bioconductor.org/packages/release/bioc/html/pvca.html/) with the default 722 

parameters. It leverages the strengths of two popular data analysis methods: principal 723 



components analysis and variance components analysis, and integrates them into a novel 724 

algorithm. And it uses the eigenvalues associated with their corresponding eigenvectors as 725 

weights, to quantify the magnitude of each source of variability. All factors as well as their 726 

interaction terms are treated as random effects in the mixed model for variance component 727 

estimation. It fits a linear mix-effects model to data. Items like “tissue and gender” are 728 

variances explained by interactions of two factors instead of the union of two factors.  729 

 730 

Inference of the TFs for MCDA 731 

As a proof of principle, we applied experimental verified tissue-specific TFs from literature
76

 732 

as the golden standard. We included both tissue-restricted TFs and not uniformed expressed 733 

TFs in different tissues as tissue-specific TFs. For datasets used, we selected high-quality cells 734 

with more than 800 gene numbers as single-cell datasets, and also aggregated every 20 single 735 

cells in each cell type to produce pseudo cells to enrich our choices of input datasets. We 736 

compared SCENIC
32

 (v0.10.0) and VIPER-DOROTHEA
33

 (viper v1.28.0 and dorothea v1.6.0) 737 

for inferring specific TFs in the tissues. The DOROTHEA database provided TFs from 738 

different types of evidence with a different confidence. We used ABCDE (1,113 TFs) 739 

categories of DOROTHEA TFs in our comparison. Regulon specificity scores (RSS)
54

 were 740 

calculated to represent TF specificity in the tissue for both VIPER-DOROTHEA and SCENIC. 741 

Then we employed the youden index (sensitivity + specificity - 1) to find the best performance 742 

of VIPER-DOROTHEA and SCENIC in classifying tissue-specific TFs both in sensitivity and 743 

specificity. These TFs were compared with the golden standard lists in four aspects: sensitivity, 744 

specificity, FPR (false positive rate), and PRAUC (Area Under the Precision-Recall Curve). 745 

To define regulatory programs in MCDA, SCENIC and VIPER-DOROTHEA were applied 746 

firstly to infer the gene regulatory network with default parameters using high-quality single 747 

cells with more than 800 genes. For VIPER-DOROTHEA, ABCDE (1113 TFs) categories of 748 

DOROTHEA TFs were used. Secondly, z-scaled RSS scores for VIPER-DOROTHEA and 749 

SCENIC in each stage-lineage were calculated as TF-by-lineage matrix. Then, fuzzy c-means 750 

clustering was performed on the TF-by-lineage matrix calculated by SCENIC and VIPER-751 

DOROTHEA, resulting in a TF-by-module “membership matrix” and a lineage-by-module 752 

“centers matrix”. The “centers matrix” with 15 modules was used to generate the heatmap. We 753 

defined a threshold membership score (threshold = 0.2) in which TFs were assigned to a 754 

module. With the fuzzy c-means heatmap, we identified which modules/TFs were lineage-755 

specific and which were lineage-sharing. We assigned TFs into specific lineages according to 756 

the aggregated patterns of modules manually and the resulting TFs were classified into three 757 

collections with high to low confidence: collection A consisted of TFs from both methods, 758 

collection B were TFs only from SCENIC, and collection C were TFs only from VIPER-759 

DOROTHEA (Supplementary Table 61). 760 

 761 

Analysis of time-related genes during cell type maturation 762 

Early organ formation in mice begins at E10.5, and cells undergo the differentiation to reach 763 

maturity during development
77

. Thus, we identified time-related genes that showed up-764 

regulation patterns at the expression levels during the developmental processes by using the 765 

Spearman rank correlation analysis for different lineages in each tissue
78

. Spearman rank 766 

correlation coefficient which has low requirements on data distribution and a high tolerance 767 

for outliers can directly reflect the monotonous relationship between variables, so we adopted 768 



it. We treated the 7-stage information (E10.5Day, E12.5Day, E14.5Day, P0, P10, P21, and 769 

