1. FAO. Fishery and Aquaculture Statistics. Global Aquaculture Production 1950- 2019 (FishstatJ). Rome: FAO Fisheries Division (2019). Available online: https://www.fao.org/fishery/en/countrysector/th/en (accessed April 12, 2022).
2. Paepke H. The Nomenclature of Trichopodus pectoralis Regan, 1910; Trichopus cantoris Sauvage, 1884 and Osphronemus saigonensis Borodin, 1930 (Teleostei: Peciformes: Osphronemidae). Vertebr Zool. (2009) 59:49–56. Available online: https://www.senckenberg.de/wp-content/uploads/2019/08/07_vertebrate_zoology_59-1_paepke.pdf (accessed April 12, 2022).
3. Smith, HM. "The fresh-water fishes of Siam, or Thailand." Bull. U.S. Natl. Mus. (1945). i–xi, 1-622. doi: 10.5479/si.03629236.188.1
4. Boonsom, J. Pla-salid (Trichogaster pectoralis Regan). A life history and manual for culture. Thai Fishery Gazette. (1986) 39: 589-601. Available online: https://www.fao.org/3/ac231e/AC231E12.htm (accessed April 12, 2022).
5. DOF. Statistics of Freshwater Aquaculture Production 2016. Fisheries Development Policy and Strategy Division No. 8/2018, Department of Fisheries. Ministry of Agriculture and Cooperatives, Bangkok, Thailand (2018).
6. Kanchan C, Imjai P, Kanchan N, Chaiyara A, Panchai K. Occurrence of parasitic and bacterial diseases in Thai freshwater fish. J Agric Crop Resh. (2020) 8:210-214. doi: 10.33495/jacr_v8i10.20.168
7. U.S Fish & Wildlife Service. Snakeskin gourami (Trichopodus pectoralis) Ecological Risk Screening Summary (2019). Available online: https://www.fws.gov/sites/default/files/documents/Ecological-Risk-Screening-Summary-Snakeskin-Gourami.pdf (accessed April 12, 2022).
8. Molnar K, Shaharom-Harrison F, and Szekely C. A survey of coccidian infections of freshwater fishes of Peninsular Malaysia, with descriptions of three species of Goussia Labbé, 1896 (Apicomplexa: Eimeriidae). Syst. Parasitol. (2003) 55: 11-18. doi: 10.1023/A:1023929107411
9. Tansatit T, Sobhon P, Sahaphong S, Sangsuriya P, Klinsrithong S. Prevalence and Histopathology of Trichogaster pectoralis Harbouring Metacercaria of Clinostomum piscidium (Southwell and Prashad, 1918) in Central Thailand. Thai J. Vet. Med. (2014) 44: 223-230. Available online: https://he01.tci-thaijo.org/index.php/tjvm/article/view/18570 (accessed April 12, 2022).
10. Paperna I, Ventura T, Alves de Matos AP. Lymphocystis infection in snakeskin gourami, Trichogaster pectoralis (Regan), (Anabantidae). J Fish Dis. (1987) 10: 11-19. doi:10.1111/j.1365-2761.1987.tb00713.x
11. Pathiratne, A., U. Epa, and R. Jayasinghe. Hematological changes in snakeskin gourami, Trichogaster pectoralis, affected by epizootic ulcerative syndrome. in Diseases in Asian aquaculture IV: Proceedings of the Fourth Symposium on Diseases in Asian Aquaculture, 22-26 November 1999, Cebu City, Philippines. Fish Health Section, Asian Fisheries Society. (2002) 407-413. Available online: https://repository.seafdec.org.ph/handle/10862/6234 (accessed April 12, 2022).
