[1] J. Alonso, M. Petukhova, G. Vilagut, S. Chatterji, S. Heeringa, T.B. Üstün, A.O. Alhamzawi, M.C. Viana, M. Angermeyer, E. Bromet, R. Bruffaerts, G. de Girolamo, S. Florescu, O. Gureje, J.M. Haro, H. Hinkov, C.Y. Hu, E.G. Karam, V. Kovess, D. Levinson, M.E. Medina-Mora, Y. Nakamura, J. Ormel, J. Posada-Villa, R. Sagar, K.M. Scott, A. Tsang, D.R. Williams, R.C. Kessler, Days out of role due to common physical and mental conditions: results from the WHO World Mental Health surveys, Mol. Psychiatry, 16 (2011) 1234-46.
[2] G.E. Simon, Social and economic burden of mood disorders, Biol. Psychiatry, 54 (2003) 208-15.
[3] M. Pompili, X. Gonda, G. Serafini, M. Innamorati, L. Sher, M. Amore, Z. Rihmer, P. Girardi, Epidemiology of suicide in bipolar disorders: a systematic review of the literature., 2013, pp. 457-490.
[4] L. Plans, C. Barrot, E. Nieto, J. Rios, T.G. Schulze, S. Papiol, M. Mitjans, E. Vieta, A. Benabarre, Association between completed suicide and bipolar disorder: A systematic review of the literature., 2019, pp. 111-122.
[5] G.S. Malhi, T. Outhred, P. Das, G. Morris, A. Hamilton, Z. Mannie, Modeling suicide in bipolar disorders., 2018, pp. 334-348.
[6] C. Hansson, E. Joas, E. Pålsson, K. Hawton, B. Runeson, M. Landén, Risk factors for suicide in bipolar disorder: a cohort study of 12 850 patients., 2018, pp. 456-463.
[7] L.L. Pendergast, E.A. Youngstrom, K.G. Merkitch, K.A. Moore, C.L. Black, L.Y. Abramson, L.B. Alloy, Differentiating bipolar disorder from unipolar depression and ADHD: the utility of the general behavior inventory., 2014, pp. 195-206.
[8] R.M. Hirschfeld, L. Lewis, L.A. Vornik, Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder, J Clin Psychiatry, 64 (2003) 161-74.
[9] J. Ashburner, K.J. Friston, Voxel-based morphometry--the methods, NEUROIMAGE, 11 (2000) 805-21.
[10] Y. Zang, T. Jiang, Y. Lu, Y. He, L. Tian, Regional homogeneity approach to fMRI data analysis, NEUROIMAGE, 22 (2004) 394-400.
[11] Q.Z. Wu, D.M. Li, W.H. Kuang, T.J. Zhang, S. Lui, X.Q. Huang, R.C. Chan, G.J. Kemp, Q.Y. Gong, Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI, HUM BRAIN MAPP, 32 (2011) 1290-9.
[12] C.M. Adler, A.D. Levine, M.P. DelBello, S.M. Strakowski, Changes in gray matter volume in patients with bipolar disorder, Biol. Psychiatry, 58 (2005) 151-7.
[13] A. Sarıçiçek, N. Yalın, C. Hıdıroğlu, B. Çavuşoğlu, C. Taş, D. Ceylan, N. Zorlu, E. Ada, Z. Tunca, A. Özerdem, Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives, J Affect Disord, 186 (2015) 110-8.
[14] A.C. Stanfield, T.W.J. Moorhead, D.E. Job, J. McKirdy, J.E.D. Sussmann, J. Hall, S. Giles, E.C. Johnstone, S.M. Lawrie, A.M. McIntosh, Structural abnormalities of ventrolateral and orbitofrontal cortex in patients with familial bipolar disorder., 2009, pp. 135-144.
[15] M. Haldane, G. Cunningham, C. Androutsos, S. Frangou, Structural brain correlates of response inhibition in Bipolar Disorder I, J. Psychopharmacol. (Oxford), 22 (2008) 138-43.
[16] C.M. Adler, M.P. DelBello, K. Jarvis, A. Levine, J. Adams, S.M. Strakowski, Voxel-based study of structural changes in first-episode patients with bipolar disorder., 2007, pp. 776-781.
[17] Z. Chen, L. Cui, M. Li, L. Jiang, W. Deng, X. Ma, Q. Wang, C. Huang, Y. Wang, D.A. Collier, Q. Gong, T. Li, Voxel based morphometric and diffusion tensor imaging analysis in male bipolar patients with first-episode mania, Prog. Neuropsychopharmacol. Biol. Psychiatry, 36 (2012) 231-8.