Adult) as the vectors labeled (1, 2, 3, 4, 5, 6, and 7), and then calculated the correlation between 770 

the gene expression levels across 7 development stages and the vectors for each stage. The 771 

larger the absolute value of the correlation coefficient is, the stronger the monotonicity of the 772 

gene expression level and time points is. The TFs with the Spearman rank correlation 773 

coefficient >= 0.8 in at least four lineages in five tissues with a p-value <= 0.05 were retained 774 

as the common time-upregulated TFs during lineage maturation.  775 

 776 

Single-cell entropy analysis 777 

Single-cell entropy estimation was performed using three methods: CCAT
29

 (SCENT v1.0.2), 778 

SLICE
27

 (v0.99.0), and StemID
26

 (RaceID v0.2.2). To obtain the best performance, 779 

normalization was dependent on the computational methods. For CCAT, it is an approximation 780 

of network entropy. We applied CCAT to compute the correlations with the connectome and 781 

transcriptome based on the ‘net13Jun12.m’ PPI. We performed CCAT analysis by using a 782 

weighted matrix to leverage all the homology genes between human and other species. The 783 

weighted matrix was obtained by converting the gene homology relationship (one-to-one, one-784 

to-many, many-to-one, and many-to-many) into a binary matrix and normalized it to one 785 

human gene. In StemID, it estimates the Shannon entropy of a cell’s transcriptome directly 786 

based on the expression of each gene. We used StemID to infer entropies with default 787 

parameters. For SLICE, it established a kappa matrix of Gene Ontology annotations of the 788 

human or mouse to evaluate the probability distribution of the functional activation of each 789 

cell. SLICE was performed a deterministic calculation of scEntropy of individual cells over the 790 

Gene Ontology (GO) cluster activation profile with iter = 50. Cells were downsampled to 2,000 791 

per tissue per stage to cut the calculation burden of SLICE and StemID. In summary, CCAT 792 

calculates the entropy-related values from the perspective of the network entropy of the gene 793 

interaction network. SLICE and StemID calculate the entropy values by using the activation of 794 

the gene pathway and the gene expression as probabilistic events, respectively. Although the 795 

principles of the three methods are different, their central idea is to coupled entropy with 796 

developmental potential. They evaluate biological systems using physical concepts and reflect 797 

the physical properties of biological systems. 798 

 799 

Construction of a cell type hierarchy across species and gene regulation analysis 800 

For invertebrates, to infer the topological relations of cell type development, we first 801 

constructed a PAGA graph
43

 per lineage. We processed the data following the steps suggested 802 

by SCANPY, including total count normalization, log1p transformation, highly variable gene 803 

extraction, potential regression of confounding factors of genes and counts, scaling to z-scores, 804 

and PCA. Then, we computed a neighborhood graph among data points and used UMAP for 805 

topologically faithful embedding with min_dist = 0.1. Then, PAGA was performed with iter = 806 

1,000. The cell type tree layout was based on a minimum spanning tree fitted to edges weighted 807 

by inverse connectivity. Edges in an abstracted graph with a probability higher than 0.0005 808 

were considered as possible connections of cell-type hierarchies. For S. mediterranea, cell-type 809 

hierarchies were obtained from the consolidated lineage tree which was provided in paper
12

 810 

and for C. intestinalis, lineage and stage information were directly from the paper
16

. For 811 

complex vertebrates, we connected cell states across time according to gene expression 812 

similarity
44

. For each tissue, we asked each adult cluster to ‘vote’ on its most likely ancestor 813 



cluster from the fetal stage. To eliminate the influence of cell number, we randomly sampled 814 

150 cells to embed them into the PCA space learned from the second time point only and kept 815 

nontrivial PCs as defined above. Then, in this embedding, for each cluster in the late time point, 816 

the cluster identities of the 5 nearest neighbors of each constituent cell from the previous time 817 

point were determined using a Euclidean distance metric. The percentages of votes cast for 818 

each possible ancestor were calculated, and the maximum frequencies of votes (20%-100%) of 819 

the cells in the cell group decided the ancestor group. For zebrafish datasets, we integrated the 820 

data using Seurat (v4.0.1) anchors integration functions to do the batch correction before the 821 

PCA analysis. Sankey plots were generated using the networkD3 822 

(https://christophergandrud.github.io/networkD3/) R package. For atlas projects across species, 823 

we performed the same DGE analysis for cells in each tissue-cell type/lineage-cell type 824 

separately according to the cell type hierarchy using FindMarkers function in Seurat (v4.0.1). 825 

Wilcoxon rank sum test was performed to determine the statistical significance and benjamini-826 

hochberg correction was used for the p-value adjustment. The top commonly differentially 827 

expressed genes (20%-100% of total cell types pairs, mean 60%-94% lineages, p-adj < 0.1, 828 

log2FC >= 0.25, min_pct >= 0.1) were estimated according to the frequency of differential 829 

expression in all unstable-to-stable cell-type pairs across species. To match the two time points 830 

