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Abstract
Relative binding free energy (RBFE) calculations have become an integral computational tool for lead
optimization in drug design. However, commonly used methods, such as free energy perturbation (FEP),
thermodynamic integration (TI), or multistate Bennett acceptance ratio (MBAR), have an exceedingly high
computational cost associated with the need to explore many pairwise calculations. To reduce this cost
and accelerate molecular design work�ows, we present a new Gibbs Sampler λ-Dynamics method that
uses dynamic biases to continuously drive the sampling of multiple discrete λ states, and therefore
multiple ligand analogues, collectively within a single simulation. As a result, many relative free energy
differences can be rapidly determined without compromising accuracy in the computed results. We refer
to this method as λ-Dynamics with Bias Updated Gibbs Sampling (LaDyBUGS). For three benchmark
systems, errors in computed LaDyBUGS free energy differences relative to experiment are near 1.0
kcal/mol or less, and agreement with TI/MBAR is within statistical noise (approximately 0.4 kcal/mol or
less). Large e�ciency gains of 18- to 66-fold improvements are observed with LaDyBUGS compared to
TI/MBAR for modeling just 5–10 perturbations at a single site of substitution off a central ligand core.
We expect that the rapid and e�cient determination of RBFEs with LaDyBUGS will enable larger chemical
spaces to be more readily explored at reduced costs and structure-based drug design to be accelerated.

full text
Relative binding free energy (RBFE) calculations have emerged as a promising tool for the lead
optimization of small molecule pharmaceuticals.1–3 In an RBFE calculation, a small molecule bound to a
protein target is alchemically transformed into a different small molecule, such as an analog formed by
modifying one or more functional groups of the lead compound. The relative difference in free energies
of binding (ΔΔGbind) between the two molecules can then be calculated using a thermodynamic cycle

(Figure 1).4 Compared to methods such as molecular docking, RBFE calculations have shown
signi�cantly improved correlation between computed and experimental binding a�nities, with errors of
roughly 1 kcal/mol or less for the state-of-the-art.5–8 Although too high to eliminate the need for
experiment entirely, this degree of accuracy is low enough to separate compounds with stronger versus
weaker binding a�nities and e�ciently prioritize molecules for experimental investigation.9,10 Using
stochastic simulations, Mobley and Klimovich quanti�ed the effect that this computational prioritization
can have on a drug discovery project; they estimate that RBFE calculations with an average of 1.0
kcal/mol of error to experiment can improve the odds of identifying a 10-fold potency boost by a factor of
5.11 When optimizing lead compounds for other drug-like properties, RBFE calculations can also be used
to �lter out compound modi�cations that might negatively affect potency.7

While many methods of RBFE calculations exist, the most commonly used methods are free energy
perturbation (FEP), thermodynamic integration (TI), and multistate Bennett acceptance ratio (MBAR).12–

15 With these methods, an alchemical coupling parameter, called λ, is used to alchemically transform one
molecule into another. To ensure su�cient phase space overlap between λ states and achieve
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convergence in computed free energy differences, many intermediate discrete λ states are also de�ned
(typically 10-20) that span a range of λ values between 0 and 1, the two molecule end states of
interest.4,7,9 Molecular dynamics (MD) simulations are performed at each of these discrete λ states, with
λ values held constant for the duration of the simulation, and the MD trajectories are then postprocessed
to calculate the �nal free energy difference. Though effective, FEP and TI calculations require
considerable computational resources, are exclusively pairwise, and inherently unable to evaluate more
than one RBFE at a time. For example, in a typical FEP/TI experiment,5,7,8,16 11 discrete λ states may be
used to model a single perturbation, requiring 11 MD trajectories of 5-20 ns per λ window to be run, which
amounts to a total of 55-220 ns simulation time for a single RBFE result.6,16 Longer simulations or
additional windows may be added for more challenging perturbations, such as ring additions or polar-to-
non-polar transformations.17 Further compounding computational costs, recommended best practices for
investigating sets of multiple ligands with FEP/TI necessitates the use of redundant calculations to
provide improved accuracy around closed perturbation cycles.18-20 Although recent adoption of running
MD simulations on graphical processing units (GPUs) has accelerated computational throughput and
facilitated routine employment of RBFE calculations on large high-performance computing (HPC)
resources for drug discovery,21-23 costs per RBFE calculation remains considerably high.