[18] L. Cui, M. Li, W. Deng, W. Guo, X. Ma, C. Huang, L. Jiang, Y. Wang, D.A. Collier, Q. Gong, T. Li, Overlapping clusters of gray matter deficits in paranoid schizophrenia and psychotic bipolar mania with family history, NEUROSCI LETT, 489 (2011) 94-8.
[19] J.R. Almeida, D. Akkal, S. Hassel, M.J. Travis, L. Banihashemi, N. Kerr, D.J. Kupfer, M.L. Phillips, Reduced gray matter volume in ventral prefrontal cortex but not amygdala in bipolar disorder: significant effects of gender and trait anxiety, Psychiatry Res, 171 (2009) 54-68.
[20] Y. Cai, J. Liu, L. Zhang, M. Liao, Y. Zhang, L. Wang, H. Peng, Z. He, Z. Li, W. Li, S. Lu, Y. Ding, L. Li, Grey matter volume abnormalities in patients with bipolar I depressive disorder and unipolar depressive disorder: a voxel-based morphometry study, NEUROSCI BULL, 31 (2015) 4-12.
[21] G.G. Brown, J.S. Lee, I.A. Strigo, M.P. Caligiuri, M.J. Meloy, J. Lohr, Voxel-based morphometry of patients with schizophrenia or bipolar I disorder: a matched control study, Psychiatry Res, 194 (2011) 149-56.
[22] H. Tost, M. Ruf, C. Schmäl, T.G. Schulze, C. Knorr, C. Vollmert, K. Bösshenz, G. Ende, A. Meyer-Lindenberg, F.A. Henn, M. Rietschel, Prefrontal-temporal gray matter deficits in bipolar disorder patients with persecutory delusions, J Affect Disord, 120 (2010) 54-61.
[23] L.N. Yatham, I.K. Lyoo, P. Liddle, P.F. Renshaw, D. Wan, R.W. Lam, J. Hwang, A magnetic resonance imaging study of mood stabilizer- and neuroleptic-naïve first-episode mania, BIPOLAR DISORD, 9 (2007) 693-7.
[24] S. Haller, A. Xekardaki, C. Delaloye, A. Canuto, K.O. Lövblad, G. Gold, P. Giannakopoulos, Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder, J Psychiatry Neurosci, 36 (2011) 391-401.
[25] F. Wang, J.H. Kalmar, F.Y. Womer, E.E. Edmiston, L.G. Chepenik, R. Chen, L. Spencer, H.P. Blumberg, Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder, BRAIN, 134 (2011) 2005-12.
[26] K. Narita, M. Suda, Y. Takei, Y. Aoyama, T. Majima, M. Kameyama, H. Kosaka, M. Amanuma, M. Fukuda, M. Mikuni, Volume reduction of ventromedial prefrontal cortex in bipolar II patients with rapid cycling: a voxel-based morphometric study, Prog. Neuropsychopharmacol. Biol. Psychiatry, 35 (2011) 439-45.
[27] S. Frangou, Brain structural and functional correlates of resilience to Bipolar Disorder., 2011, pp. 184.
[28] X. Yao, Z. Yin, F. Liu, S. Wei, Y. Zhou, X. Jiang, Y. Wei, K. Xu, F. Wang, Y. Tang, Shared and distinct regional homogeneity changes in bipolar and unipolar depression, NEUROSCI LETT, 673 (2018) 28-32.
[29] C.H. Liu, X. Ma, F. Li, Y.J. Wang, C.L. Tie, S.F. Li, T.L. Chen, T.T. Fan, Y. Zhang, J. Dong, L. Yao, X. Wu, C.Y. Wang, Regional homogeneity within the default mode network in bipolar depression: a resting-state functional magnetic resonance imaging study, PLOS ONE, 7 (2012) e48181.
[30] M.J. Liang, Q. Zhou, K.R. Yang, X.L. Yang, J. Fang, W.L. Chen, Z. Huang, Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI, PLOS ONE, 8 (2013) e79999.
[31] W. Gao, Q. Jiao, S. Lu, Y. Zhong, R. Qi, D. Lu, Q. Xiao, F. Yang, G. Lu, L. Su, Alterations of regional homogeneity in pediatric bipolar depression: a resting-state fMRI study, BMC PSYCHIATRY, 14 (2014) 222.