12. Dinh-Hung N, Dong HT, Soontara C, Rodkhum C, Nimitkul S, et al. Co-infection of Candidatus Piscichlamydia Trichopodus (Order Chlamydiales) and Henneguya sp. (Myxosporea, Myxobolidae) in Snakeskin Gourami Trichopodus pectoralis (Regan 1910). Front. Vet. Sci. (2022) 9: 847977. doi: 10.3389/fvets.2022.847977
13. Meyer FP. Aquaculture disease and health management. J. Anim. Sci. (1991) 69: 4201-4208. doi: 10.2527/1991.69104201x
14. Plumb JA. Overview of warmwater fish diseases. J. Appl. Aquac. (1999) 9: 1-10. doi: 10.1300/J028v09n02_01
15. Austin B, Austin DA, Munn C. Bacterial fish pathogens: disease of farmed and wild fish. UK: Springer. (2007) Vol. 26. doi: 10.1007/978-1-4020-6069-4
16. Toranzo AE , Magariños B, and Romalde JL. A review of the main bacterial fish diseases in mariculture systems. Aquaculture. (2005) 246: 37-61. doi: 10.1016/j.aquaculture.2005.01.002
17. Yanong RP, Francis-Floyd R. Streptococcal infections of fish. Florida Cooperative Extension Service. IFAS, University of Florida (Updated 2019). Available online: https://edis.ifas.ufl.edu/pdf/FA/FA05700.pdf (accessed April 12, 2022).
18. Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol. Cells. (2018) 41: 495-505. doi: 10.14348/molcells.2018.2154
19. Nomoto R, Munasinghe LI, Jin DH, Shimahara Y, Yasuda H, et al. Lancefield group C Streptococcus dysgalactiae infection responsible for fish mortalities in Japan. J Fish Dis. (2004) 27: 679-686. doi: 10.1111/j.1365-2761.2004.00591.x
20. Nho SW, Shin GW, Park SB, Jang HB, Cha IS, et al. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol. Lett. (2009) 293: 20-27. doi:10.1111/j.1574-6968.2009.01491.x
21. Zhang Z. Research Advances on Tilapia Streptococcosis. Pathogens. (2021) 10: 558. doi: 10.3390/pathogens10050558
22. Wu Z, Zhang W, Lu Y, Lu C. Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb Pathog. (2010) 48: 178-87. doi: 10.1016/j.micpath.2010.02.007
23. Zaccaria, E., et al., A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains. PLoS One. (2016) 11: e0151623. doi: 10.1371/journal.pone.0151623
24. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. (2014) 3: e45. doi: 10.1038/emi.2014.45
25. Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. (2012) 7: 259-79. doi: 10.2217/fmb.11.149.
26. Segura M. Streptococcus suis Research: Progress and Challenges. Pathogens. (2020) . 9: 707. doi: 10.3390/pathogens9090707
27. Feng Y, Zhang H, Wu Z, Wang S, Cao M, et al. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence. (2014) 5: 477-497. doi:10.4161/viru.28595
28. Arias CR, Welker TL, Shoemaker CA, Abernathy JW, Klesius PH. Genetic fingerprinting of Flavobacterium columnare isolates from cultured fish. J. Appl. Microbiol. (2004) 97: 421-428. doi:10.1111/j.1365-2672.2004.02314.x
29. Dong HT, Nguyen VV, Le HD, Sangsuriya P, Jitrakorn S, et al. Naturally concurrent infections of bacterial and viral pathogens in disease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture. (2015) 448: 427-435. doi: 10.1016/j.aquaculture.2015.06.027
30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. (1991) 173: 697-703. doi: 10.1128/jb.173.2.697-703.1991
31. Okwumabua O, O'Connor M, Shull E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol. Lett. (2003) 218: 79-84. doi: 10.1111/j.1574-6968.2003.tb11501.x.
32. Kumar S, Stecher G, Li M , Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. (2018) 35:1547–9. doi: 10.1093/molbev/msy096
33. Meemetta W, Domingos JA, Dong HT, Senapin S. Development of a SYBR Green quantitative PCR assay for detection of Lates calcarifer herpesvirus (LCHV) in farmed barramundi. J. Virol. Methods. (2020) 285: 113920. doi: 10.1016/j.jviromet.2020.113920
34. Hoshina T, Sano T, Morimoto Y. A Streptococcus pathogenic to fish. J Tokyo Univ Fish. (1958) 44: 57–68. Available online: http://210.212.232.211:8080/jspui/bitstream/123456789/3693/1/B1-4_32%20article%206.pdf (accessed April 12, 2022).
