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Abstract
In this study, the survival of Lactobacillus reuteri UBLRu-87 during passage through the unique in vitro gut
model system was investigated. The viability of strain with and without glucose in GIT was determined
by using pour plate and flow cytometer analysis. Lactic acid (D- and L-) production and residual glucose
levels were measured as indicators of metabolic activity. In results, as per the plate count method,
bacterial survival remained 100 % at 2 h of stomach phase (with and without glucose). Later at 3 h of
intestinal phase, it reduced to 52 % with glucose and 100 % without glucose. At 24 h of colonic
incubation, viability increased to 143 %, where bacteria utilized ~ 54% of glucose and produced 7.73 ±
0.70 mmol/L L-lactic acid and 0.22 ± 0.01 mmol/L D-lactic acid. In the absence of glucose, strain count
was increased from zero to 4.95 ± 0.10 log10 CFU/mL at 24 h of colon incubation. In flow cytometer
analysis, the survival of strain at 2 h of stomach phase was 109 % with glucose and 105 % without
glucose. Later, it reduced to 74 % at 3 h of the intestinal phase (with and without glucose). At the end of
the 24 h colonic incubation, the bacterial viability was increased to 111 % with glucose and 108 % without
glucose. In conclusion, under harsh intestinal conditions without glucose, UBLRu-87 cells lose their ability
to grow and multiply, but keep a viable but non-culturable (VBNC) state. After favorable conditions in
colon, strain VBNC state resuscitate to culturable state. Besides this, glucose favors strain protection and
viability enhancing effects during passage of strain throughout the GIT.

Introduction
Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit
on the host” [1]. The term “adequate amount” is not properly defined yet, to date, several clinical
investigations claim 108 to 1010 colony forming units (CFU) as effective dose [2, 3]. However, doses may
vary from strain to strain and health indications. Besides viability at storage, the information on survival
of probiotic bacteria during gastrointestinal tract (GIT) passage is highly important to make dose claims
of finished probiotic products. Until now, several studies have reported GIT survival of bacteria by
individual gastric and intestinal tolerance tests or unceasingly by suspending cell pellets from gastric to
intestinal experiments [4, 5]. However, the behavior of probiotic bacteria in continues in vitro simulated
gut model systems remains under reported [6, 7].

Over the last few decades, several different GIT models have been developed by the researchers. These
models mainly focus on planktonic cells in fed or fasted conditions and operated in batch, continuers or
semi-continues modes [6]. Simulator of Human Intestinal Microbial Ecosystem (SHIME) [8] and TNO
Gastro-Intestinal Model (TIM) [9] are the well-established GIT models recognized for quality outcomes.
Besides this, the cost to study bacterial behavior in such models is high and depends on the number of
parameters to investigate. In this study, we used unique in house GIT system to evaluate the behavior of
probiotic bacteria. It consists of a series of 3 fully automated reactors (7 L capacity) equipped with pH,
and temperature sensors, and other essential accessories to simulate stomach, small intestine and colon
conditions (Fig. 1). The composition of gastric, intestinal and colonic fluid is derived from previous
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studies to mimic the gut environment [10–12]. As like other in vitro GIT models, our unique gut model has
no realistic physiological colon environment.

Lactobacillus reuteri UBLRu-87 reported in this study is a well-characterized [13] probiotic strain with
proven clinical efficacy in the management of chronic periodontitis [14]. Besides this, along with other
strains, it is reported to alleviate bacterial vaginosis [15] and for in vitro anticancer activity [16]. In this
study, we report on survival behavior of L. reuteri UBLRu-87 in unique in vitro gut model system with and
without glucose. The survival was determined using plate count and flow cytometer analysis. In addition,
D-, L- lactic acid production was investigated during short term colonic incubations.

Materials And Methods

Bacteria
L. reuteri UBLRu-87 (MTCC 5403) was obtained from Centre for Research and Development, Unique
Biotech Limited, Hyderabad.

Unique Gastrointestinal Tract System
The unique gastrointestinal tract (GIT) system consists of three reactors of maximum 4 liters working
capacity. All reactors were equipped with pH and temperature sensors, and fully-automated controller
system to simulate conditions of stomach, small intestine and colon (Fig. 1). Behavior of probiotic in GIT
was determined by adding strain into the stomach reactor consisting gastric juice for specified incubation
time and transferred immediately to the intestine reactor consisting ingredients of intestinal fluid. After
intestinal phase incubation, the content was transferred to colon reactor consisting ingredients of colon.
The incubation time and pH of the reactors were maintained to mimic in vivo GIT conditions. In this study,
the behavior of UBLRu-87 was investigated in the presence or absence of glucose in the unique GIT
system.