[32] Q. Xiao, Y. Zhong, D. Lu, W. Gao, Q. Jiao, G. Lu, L. Su, Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study, PLOS ONE, 8 (2013) e57978.
[33] V. Vapnik, The nature of statistical learning theory, Springer science & business media2013.
[34] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support vector machines, IEEE Intelligent Systems and their applications, 13 (1998) 18-28.
[35] A.I. Belousov, S.A. Verzakov, J. Von Frese, A flexible classification approach with optimal generalisation performance: support vector machines, CHEMOMETR INTELL LAB, 64 (2002) 15-25.
[36] P.P. Oliveira, R. Nitrini, G. Busatto, C. Buchpiguel, J.R. Sato, E. Amaro, Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease, J ALZHEIMERS DIS, 19 (2010) 1263-72.
[37] C. Ecker, A. Marquand, J. Mourão-Miranda, P. Johnston, E.M. Daly, M.J. Brammer, S. Maltezos, C.M. Murphy, D. Robertson, S.C. Williams, D.G. Murphy, Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach, J NEUROSCI, 30 (2010) 10612-23.
[38] B. Mwangi, K.P. Ebmeier, K. Matthews, J.D. Steele, Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder, BRAIN, 135 (2012) 1508-21.
[39] C. Zhou, Y. Cheng, L. Ping, J. Xu, Z. Shen, L. Jiang, L. Shi, S. Yang, Y. Lu, X. Xu, Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging, FRONT PSYCHIATRY, 9 (2018) 524.
[40] Y. Xiao, Z. Yan, Y. Zhao, B. Tao, H. Sun, F. Li, L. Yao, W. Zhang, S. Chandan, J. Liu, Q. Gong, J.A. Sweeney, S. Lui, Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI, SCHIZOPHR RES, (2017).
[41] J.S. Anderson, J.A. Nielsen, A.L. Froehlich, M.B. DuBray, T.J. Druzgal, A.N. Cariello, J.R. Cooperrider, B.A. Zielinski, C. Ravichandran, P.T. Fletcher, A.L. Alexander, E.D. Bigler, N. Lange, J.E. Lainhart, Functional connectivity magnetic resonance imaging classification of autism, BRAIN, 134 (2011) 3742-54.
[42] L.L. Zeng, H. Shen, L. Liu, L. Wang, B. Li, P. Fang, Z. Zhou, Y. Li, D. Hu, Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis, BRAIN, 135 (2012) 1498-507.
[43] S. Wang, Y. Zhang, L. Lv, R. Wu, X. Fan, J. Zhao, W. Guo, Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis, SCHIZOPHR RES, 192 (2018) 179-184.
[44] R. Redlich, J.J. Almeida, D. Grotegerd, N. Opel, H. Kugel, W. Heindel, V. Arolt, M.L. Phillips, U. Dannlowski, Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach, JAMA PSYCHIAT, 71 (2014) 1222-30.
[45] A. Anticevic, M.W. Cole, G. Repovs, J.D. Murray, M.S. Brumbaugh, A.M. Winkler, A. Savic, J.H. Krystal, G.D. Pearlson, D.C. Glahn, Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness, CEREB CORTEX, 24 (2014) 3116-30.
[46] B. Sen, N.C. Borle, R. Greiner, M. Brown, A general prediction model for the detection of ADHD and Autism using structural and functional MRI, PLOS ONE, 13 (2018) e0194856.
[47] C. Cabral, L. Kambeitz-Ilankovic, J. Kambeitz, V.D. Calhoun, D.B. Dwyer, S. von Saldern, M.F. Urquijo, P. Falkai, N. Koutsouleris, Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition Analysis: Evaluating the Impact of Individual Clinical Profiles on the Neurodiagnostic Performance, Schizophr Bull, 42 Suppl 1 (2016) S110-7.
[48] S. Shen, A. Sterr, Is DARTEL-based voxel-based morphometry affected by width of smoothing kernel and group size? A study using simulated atrophy, J MAGN RESON IMAGING, 37 (2013) 1468-75.
[49] C.G. Yan, X.D. Wang, X.N. Zuo, Y.F. Zang, DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging, NEUROINFORMATICS, 14 (2016) 339-51.
[50] K.J. Friston, S. Williams, R. Howard, R.S. Frackowiak, R. Turner, Movement-related effects in fMRI time-series, MAGN RESON MED, 35 (1996) 346-55.