(fetal and adult) of humans, only the E14.5 and adult stages of mice and 24-hpf and 3-month 831 

stages of zebrafish were considered for cross-species analysis. Genes that display consistent 832 

patterns in at least three species were defined as commonly upregulated and downregulated 833 

genes. Genes with either “up” or “down” regulated were excluded in the analysis.  834 

The top 20 most negative TFs of the upregulated TFs were determined by Pearson 835 

correlations based on single-cell datasets and visualized by Cytoscape (v 3.5.0)
79

. 836 

 837 

Collection and prediction of orthologous genes and TFs 838 

For Homo sapiens, Mus musculus, Danio rerio, and C. elegans, orthologous pairs were 839 

obtained from Ensembl v96 by BioMarkt. The transcriptome of S. mediterranea was 840 

downloaded from the PlanMine database
80

 (S. mediterranea, dd_Smed_v6). The transcriptome 841 

of H. vulgaris was downloaded from the website 842 

https://research.nhgri.nih.gov/hydra/download/?dl=tr. The transcriptome of C. intestinalis was 843 

downloaded from http://ghost.zool.kyoto-u.ac.jp/download_kh.html. Then, the protein-coding 844 

sequence (CDS) was predicted by TransDecoder
81

 (v5.3.0) with the default parameters. 845 

Orthologous pairs were predicted by OrthoFinder
82

 (v2.2.6) with CDS files as the input. Here, 846 

we considered only one-to-one orthologous pairs with humans for commonly regulated genes. 847 

As for species-specific TFs, TFs of Homo sapiens, Mus musculus, Danio rerio, C. elegans were 848 

downloaded from AnimalTFDB 3.0 database
83

. Other species-specific TFs except H. vulgaris 849 

were obtained from the paper
55

. Genes from H. vulgaris were obtained with Swiss-Prot IDs of 850 

best hits. Thus, the TFs of H. vulgaris were defined by the genes annotated with the GO terms 851 

downloaded from the uniport website: DNA-binding transcription factor activity or 852 

transcription factor binding. Those Swiss-Prot IDs of best hits were also checked for TFs from 853 

AnimalTFDB 3.0 and used as a supplement to TFs. 854 

 855 

 856 

Lineage-specific TFs analysis across species 857 



We applied two methods to calculate the lineage evolution relationship across species with the 858 

pseudo cell as inputs (aggregated every 20 cells from each cell type): SAMap
84

 (v0.3.0) and 859 

MetaNeighbor
85

 (pyMN v0.1.0). SAMap enables mapping single-cell transcriptomes between 860 

phylogenetically remote species based on the expression similarity while MetaNeighbor has 861 

high replicability in cell type matching using homologous weighted gene matrices. For SAMap, 862 

it constructs a gene-gene bipartite graph with cross-species edges connecting homologous gene 863 

pairs, weighted by protein sequence similarity. For MetaNeighbor, we constructed weighted 864 

matrices to leverage all the homology genes between humans and other species. The weighted 865 

matrices were obtained by converting the gene homology relationship (one-to-one, one-to-866 

many, many-to-one, and many-to-many) into a binary matrix and normalized it to one human 867 

gene each. Lineage pairs with high confidence thresholds (alignment scores with > 0.5 in 868 

SAMap and Mean_AUROC > 0.8 in MetaNeighbor) were considered as highly reliable and 869 

biological plausible matches from different aspects. The combined projection of seven species 870 

was obtained from the function “SAMAP.scatter” from SAMap. The specificity of TFs was 871 

characterized using modified regulon specificity scores in SCENIC with TF expression count 872 

matrices as input
54,55

. We then calculated the Z-score normalized TF specificity score to predict 873 

the essential TFs in each lineage. Development-related lineage-specific TFs were intersected 874 

with upregulated genes across species. The sequence similarity score was determined by NCBI 875 

BLAST with transcriptome or proteome data as inputs. An E-value threshold of 1e-6 was set. 876 

It was also integrated into SAMap. 877 

 878 

Pathway enrichment analysis 879 

We used clusterProfiler
86

 (v3.14.3) to perform Gene Ontology biological pathway enrichment 880 

analysis and orthologous genes were taken as the universe. Hypergeometric test was performed 881 

to identify significant go terms and benjamini-hochberg correction was used to adjust p values. 882 