Driven by the high cost of pairwise RBFE calculations, many groups have investigated alternative
methods to perform RBFE calculations with an aim of achieving comparable accuracy with lower
computational costs per computed RBFE. Non-equilibrium switching free energy calculations have seen
renewed interest of late.24–27 Mostly run in a pairwise manner, these calculations require only ca. 20-40
ns per transformation and are highly parallelizable,24,27 making them good candidates for HPC or cloud
computing. A variety of expanded ensemble methods have also grown in popularity.28-32 λ-dynamics
(λD),33,34 enveloping distribution sampling,35–37 and λ-local elevation umbrella sampling (λ-LEUS)
methods,38–40 to name a few, have all sought to calculate free energy differences between multiple
thermodynamic states within a single calculation to increase e�ciency through improved scalability. 

In a conventional λD simulation, λ is treated as a continuous parameter and its value can change
dynamically in conjunction with the coordinates of an MD simulation, using extended Lagrangian
methods.34,41 Sampling of multiple ligand end states or multisite sampling of many substituents at 2 or
more sites of substitution are both feasible with multisite λ-dynamics (MSλD) via holonomic
constraints.34,42 Hence, multiple RBFEs can be computed from a single λD simulation, lending large
e�ciency gains over conventional approaches. Recent benchmarks have shown that single-site
perturbations can be performed with cost savings in the range of 3-5.4 times better than TI/MBAR.6

Advantageously, sampling with λD also produces a strongly connected graph between all ligand end
states without the need for redundant calculations or cycle closure connections (Figure 2).18,20 In recent
years a variety of new developments have been introduced to expand the utility of λD for drug discovery,
including an Adaptive Landscape Flattening (ALF) algorithm for automated bias determination,41,43 a
Potts model-based estimator for computing free energy differences and intersite couplings,44 an



Page 4/28

accelerated GPU engine,45 and an alternative λ sampling strategy using Gibbs sampling, a Markov chain
Monte Carlo algorithm.46,47 This work builds upon this latter development of discrete Gibbs sampler λ-
dynamics (d-GSλD).47

To sample multiple ligands collectively within a single λD simulation, free energy barriers between ligand
end states in λ-space must �rst be �attened. This can be accomplished by identifying and incorporating a
variety of biasing potentials into a λD simulation.41 These biases �atten intermediate free energy barriers
and ensure ligand end states have equivalent free energies to facilitate rapid transitioning between end
states. Though effective, a non-negligible amount of simulation time must be devoted to determining
these biases prior to production sampling, e.g., recent multisite λD simulations have taken 20-40 ns for
bias determination.6,44,48,49 With the advent of d-GSλD, discrete λ states can also be used to propagate
alchemical transformations while maintaining the sampling of all λ states within a single simulation. The
use of discrete λ states in d-GSλD is advantageous because conventional λD biasing potentials can be
simpli�ed from a functional form into a single scalar value per discrete λ state. This reduces the average
amount of time needed to identify biases to 5-10 ns.47 Furthermore, highly accurate free energy estimates
can be obtained from d-GSλD with the MBAR free energy estimator.15,47,50 Nonetheless, the
computational cost of identifying biases for GSλD, or λD in general, reduces the e�ciency and cost
advantages of these methods. Thus, this work was motivated by an effort to eliminate these costs and
accelerate RBFE calculations by removing the need to identify biases prior to production sampling. If
such “biasing runs” could be avoided, we estimate that λD-based methods could screen hundreds of
compound analogs at a fraction of the cost of FEP/TI methods for drug discovery.