Stomach Phase
The stomach reactor contains gastric juice (consisting: glucose, 2.0 g; proteose peptone, 8.3; KH2PO4, 0.6
g; NaCl, 2.05 g; KCl, 0.37 g; CaCl2, 0.11 g; bile, 0.05 g; lysozyme, 0.1 g; pepsin, 0.0133 g; water 1L) [10] of
pH 6.8. Immediately after inoculation of bacteria, the pH of the gastric juice was reduced sigmoidal from
6.8 to 2.2 [11]. During this phase, reactor temperature was maintained to 37 oC and content was stirred at
100 rpm. The samples were withdrawn at 0, 1 and 2 h time intervals where the pH of the content was
equal to 6.8 ± 0.1, 3.5 ± 0.1 and 2.2 ± 0.2, respectively. In another experiment, the behavior of UBLRu-87
was investigated in the absence of glucose in gastric juice. The other conditions remained same as
described earlier.
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Intestinal Phase
The intestinal phase contains 0.1% (w/v) pancreatin (amylase 100 U/mg; lipase 8 U/ mg; protease 100
U/mg) and 0.3% bile (w/v) [12]. Immediately after transfer of stomach content to intestine, the pH was
adjusted to 5.5. The content was stirred as described earlier and pH was further reduced to 7.6 at 37 oC.
The samples were withdrawn at 1, 2 and 3 h time intervals where the pH of the content was equal to 6.0 ± 
0.2, 7.0 ± 0.1 and 7.6 ± 0.2, respectively. In another experiment, culture in gastric juice without glucose was
transferred to intestine reactor and investigated as described earlier.

Colon Phase
The colonic phase incubation was started after transfer of intestinal phase content to colon reactor
containing 0.01% (w/v) purified mucin. The pH of the content was adjusted to 8.0 and temperature was
maintained to 37 oC. Nitrogen gas was purged (at 1 h interval) through the colonic content to maintain
anaerobic conditions. The samples were withdrawn at 0 and 24 of time intervals and analyzed for
viability, residual glucose, and lactic acid production. In another experiment, culture in intestinal phase
without glucose was transferred to colon reactor and investigated as described earlier.

Sample Analysis

Pour Plate Method
The samples were each serially diluted in 0.85% (w/v) saline and appropriate dilutions were mixed
separately into molten deMan, Rogosa and Sharpe (MRS) agar and poured into the sterile petri-plates.
The plates were incubated anaerobically (Forma Steri-Cycle CO2 incubator, Thermo Fisher Scientific,

Massachusetts, USA) at 37 oC for 24 h. The colonies were counted and results were expressed in log10

CFU/mL.

Flow Cytometer
The samples were centrifuged at 11,000 ×g for 10 min at 4 oC (Sorvall Legend XTR, Thermo Scientific,
USA) and washed with 0.85% (w/v) saline to reduce noise during the analysis. The cells were diluted
serially in saline and appropriate dilutions were stained with LIVE/DEAD™ BacLight™ bacterial viability kit
(Thermo Scientific, USA). The bacterial viability was analyzed on CytoFLEX flow cytometer (Beckman
Coulter, Indianapolis, USA) with slow flow rate (10 µL/min) [17]. The results were expressed as mean
log10 CFU/mL

Determination Of Lactic Acid
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The samples were centrifuged at 11,000 ×g for 10 min at 4 oC and the amount of D- and L- lactic acid
present in the supernatant was measured by using a NZY Tech, D-/L-lactic acid kit (Lisboa, Portugal),
according to the manufacturer’s instructions.

Determination Of Glucose
The amount of residual glucose in the samples was determined by using a LabAssay™ Glucose
(Mutarotase-GOD method) kit (FujiFilm, Gunma, Japan), according to the manufacturer’s instructions.

Statistical Analysis
GraphPad Prism (San Diego, California, USA) was used to perform significant differences between means
by Tukey’s test after analysis of variance (ANOVA) and t -test. The p-value < 0.05 was considered
statistically significant.

Results
Survival of L. reuteri UBLRu-87 in Unique Gut Model

Stomach Phase
Bacterial survival determined by pour plate method showed no significant (p > 0.05) changes in viability
of UBLRu-87 during stomach phase with glucose (0 h, 7.12 ± 0.05; 1 h, 7.18 ± 0.06; 2 h, 7.13 ± 0.03 log10

CFU/mL) and without glucose (0 h, 6.99 ± 0.02; 1 h, 7.09 ± 0.03; 2 h, 7.13 ± 0.04 log10 CFU/mL) (Fig. 2).
Moreover, the viability of UBLRu-87 in gastric juice with and without glucose during 1st and 2nd h of
stomach incubation remained same (p > 0.05) (Fig. 2).