[51] S. Wang, G. Wang, H. Lv, R. Wu, J. Zhao, W. Guo, Abnormal regional homogeneity as potential imaging biomarker for psychosis risk syndrome: a resting-state fMRI study and support vector machine analysis, Sci Rep, 6 (2016) 27619.
[52] J.E. Park, B. Park, S.J. Kim, H.S. Kim, C.G. Choi, S.C. Jung, J.Y. Oh, J. Lee, J.H. Roh, W.H. Shim, Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set., 2017, pp. 983-991.
[53] J. Lee, M. Chon, H. Kim, Y. Rathi, S. Bouix, M.E. Shenton, M. Kubicki, Diagnostic value of structural and diffusion imaging measures in schizophrenia., 2018, pp. 467-474.
[54] J.L. Shaffer, J.R. Petrella, F.C. Sheldon, K.R. Choudhury, V.D. Calhoun, R.E. Coleman, P.M. Doraiswamy, Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers, RADIOLOGY, 266 (2013) 583-91.
[55] X. Ding, X. Yue, R. Zheng, C. Bi, D. Li, G. Yao, Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data, J Affect Disord, 251 (2019) 156-161.
[56] M.H. Nguyen, F. De la Torre, Optimal feature selection for support vector machines, PATTERN RECOGN, 43 (2010) 584-591.
[57] I.K. Lyoo, M.J. Kim, A.L. Stoll, C.M. Demopulos, A.M. Parow, S.R. Dager, S.D. Friedman, D.L. Dunner, P.F. Renshaw, Frontal lobe gray matter density decreases in bipolar I disorder, Biol. Psychiatry, 55 (2004) 648-51.
[58] M. Li, L. Cui, W. Deng, X. Ma, C. Huang, L. Jiang, Y. Wang, D.A. Collier, Q. Gong, T. Li, Voxel-based morphometric analysis on the volume of gray matter in bipolar I disorder., 2011, pp. 92-97.
[59] C. Chen, J. Suckling, B.R. Lennox, C. Ooi, E.T. Bullmore, A quantitative meta-analysis of fMRI studies in bipolar disorder., 2011.
[60] S.M. Strakowski, C.M. Adler, J. Almeida, L.L. Altshuler, H.P. Blumberg, K.D. Chang, M.P. DelBello, S. Frangou, A. McIntosh, M.L. Phillips, J.E. Sussman, J.D. Townsend, The functional neuroanatomy of bipolar disorder: a consensus model., 2012, pp. 313-325.
[61] J.A. Frazier, J.L. Breeze, N. Makris, A.S. Giuliano, M.R. Herbert, L. Seidman, J. Biederman, S.M. Hodge, M.E. Dieterich, E.D. Gerstein, D.N. Kennedy, S.L. Rauch, B.M. Cohen, V.S. Caviness, Cortical gray matter differences identified by structural magnetic resonance imaging in pediatric bipolar disorder., 2005, pp. 555-569.
[62] A.C. Nugent, M.P. Milham, E.E. Bain, L. Mah, D.M. Cannon, S. Marrett, C.A. Zarate, D.S. Pine, J.L. Price, W.C. Drevets, Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry., 2006, pp. 485-497.
[63] R. Adolphs, H. Damasio, D. Tranel, G. Cooper, A.R. Damasio, A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping, The Journal of neuroscience : the official journal of the Society for Neuroscience, 20 (2000) 2683-2690.
[64] R. Adolphs, Cognitive neuroscience of human social behaviour., 2003, pp. 165-178.
[65] G.B. Cassano, P. Rucci, A. Benvenuti, M. Miniati, S. Calugi, L. Maggi, S. Pini, D.J. Kupfer, M. Maj, A. Fagiolini, E. Frank, The role of psychomotor activation in discriminating unipolar from bipolar disorders: a classification-tree analysis., 2012, pp. 22-28.
[66] J. Angst, A. Gamma, C.L. Bowden, J.M. Azorin, G. Perugi, E. Vieta, A.H. Young, Evidence-based definitions of bipolar-I and bipolar-II disorders among 5,635 patients with major depressive episodes in the Bridge Study: validity and comorbidity., 2013, pp. 663-673.
[67] P.G. Gasquoine, Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging, Neurosci Biobehav Rev, 37 (2013) 340-8.