In this report, we describe the use of continuous bias updates in conjunction with discrete Gibbs sampler
λ-dynamics to achieve rapid and accurate RBFE estimates. We refer to this new method as λ-Dynamics
with Bias Updated Gibbs Sampling (LaDyBUGS). In contrast to the static biases used with d-GSλD, and
which were determined with a Wang Landau-like algorithm,47 LaDyBUGS uses an aggressive dynamic
bias that changes and continuously drives the system to sample different λ states. This avoids the need
to run separate simulations for bias determination prior to production sampling and continually focuses
sampling towards the least visited λ states to provide exceptionally smooth sampling of all λ states.
FastMBAR, a GPU implementation of MBAR, is used for rapid free energy determination and on-the-�y
bias re�nement.50 For three protein-ligand benchmark systems we observe large e�ciency gains of
18−66-fold improvements with LaDyBUGS compared to TI/MBAR without compromising accuracy in the
predicted ΔΔGbind results. In the following sections, we describe the work�ow of LaDyBUGS, and we
evaluate it in terms of accuracy compared to experiment and e�ciency compared to TI/MBAR, as
implemented in OpenMM.51

Methods
λ-Dynamics with Bias Updated Gibbs Sampling is an advancement of the previously described discrete
Gibbs sampler λ-dynamics approach.47 Because much of the framework of LaDyBUGS builds on top of
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d-GSλD, we quickly review d-GSλD before describing the new work�ow for LaDyBUGS.

Discrete-Gibbs Sampler λ-Dynamics. To investigate alchemical transformations of a chemical system, d-
GSλD samples the joint distribution of atomic coordinates, X, and alchemical states, λ, (P(X, λ)).47 With
Gibbs sampling this is accomplished via indirect sampling of two related conditional distributions, P(X|λ)
and P(λ|X), which are formed by freezing a subset of variables, λ and X respectively. A single Gibbs
sampler (GS) step consists of sequential sampling of P(X|λ) and P(λ|X) to yield X and λ at time t (Xt,

λt).32,52,53 Molecular dynamics can be used to sample P(X|λ), the coordinate space of the chemical
system, while λt+1 can be chosen using a pseudorandom number generator to sample P(λ|X) (described
in more detail below). In contrast to the use of continuous λ variables used in most λD-based techniques,
the use of discrete λ states in d-GSλD was advantageous for several reasons. Notably it allowed for soft-
core potentials to be used in conjunction with the alchemical perturbations and it facilitated the
exploration of perturbations at multiple sites around a central ligand core, tasks not feasible using a
continuous λ variable with GSλD.46 Though no unique solution exists for de�ning discrete λ states
between multiple ligand end states, a representation of λ states along connective edges between ligands
provides a strongly connected map for sampling multiple ligands simultaneously and has yielded good
free energy results in prior benchmarks (Fig. 2).47 We note that to sample multiple ligands
simultaneously, a single λ state i (λi) consists of a vector of substituent-speci�c λ variables that scale the
interactions of each alchemical functional group individually.47 Like most λD-based methods, all λ values
within a single λi state must sum to 1.0 to prevent more than 1 ligand from interacting with the rest of the
chemical system at one time.34,41,42 Furthermore, as mentioned earlier, biases are necessary to reduce
free energy barriers in λ space and facilitate transitions between λ states at equilibrium. Discrete λ states
simpli�ed these biases into a single scalar quantity per state.47 Prior to production sampling, static
biases for each λ state were identi�ed with a Wang-Landau-like algorithm with ~ 5–10 ns of
sampling.54,55 Production sampling for a preset amount of GS steps then ensued, followed by a
FastMBAR50 calculation to compute all �nal relative free energy differences.