On the contrary, the survival determined by flow cytometer showed significant increase in viability of
UBLRu-87 during gastric phase with glucose (0 h, 7.07 ± 0.07; 1 h, 7.41 ± 0.01; 2 h, 7.71 ± 0.01 log10

CFU/mL) and without glucose (0 h, 7.07 ± 0.03; 1 h, 7.20 ± 0.01; 2 h, 7.44 ± 0.01 log10 CFU/mL) (Fig. 3a,
b). Besides this, UBLRu-87 viable count determined at 1st and 2nd h of stomach incubation with glucose
was significantly higher (1 h, p 0.002; 2 h, p < 0.0001) as compared to without glucose (Fig. 3a).

Intestinal Phase
During the 3 h intestinal phase, the viable count determined by pour plate method showed that the
survival of UBLRu-87 transferred along with glucose containing gastric juice was significantly (p < 
0.0001) reduced from 7.13 ± 0.03 (0 h) to 3.69 ± 0.01 (3 h) log10 CFU/mL (1 h, 4.39 ± 0.08; 2 h, 3.84 ± 0.06
log10 CFU/mL) (Fig. 2). Moreover, UBLRu-87 transferred along with gastric juice without glucose showed
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no survival within an hour of intestinal phase incubation (0 h: 7.13 ± 0.04; 1, 2 and 3 h: 0 log10 CFU/mL)
(Fig. 2). The viability differences of UBLRu-87 incubated with and without glucose in intestinal phase are
significant (p 0.0001).

In flow cytometer analysis, UBLRu-87 cells incubated in glucose and without glucose were decreased
significantly (p < 0.0001) from start to end of the intestinal phase (Fig. 3a). The count in glucose
containing intestinal phase was reduced from 7.71 ± 0.01 (0 h), to 6.38 ± 0.06 (1 h), 6.00 ± 0.10 (2 h), and
5.69 ± 0.08 (3 h) log10 CFU/mL (Fig. 3a, c). On the contrary, UBLRu-87 count in intestinal phase without
glucose was reduced from 7.44 ± 0.01 (0 h) to 5.30 ± 0.19 (1 h) log10 CFU/mL, and then increased to 5.69 
± 0.08 (2 h) log10 CFU/mL. Later, the phase was ended with the count of 5.49 ± 0.19 log10 CFU/mL
(Fig. 3a). Furthermore, the viability of UBLRu-87 incubated with glucose was significantly higher for 1st (p
0.0065) and 2nd h (p 0.0181) of intestinal phase as compared with UBLRu-87 incubated without glucose.
At end of the intestinal phase, cells incubated with and without glucose were ended with no significant (p
0.217) difference in viability.

Short Colon Phase
UBLRu-87 viability in presence of glucose was significantly (p 0.0003) increased from 0 h (3.69 ± 0.01
log10 CFU/mL) to 24 h (5.28 ± 0.05 log10 CFU/mL) of colonic incubation (Fig. 2). Similarly, the strain
incubated without glucose was changed significantly (p < 0.0001) from zero pour plate count to 4.95 ± 
0.10 log10 CFU/mL at 24 h of colonic incubation (Fig. 2). At end of the colon phase, cells incubated with
glucose were significantly (p 0.014) higher as compared to cells incubated without glucose.

The samples analyzed on flow cytometer showed that, the viable count of strain incubated with glucose
was increased significantly (p < 0.001) form 0 h (5.69 ± 0.08 log10 CFU/mL) to 24 h (6.34 ± 0.03 log10

CFU/mL) of colonic incubation (Fig. 3a, d). On the contrary, there were no changes in viability (0 h, 5.49 ± 
0.19; 24 h, 5.95 ± 0.04 log10 CFU/mL) of strain incubated without glucose. Besides this, at the end of
colon phase, the viable count difference recorded between glucose and without glucose was significant
(p 0.0005).

Determination Of Lactic Acid
Strain produced 7.73 ± 0.70 mmol/L L-lactic acid and 0.22 ± 0.01 mmol/L D-lactic acid at 24 h of colonic
incubation with glucose.

Determination Of Glucose
Glucose levels were remained unchanged in both stomach and intestinal phase incubation with UBLRu-
87. However, strain utilized ~ 54% of glucose (residual glucose: 0 h, 163.54 ± 3.87 mg/dL; 24 h, 75.06 ± 
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1.53 mg/dL) at 24 h of colonic incubation.

Discussion
The survival of probiotic bacteria in gastrointestinal tract (GIT) is crucial to impart intended health
benefits to the host. Studies evaluating in vitro probiotic properties like gastric and intestinal tolerance
were either investigated independently and or unceasingly by suspending cell pellets from gastric to
intestinal experiments. Besides this, the outcome of such investigations do not provide possible real-time
behavior of probiotic strains in GIT. In order to understand bacterial transit through GIT, in this study we
used a unified fully automated reactors to mimic stomach, intestine and colon conditions, and
investigated survival of L. reuteri UBLRu-87 in presence or absence of glucose by using plate count and
flow cytometer method. Lactic acid production and glucose utilization pattern was studied for culture
with-glucose during short phase colonic incubation.