35. Sudheesh PS, Al-Ghabshi A, Al-Mazrooei N, Al-Habsi S. Comparative pathogenomics of bacteria causing infectious diseases in fish. Int J Evol Biol. (2012) 2012: 457264. doi: 10.1155/2012/457264
36. Eldar A, Ghittino C. Lactococcus garvieae and Streptococcus iniae infections in rainbow trout Oncorhynchus mykiss: similar, but different diseases. Dis Aquat Organ. (1999) 36: 227-31. doi: 10.3354/dao036227
37. Kayansamruaj P, Dong HT, Nguyen VV, Le HD, Pirarat N, Rodkhum C. Susceptibility of freshwater rearing Asian seabass (Lates calcarifer) to pathogenic Streptococcus iniae. Aquac. Res. (2015) 48: 711-718. doi: 10.1111/are.12917
38. Palang I, Withyachumnarnkul B, Senapin S, Sirimanapong W, Vanichviriyakit R. Brain histopathology in red tilapia Oreochromis sp. experimentally infected with Streptococcus agalactiae serotype III. Microsc Res Tech (2020) 83: 877-888. doi: 10.1002/jemt.23481
38. Asencios Y, Barreiro F, Mendizábal H, Pusari K, Ostos H, et al. First report of Streptococcus agalactiae isolated from Oreochromis niloticus in Piura, Peru: Molecular identification and histopathological lesions. Aquac. (2016) 4: 74-79. doi: 10.1016/j.aqrep.2016.06.002
40. Roberts RJ. and Ellis EA. Chapter 2 - The Anatomy and Physiology of Teleosts, in Fish Pathology, Roberts RJ, editor. UK: Blackwell Publishing Ltd. (2012). p17-61. doi: 10.1002/9781118222942.ch2
41. Sado RY, de Souza FC, Behr ER, Mocha PRE, Baldisserotto B. Chapter 2 - Anatomy of Teleosts and elasmobranchs, in Biology and Physiology of Freshwater Neotropical Fish, Baldisserotto B, Urbinati EC, Cyrino JEP, editors. UK: Elsevier Inc. (2020) p. 21-47. doi: 10.1016/B978-0-12-815872-2.00002-6
42. Dinh-Hung N, Sangpo P, Kruangkum T, Kayansamruaj P, Rung-Ruangkijkrai T, et al. Dissecting the localization of Tilapia tilapinevirus in the brain of the experimentally infected Nile tilapia, Oreochromis niloticus (L.). J Fish Dis. (2021) 44(8): 1053-1064. doi: 10.1111/jfd.13367
43. Wang KY, Chen DF, Huang LY, Lian H, Wang J, et al., Isolation and characterization of Streptococcus agalactiae from Nile Tilapia Oreochromis niloticus in China. Afr. J. Microbiol. Res. (2013) 7: 317-323. doi: 10.5897/AJMR12.1207
44. Kayansamruaj P, Pirarat N, Katagiri T, Hirono I, Rodkhum C. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand. J Vet Diagn Invest. (2014) 26(4): 488-495. doi: 10.1177/1040638714534237
45. Yang W, Li A, Isolation and characterization of Streptococcus dysgalactiae from diseased Acipenser schrenckii. Aquaculture. (2009) 294(1): 14-17. doi: 10.1016/j.aquaculture.2009.05.018
46. Deng ML, Yu Z, Geng Y, Wang KY, Chen DF, et al. Outbreaks of Streptococcosis associated with Streptococcus iniae in Siberian sturgeon (Acipenser baerii) in China. Aquac. Res. (2015) 48(3): 909-919. doi: 10.1111/are.12934
47. Bromage ES, Thomas A, Owens L, Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis Aquat Organ. (1999) 36(3): 177-81.
48. Buchanan JT, Colvin KM, Vicknair MR, Patel SK, Timmer AM, et al. Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass. Vet Microbiol. (2008) 131(1-2): 145-53. doi: 10.3354/dao036177
49. Ortega C, García I, Irgang R, Fajardo R, Tapia-Cammas D, et al. First identification and characterization of Streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. J Fish Dis. (2018) 41(5): 773-782. doi: 10.1111/jfd.12775
50. Miyazaki T, Kubota SS, Kaige N, Miyashita T. A Histopathological Study of Streptococcal Disease in Tilapia. Fish Pathol. (1984) 19(3): 167-172. doi: 10.3147/jsfp.19.167
51. Olufemi B, Roberts R. Induction of clinical aspergillomycosis by feeding contaminated diet to tilapia, Oreochromis niloticus (L.). J Fish Dis. (1986) 9: 123-128. doi: 10.1111/j.1365-2761.1986.tb00991.x
52. Bercovier H, Ghittino C, Eldar A. Immunization with bacterial antigens: infections with streptococci and related organisms. Dev Biol Stand. (1997) 90: 153-60.