[68] J. Houenou, J. Frommberger, S. Carde, M. Glasbrenner, C. Diener, M. Leboyer, M. Wessa, Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses., 2011, pp. 344-355.
[69] I. Ellison-Wright, E. Bullmore, Anatomy of bipolar disorder and schizophrenia: a meta-analysis., 2010.
[70] T. Hajek, M. Kopecek, C. Höschl, M. Alda, Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis., 2012, pp. 333-343.
[71] C.B. Hartberg, K.N. Jørgensen, U.K. Haukvik, L.T. Westlye, I. Melle, O.A. Andreassen, I. Agartz, Lithium treatment and hippocampal subfields and amygdala volumes in bipolar disorder., 2015, pp. 496-506.
[72] T. Wise, J. Radua, E. Via, N. Cardoner, O. Abe, T.M. Adams, F. Amico, Y. Cheng, J.H. Cole, C. de Azevedo Marques Périco, D.P. Dickstein, T.F.D. Farrow, T. Frodl, G. Wagner, I.H. Gotlib, O. Gruber, B.J. Ham, D.E. Job, M.J. Kempton, M.J. Kim, P.C.M.P. Koolschijn, G.S. Malhi, D. Mataix-Cols, A.M. McIntosh, A.C. Nugent, J.T. O'Brien, S. Pezzoli, M.L. Phillips, P.S. Sachdev, G. Salvadore, S. Selvaraj, A.C. Stanfield, A.J. Thomas, M.J. van Tol, N.J.A. van der Wee, D.J. Veltman, A.H. Young, C.H. Fu, A.J. Cleare, D. Arnone, Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis., 2017, pp. 1455-1463.
[73] X. Lu, Y. Zhong, Z. Ma, Y. Wu, P.T. Fox, N. Zhang, C. Wang, Structural imaging biomarkers for bipolar disorder: Meta-analyses of whole-brain voxel-based morphometry studies, DEPRESS ANXIETY, 36 (2019) 353-364.
[74] T.H. Ha, K. Ha, J.H. Kim, J.E. Choi, Regional brain gray matter abnormalities in patients with bipolar II disorder: a comparison study with bipolar I patients and healthy controls, NEUROSCI LETT, 456 (2009) 44-8.
[75] T. Allison, A. Puce, G. McCarthy, Social perception from visual cues: role of the STS region, Trends Cogn. Sci. (Regul. Ed.), 4 (2000) 267-278.
[76] H.L. Gallagher, C.D. Frith, Functional imaging of 'theory of mind', Trends Cogn. Sci. (Regul. Ed.), 7 (2003) 77-83.
[77] M. Schallmo, S.R. Sponheim, C.A. Olman, Reduced contextual effects on visual contrast perception in schizophrenia and bipolar affective disorder., 2015, pp. 3527-3537.
[78] C.L. Beasley, W.G. Honer, K. Bergmann, P. Falkai, D. Lütjohann, T.A. Bayer, Reductions in cholesterol and synaptic markers in association cortex in mood disorders., 2005, pp. 449-455.
[79] A.S. Garrett, A.L. Reiss, M.E. Howe, R.G. Kelley, M.K. Singh, N.E. Adleman, A. Karchemskiy, K.D. Chang, Abnormal amygdala and prefrontal cortex activation to facial expressions in pediatric bipolar disorder., 2012, pp. 821-831.
[80] X. Wang, Q. Luo, F. Tian, B. Cheng, L. Qiu, S. Wang, M. He, H. Wang, M. Duan, Z. Jia, Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis, 2019.