λ-Dynamics with Bias Updated Gibbs Sampling. In this newly reported method, LaDyBUGS uses Gibbs
sampling with discrete λ states to sample multiple ligand end states collectively within a single
simulation. However, in an endeavor to accelerate d-GSλD and achieve rapid free energy results, Gibbs
sampling is performed with dynamic biases, rather than static biases, to drive the exploration of many λ
states without prior bias determination. Figure 3 describes the work�ow of LaDyBUGS. Following
initialization and minimization of a chemical system, the atomic coordinates and the alchemical states
of the system are alternatively sampled.

While P(X|λ) continues to be sampled with MD, P(λ|X) is more involved. With LaDyBUGS, the conditional
distribution P(λ|X) can be described as a multinomial distribution (Eq. 1):
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1

k represents the total number of λ states and Ei is a scalar bias added to each λi state. The single-site VSS

and multi-site VMS potentials, necessary for investigating multisite perturbations of substituents i and j at
sites s and t, are de�ned by equations 2 and 3 respectively:

2

3

where X comprises atomic coordinates for both environment (x0) and alchemical components (xs,i), {x}
represents the set of all xs,i, and λs,i are the substituent-speci�c λ variables. However, if systems with only
single site modi�cations are studied, VMS equals zero and can be ignored. The conditional distribution
P(λ|X) at time t is thus formed by �rst calculating the potential energy of the system at coordinates Xt for

each alchemical state λi and normalizing to form a Boltzmann distribution. A new  state can then be
selected by randomly choosing a new state proportional to its probability with a pseudorandom number
generator. Finally, prior to the end of each GS step, the biases for all λ states are updated (as described
below). As shown in Fig. 3, Gibbs sampling is an iterative process that is performed repeatedly for a
preset amount time, usually quanti�ed as an amount of cumulative MD sampling. At designated break
points, Gibbs sampling is halted and FastMBAR is called to compute relative free energy differences (ΔGi)
for each λi state compared to the reference state, λ1. Advantageously, the MBAR input, i.e., equilibrium
energies of all λ states at every sampled con�guration of the system (X), are calculated and saved on-the-
�y when P(λ|X) is sampled, thus no trajectory postprocessing is necessary with LaDyBUGS. In addition,
though an MBAR calculation is traditionally performed only at the conclusion of an alchemical free
energy calculation, LaDyBUGS also uses MBAR free energy results at intermediate stages of an on-going
simulation to update and re�ne the Ei biases for the next set of Gibbs sampler steps. As shown below,
this helps provide smooth and even sampling of all λ states in a LaDyBUGS simulation.

Choice of Bias Function. In LaDyBUGS, the Ei biases are changed at the end of each Gibbs sampler step
and intermediate FastMBAR calculations are performed regularly throughout a simulation to provide

P (λi|X) =
exp (−β [VSS (X, λi)+ VMS (X, λi)+ E i])

∑K

k=1exp (−β [VSS (X, λ
k)+ VMS (X, λ

k)+ Ek])

VSS (X = (x0, {x}) , λ) =
M

∑
s=1

Ns

∑
i=1

λs,i (V (x0, xs,i) + V (xs,i))

VMS (X = (x0, {x}) , λ) =
M

∑
s=1

Ns

∑
i=1

M

∑
t=s+1

Nt

∑
j=1

λs,iλt,jV (xs,i, xt,j)

λ
i
t
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additional bias re�nement. When a LaDyBUGS simulation is initiated, a relatively aggressive biasing
scheme is used to ensure every λ state is sampled prior to running FastMBAR for the �rst time. For
example, in this work we used a �at external bias of 100 kcal/mol, which is added to each λi state every
time that state is sampled. While any �at bias value would work, in principle, a large bias (≥ 10 kcal/mol)
ensures rapid sampling of all λ states within a short amount of GS sampling at the onset of a LaDyBUGS
simulation. Prior to the �rst iteration of running FastMBAR, the total bias on λi is , where
Ni is the number of times λi was sampled. At time t = u updates, Gibbs sampling is stopped and a