53. Rajme-Manzur D, Gollas-Galvan T, Vargas-Albores F, Martinez-Porchas M, Hernandez-Onate MA, et al. Granulomatous bacterial diseases in fish: An overview of the host's immune response. Comp Biochem Physiol A Mol Integr Physiol. (2021) 261: 111058. doi: 10.1016/j.cbpa.2021.111058
54. Bowater RO, Forbes-Faulkner J, Anderson IG, Condon K, Robinson B, et al. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia. J Fish Dis. (2012) 35(3): 173-86. doi: 10.1111/j.1365-2761.2011.01332.x
55. Chang PH, Plumb JA. Histopathology of experimental Streptococcus sp. infection in tilapia, Oreochromis niloticus (L.), and channel catfish, Ictafurus punctatus (Ratinesque). J Fish Dis. (1996) 19: 235-241. doi: 10.1111/j.1365-2761.1996.tb00130.x
56. Dong HT, Senapin S, Chiamkunakorn C, Nguyen VV, Nguyen NT, et al. Natural occurrence of edwardsiellosis caused by Edwardsiella ictaluri in farmed hybrid red tilapia (Oreochromis sp.) in Southeast Asia. Aquaculture. (2018) 499: 19-23. doi:10.1016/j.aquaculture.2018.09.007
57. Pei-Chi W, Tsai MA, Yu-Chi L, Yanting C, Chen SC. Nocardia seriolae, a causative agent of systematic granuloma in spotted butterfish, Scatophagus argus, Linn. Afr. J. Microbiol. Res. (2014) 8: 3441-3452. doi: 10.5897/AJMR2014.6874
58. Han HJ, Kwak MJ, Ha SM, Yang SJ, Kim JD, et al. Genomic characterization of Nocardia seriolae strains isolated from diseased fish. Microbiologyopen. (2019) 8(3): e00656. doi: 10.1002/mbo3.656
59. Dong HT, Gangnonngiw W, Phiwsaiya K, Charoensapsri W, Nguyen VV, et al. Duplex PCR assay and in situ hybridization for detection of Francisella spp. and Francisella noatunensis subsp. orientalis in red tilapia. Dis Aquat Organ. (2016) 120(1): 39-47. doi: 10.3354/dao03021
60. Nguyen VV, Dong HT, Senapin S, Pirarat N, Rodkhum C. Francisella noatunensis subsp. orientalis, an emerging bacterial pathogen affecting cultured red tilapia (Oreochromis sp.) in Thailand. Aquac. Res. (2015) 47: 3697-3702. doi: 10.1111/are.12802
61. Dong HT, Senapin S, Phiwsaiya K, Techatanakitarnan C, Dokladda K, et al. Histopathology and culturable bacteria associated with “big belly” and “skin nodule” syndromes in ornamental Siamese fighting fish, Betta splendens. Microb. Pathog. (2018) 122: 46-52. doi: 10.1016/j.micpath.2018.06.005
62. Novotny L, Halouzka R, Matlova L, Vavra O, Bartosova L, et al. Morphology and distribution of granulomatous inflammation in freshwater ornamental fish infected with mycobacteria. J. Fish Dis. (2010) 33: 947-55. doi: 10.1111/j.1365-2761.2010.01202.x
63. Gómez Manrique W, Claudiano G, Petrillo T, Castro M, Figueiredo M, et al. Response of splenic melanomacrophage centers of Oreochromis niloticus (Linnaeus, 1758) to inflammatory stimuli by BCG and foreign bodies. J. Appl. Ichthyol. (2014) 30: 1001-06. doi:10.1111/jai.12445
64. Agius C, Roberts RJ. Melano-macrophage centres and their role in fish pathology. J Fish Dis. (2003) 26(9): 499-509. doi: 10.1046/j.1365-2761.2003.00485.x