[81] D.P. Hibar, L.T. Westlye, N.T. Doan, N. Jahanshad, J.W. Cheung, C.R.K. Ching, A. Versace, A.C. Bilderbeck, A. Uhlmann, B. Mwangi, B. Krämer, B. Overs, C.B. Hartberg, C. Abé, D. Dima, D. Grotegerd, E. Sprooten, E. Bøen, E. Jimenez, F.M. Howells, G. Delvecchio, H. Temmingh, J. Starke, J.R.C. Almeida, J.M. Goikolea, J. Houenou, L.M. Beard, L. Rauer, L. Abramovic, M. Bonnin, M.F. Ponteduro, M. Keil, M.M. Rive, N. Yao, N. Yalin, P. Najt, P.G. Rosa, R. Redlich, S. Trost, S. Hagenaars, S.C. Fears, S. Alonso-Lana, T.G.M. van Erp, T. Nickson, T.M. Chaim-Avancini, T.B. Meier, T. Elvsåshagen, U.K. Haukvik, W.H. Lee, A.H. Schene, A.J. Lloyd, A.H. Young, A. Nugent, A.M. Dale, A. Pfennig, A.M. McIntosh, B. Lafer, B.T. Baune, C.J. Ekman, C.A. Zarate, C.E. Bearden, C. Henry, C. Simhandl, C. McDonald, C. Bourne, D.J. Stein, D.H. Wolf, D.M. Cannon, D.C. Glahn, D.J. Veltman, E. Pomarol-Clotet, E. Vieta, E.J. Canales-Rodriguez, F.G. Nery, F.L.S. Duran, G.F. Busatto, G. Roberts, G.D. Pearlson, G.M. Goodwin, H. Kugel, H.C. Whalley, H.G. Ruhe, J.C. Soares, J.M. Fullerton, J.K. Rybakowski, J. Savitz, K.T. Chaim, M. Fatjó-Vilas, M.G. Soeiro-de-Souza, M.P. Boks, M.V. Zanetti, M.C.G. Otaduy, M.S. Schaufelberger, M. Alda, M. Ingvar, M.L. Phillips, M.J. Kempton, M. Bauer, M. Landén, N.S. Lawrence, N.E.M. van Haren, N.R. Horn, N.B. Freimer, O. Gruber, P.R. Schofield, P.B. Mitchell, R.S. Kahn, R. Lenroot, R. Machado-Vieira, R.A. Ophoff, S. Sarró, S. Frangou, T.D. Satterthwaite, T. Hajek, U. Dannlowski, U.F. Malt, V. Arolt, W.F. Gattaz, W.C. Drevets, X. Caseras, I. Agartz, P.M. Thompson, O.A. Andreassen, Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group., 2018, pp. 932-942.
[82] Y. Bai, M. Chen, J. Hsu, K. Huang, P. Tu, W. Chang, T. Su, C.T. Li, W. Lin, S. Tsai, A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder., 2020, pp. 42.
[83] S. Poletti, V. Aggio, T.A. Hoogenboezem, O. Ambrée, H. de Wit, A.J.M. Wijkhuijs, C. Locatelli, C. Colombo, V. Arolt, H.A. Drexhage, F. Benedetti, Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder., 2017, pp. 33-37.
[84] C.J. Ekman, P. Petrovic, A.G.M. Johansson, C. Sellgren, M. Ingvar, M. Landén, A History of Psychosis in Bipolar Disorder is Associated With Gray Matter Volume Reduction., 2017.
[85] V. Oertel-Knöchel, B. Reinke, R. Feddern, A. Knake, C. Knöchel, D. Prvulovic, J. Pantel, D.E.J. Linden, Episodic memory impairments in bipolar disorder are associated with functional and structural brain changes., 2014, pp. 830-845.
[86] E. Bora, M. Yucel, C. Pantelis, Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives., 2009.
[87] L.S. Schenkel, M. Marlow-O'Connor, M. Moss, J.A. Sweeney, M.N. Pavuluri, Theory of mind and social inference in children and adolescents with bipolar disorder., 2008, pp. 791-800.
[88] M.J. McCarthy, S. Liang, A.D. Spadoni, J.R. Kelsoe, A.N. Simmons, Whole brain expression of bipolar disorder associated genes: structural and genetic analyses., 2014, pp. e100204.
[89] Z. He, W. Sheng, F. Lu, Z. Long, S. Han, Y. Pang, Y. Chen, W. Luo, Y. Yu, X. Nan, Q. Cui, H. Chen, Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder., 2019, pp. 177-185.
[90] P. Chen, F. Chen, G. Chen, S. Zhong, J. Gong, H. Zhong, T. Ye, G. Tang, J. Wang, Z. Luo, Z. Qi, Y. Jia, H. Yang, Z. Yin, L. Huang, Y. Wang, Inflammation is associated with decreased functional connectivity of insula in unmedicated bipolar disorder., 2020.
[91] S.G. Disner, C.G. Beevers, E.A.P. Haigh, A.T. Beck, Neural mechanisms of the cognitive model of depression., 2011, pp. 467-477.
[92] Q. Xiao, D. Cui, Q. Jiao, Y. Zhong, W. Cao, G. Lu, L. Su, Altered regional homogeneity in pediatric bipolar disorder during manic and euthymic state: a resting-state fMRI study., 2019, pp. 1789-1798.