We considered biological pathways with p adjusted values smaller than 0.05. We used 883 

REVIGO
87

 to visualize the enrichment results. For Extended Data Fig. 1e, we used 884 

clusterProfiler to perform Gene Ontology biological pathway enrichment analysis for DEGs at 885 

neighboring stages. We considered biological pathways with p-adj <= 0.01. For each stage, the 886 

enrichment terms as determined by clusterProfiler were used to manually combine into 13 887 

‘super terms’ for biological processes. For Extended Data Fig. 1i, GO enrichment analysis was 888 

first computed using the DEGs of the kidneys. Then, the enrichment scores of the terms were 889 

calculated and aggregated for each stage using AUCell
32

. 890 

 891 

PPI analysis 892 

We downloaded the PPI resource of human genes from STRING
88

 (v11). Experimentally 893 

validated interactions from humans and transferred by homology from other species were used 894 

for the analysis. Then, we compared the log10 values of PPI number of four groups, the 895 

upregulated genes in at least three species, downregulated genes in at least three species, other 896 

conserved genes in at least three species, and all other genes in the PPI resource. We also 897 

downloaded the gene functional assignments from the eggNOG database (v5.0) and used the 898 

mammals’ non-supervised orthologous groups (maNOG) to assign genes into 26 categories
89

. 899 

The 26 gene categories were arranged by their average number of PPI in ascending orders. 900 

Statistical analyses were done with R package ggpubr (v0.4.0, 901 



https://rpkgs.datanovia.com/ggpubr/) for the two-tailed Wilcoxon rank sum test to determine 902 

the statistical significance of the differences between two groups. 903 

 904 

Analysis of the CCAT driving gene across species 905 

CCAT directly measures the correlation between transcriptome and connectome and therefore 906 

will be positive if the majority of network hubs are overexpressed in more potent cells
29

. Thus, 907 

we used the number of adjacent edges to evaluate the degree of each gene in the PPI network 908 

and the top 20% of genes are regarded as network hubs. We intersected them with the 909 

commonly downregulated genes we found in the manuscript (highly expressed in 910 

undifferentiated cells, Supplementary Table 64) in each species as CCAT driving genes in more 911 

potent cells. Genes that appeared in at least five species were regarded as conserved CCAT 912 

driving genes. We performed gene enrichment analysis using clusterProfiler on those 913 

conserved CCAT driving genes. The biological processes related to ribosome biogenesis were 914 

marked red according to the previous paper
50

. 915 

 916 

Analysis of Xbp1 expression pattern in MCDA 917 

Given the low detection rate of transcriptional factors in the single-cell experiment, we chose 918 

the high-quality cells with more than 800 genes and calculated the average expression of Xbp1 919 

by normalized to a group of stably expressed gene sets generated from scMerge R package 920 

(v1.2.0, https://bioconductor.org/packages/release/bioc/html/scMerge.html). We used linear 921 

regression to measure the expression trend of Xbp1 with a 95% confidence interval.  922 

 923 

Cell type composition analysis 924 

Significant differences in cell-type composition between groups were assessed using a 925 

propeller test from the speckle R package (v0.0.1, https://github.com/Oshlack/speckle/). We 926 

considered groups with FDR <= 0.01 to represent significantly changed cell types. 927 

 928 

Gene expression variability analysis 929 

To detect sensitive changes in weakly expressed genes, we calculated the gene expression 930 

variability using VarID
70

 (RaceID, v0.2.2). We ran VarID with regNB=FALSE, k=10 for the 931 

pruning step, no_cores=10, and default parameters otherwise. 932 

 933 

Analysis of global proteomics data 934 

Liquid chromatography mass spectrometry (LC-MS) proteomic analysis was carried out by 935 

PTM Bio
90

. Briefly, mouse embryos were ground into powder in liquid nitrogen and suspended 936 

in an ice-cold lysis buffer with 1% Triton X-100 and 1% protease inhibitor based on occasional 937 

sonication. The cell lysates were centrifuged at 12,000 g at 4°C for 15 min. The supernatants 938 

were collected and the protein concentration was measured. Proteins were precipitated using 939 

20% trichloroacetic acid for 2 h at 4°C and then centrifuged at 4,500g for 5 min. The precipitate 940 

was washed three times with cold acetone. The dried protein pellets were resuspended within 941 