After ingestion, probiotic bacteria need to survive under acidic stomach conditions and the detrimental
action of gastric enzymes [18]. In this study, the viability of UBLRu-87 in stomach reactor with and
without glucose was not affected significantly could be due to a sigmoidal decrease of gastric juice pH (0
h: 6.8 to 2 h: 2.2), which may allowed cells to get prepare against gastric stress. Besides this, in flow
cytometer analysis, cells with glucose showed significantly higher survival as compared with cells
without glucose, suggesting a protective and growth-enhancing effect of glucose in acidic conditions.
Though, the cells detected by flow cytometer are viable but non-culturable (VBNC), they have a propensity
to resuscitate under favorable conditions. These results corroborate well with a previous finding that
glucose protects and enhances survival of lactobacillus under acidic conditions could be due to up-
regulating F0F1-ATPase activity [19]. Furthermore, no change in residual glucose during the stomach
phase suggested cells may have utilized glucose at trace levels which remained undetected. In general,
pre-adaptation, cross-protection, protection of macromolecules, up regulation of F0F1-ATPase activity,
amino acid decarboxylation, and production of alkaline compounds in the cytoplasm are reported as acid
resistance mechanisms in lactic acid bacteria [20].

After the stomach, bacteria reaches the intestine, where survival in the presence of bile and pancreatic
enzymes is more challenging. In this study, UBLRu-87 viable plate count was reduced to 38% at 1 h and,
46% and 48% during subsequent hours of intestinal incubation with glucose. Whereas no viable cells
were detected when strain incubated without glucose. On the contrary, flow cytometer analysis showed a
17% reduction of viability at 1 h and, 22% and 26% during subsequent hours of intestinal incubation with
glucose. Whereas, the viability of cells without glucose was reduced to 28% at 1 h and later became
comparable (2 h, 23%; 3 h, 26%) with glucose phase. These results suggested that glucose may protect
cells by an unknown mechanism and or bile salt hydrolase and bacteria resistant to pancreatic enzymes
may be responsible for improving survival under intestinal conditions [21]. Besides this, the higher cell
numbers determined by flow cytometer as compared with plate count method is indicative of cells VBNC
state. However, such cells have a propensity to resuscitate under favorable conditions. Moreover, as like
stomach phase, changes in residual glucose levels remained undetected in the intestinal phase.
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During the short 24 h colonic incubation, UBLRu-87 cells utilized ~ 54% glucose and produced both L- and
D- enantiomers of lactic acid. This reduced the pH of the colon reactor from 8.0 to 6.4 units. The
production of lactic acid in the colon is known to favor the growth of other lactic acid bacteria and helps
to restore healthy microbiota composition [22]. The increased viable count of UBLRu-87 during colonic
incubations with and without glucose indicated cells ability to restore multiplication potential and
metabolic activity. It is interesting to note that cells without glucose were resuscitated from VBNC state to
viable culturable cells, which could be due to the mucin in the colon reactor. The pH of the colon reactor
without glucose decreased from 8.0 to 7.7 units at 24 h of colonic incubation. However, the metabolites
produced in colon reactor without glucose were not investigated in the present study. Overall, based on
plate count and flow cytometer analysis, glucose protects cells to retain a viable and culturable state
throughout the GIT journey.

Conclusion
In conclusion, the survival of L. reuteri UBLRu-87 was decreased drastically during intestinal passage and
improved at short colonic incubation. UBLRu-87 produced both D- and L- lactic acid from glucose and
was capable of reducing colon pH. Based on plate count and flow cytometer analysis, glucose enhanced
viability and protected cells to retain a culturable state throughout the GIT journey. Moreover, we
recommend plate count coupled with flow cytometer analysis to understand the behavior of bacteria
through an in vitro gut model system.
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Figures

Figure 1

Schematic representation of a unified reactors of unique in vitro gut model system

Figure 2

Survival of Lactobacillus reuteri UBLRu-87 in unique in vitro gut model system with and without glucose.
The log10 CFU/mL determined by pour plate method. All data are represented as mean ± SD. *** p ≤
0.001 and * p ≤ 0.05.
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Figure 3

Survival of Lactobacillus reuteri UBLRu-87 in unique in vitro gut model system with and without glucose.
Log10 CFU/mL determined by flow cytometer (a); viable cell events in stomach (b), intestine (c), and colon
(d). **** p ≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01, and * p ≤ 0.05.