200 mM tetraethylammonium bromide (TEAB) based on occasional sonication and then 942 

digested with trypsin overnight. Dithiothreitol (DTT) was added to a final concentration of 5 943 

mM and the supernatants were incubated at 56°C for 30 min. Iodoacetamide (IAA) was added 944 

to a final concentration of 11 mM and the supernatants were incubated in the dark for 15 min. 945 

Peptides were separated using NanoElute and analyzed using timsTOF Pro. The resulting 946 



MS/MS data were processed using the MaxQuant search engine (v.1.5.2.8, 947 

https://www.maxquant.org/) and mapped to the Mus_musculus_10090 database. The FDR was 948 

adjusted to < 1%, and the minimum score for modified peptides was set to > 40. Trypsin/P was 949 

defined as the cleavage enzyme, and up to two missing cleavages were allowed. For proteomic 950 

analysis, the first search range was set to 5 ppm for precursor ions, and the main search range 951 

was set to 5 ppm and 0.02 Da for fragment ions. Carbamidomethylation of cysteines was 952 

defined as the fixed modification, and oxidation on methionine was defined as the variable 953 

modification. The quantification method used was LFQ, the FDR was adjusted to < 1%, and 954 

the minimum score for modified peptides was > 40. 955 

 956 

scATAC-seq and ChIP-seq data analysis 957 

We used the ChromVAR
91

 (v1.12.0) to calculate the accessibility of the Xbp1 motif in 958 

scATAC-seq datasets to compare the Xbp1 motif enrichment between differentiated states and 959 

undifferentiated states both in the human and mouse. The mouse scATAC-seq data was 960 

downloaded from two papers
61,61

 and human scATAC-seq data from another paper
63

. The motif 961 

PWM was downloaded from the CisBP database (http://cisbp.ccbr.utoronto.ca/). For better 962 

visualization, we arranged the cells according to their differentiated states. This comparison 963 

was restricted with the cell-type annotations provided. As shown, the Xbp1 motif was less 964 

opened in undifferentiated cells in both human and mouse tissues in neuron cell types and 965 

hemopoietic cell types. ChIP-seq data for Xbp1 were downloaded from previous 966 

studies
58,69,92,93

. The target genes were binarized and integrated for visualization. 967 

 968 

Data Availability 969 

The data generated in this study can be downloaded from the National Center for 970 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) under accession 971 

numbers GSE176063 and GSE178217. We also provide an interactive website 972 

(http://bis.zju.edu.cn/MCA/) to enable public access to the MCDA data.  973 

The following publicly available datasets were used in the study: Mus_musculus. 974 

GRCm38.88 genome, Mus_musculus_10090 database, AnimalTFDB 3.0 database, STRING 975 

database (v11), eggNOG database (v5.0), Ensembl v96; the Schmidtea mediterranea dataset 976 

generated by Plass et al. (GSE103633), the Caenorhabditis elegan dataset generated by Packer 977 

et al. (GSE126954.); the Ciona intestinalis dataset generated by Cao et al, (GSE131155); the 978 

Hydra vulgaris dataset generated by Siebert et al. (GSE121617); the Danio rerio dataset 979 

generated by Li et al. (GSE178151); the Homo sapiens dataset generated by Han et al. 980 

(GSE134355), and part of Mus musculus dataset (E14.5 and adult) generated by Han et al. 981 

(GSE108097 and GSE134355). The mouse scATAC-seq dataset generated by Cusanovich et 982 

al (https://atlas.gs.washington.edu/mouse-atac/data/) and Di Bella et al. (GSE153164), and the 983 

human scATAC-seq dataset generated by Domcke et al. (descartes.brotmanbaty.org).  984 

 985 

Code Availability 986 

Detailed code is available at GitHub (https://github.com/ggjlab/MCDA/) and Zenodo 987 

(https://zenodo.org/record/6423564#.Yk-YgShBw2w) (ref.
94

). 988 



 989 

Statistics & Reproducibility 990 

No statistical methods used to predetermine sample size. 520,801 single cells were analyzed in 991 

total for a time-series mouse cell differentiation atlas construction. A total of 52 mouse tissues 992 

from different development stages were analyzed. 2-4 replications were done for different 993 

tissues. The results of major cell type clusters are reproducible. Experimental mice and 994 

embryos were randomized before sample preparation. Different single cells were randomly 995 

captured before analysis. For all experiments, investigators were blinded to group allocation 996 

during the data collection and analysis. All related statistical methods and sample size are 997 

described in the figure legends and the Method section. 998 
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