FastMBAR calculation is performed to estimate the free energy differences of each λi state up to that
point in time ( ). At this stage of a LaDyBUGS simulation, the Ei biases are replaced with the
negative value of the MBAR results ( ) and an additional exponential bias39 is used to penalize
each λi state based on the number of times λi is sampled compared to the least-sampled state (

) (Eq. 4). After each GS step, the biases are updated with Eq. 4 to re�ect the new number of
counts per λi state, but the  component remains unchanged until the next FastMBAR
calculation. Through this continuous changing of the biases, complete and smooth sampling of all λ
states can be achieved (see Results/Discussion sections). In the supplementary information we present a
mathematical proof that, assuming the MD simulation used for sampling from P(X|λ) in each GS step
reaches equilibrium, the value of the scalar bias used during Gibbs sampling has no effect on the
FastMBAR calculation, facilitating the use of unbiased equilibrium energies in FastMBAR for free energy
estimation.

4

Computational Details
Our goal in benchmarking our new method is to demonstrate that it provides comparable accuracy to
classical methods for RBFE calculation with signi�cant improvements in e�ciency and cost savings. To
that end, we selected three literature examples to benchmark LaDyBUGS, DNA Ligase,56 Major Urinary
Protein 1 (MUP1),57 and c-Met kinase (c-Met),58 which have been featured in previous benchmarking
studies of FEP + and non-equilibrium switching.5,24,57 In total, binding free energies were calculated for 24
different ligands: 6 for MUP1, 7 for DNA ligase, and 11 for c-Met (Fig. 4). To avoid the complications of
charge-changing perturbations,5,59,60 only neutral ligands were used in this study.

Benchmark System Details. LaDyBUGS has been implemented in OpenMM and all simulations were run
using the CUDA platform.51 CHARMM-based force �eld parameters were used to represent different
components of the chemical systems. CHARMM36 was used for all protein atoms.61–63 Small molecule
ligand atoms were parameterized with ParamChem/CGenFF atom types64–66 and partial atomic charges
from the MATCH atom parameterization tool.67 The TIP3P water model was used to represent water.68

Initial protein complex starting coordinates were taken from PDBIDs 4CC5,56 1I06,69 and 4R1Y58 for DNA

E i = 100 ∗ Ni

ΔG
i
t=u

−ΔG
i
t=u

min [N (λ)]

−ΔG
i
t=u

E i = −ΔGi
t=u + 2Ni−min[N(λ)]
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Ligase, MUP1, and c-Met, respectively. Protonation states of titratable residues at a pH of 7.0 were
determined with the assistance of MolProbity70 and ProPKa.71 Protein systems were prepared and
solvated using the CHARMM-GUI webserver72 and cubic water boxes were constructed with a 10 Å buffer
between solute atoms and box edges. Enough ions to neutralize the system and create a 0.1 M NaCl
solution were added. Small molecule structure �les for MUP1 and DNA ligase ligands were constructed
manually using UCSF Chimera.73 Published structure �les were used as initial coordinates for the c-Met
compounds.5 Alchemical functional groups were created as multiple topology models, with explicit
atoms for every unique functional group, using the msld_py_prep utility.74 Unbound ligand cubic solvent
boxes were constructed with the convpdb.pl tool from the MMTSB toolset,75 with a 12 Å buffer between
solute atoms and box edges. Starting psf topology and pdb coordinate �les were generated with the
CHARMM molecular simulation package prior to running LaDyBUGS.76,77 A series of discrete λ states
were created to track alchemical transformations along connective edges between ligand end states,
following the procedure used for d-GSλD.47 In OpenMM, the CHARMM generated psf and pdb �les were
loaded in with the CharmmPsfFile and CharmmParameterSet classes. A nonbonded lookup table was
generated to handle CHARMM’s NBFIX nonbonded parameter exceptions, and custom non-bonded forces
were written to facilitate λ scaling of all alchemical functional groups. These custom nonbonded forces
included CHARMM’s force switching and λD-based soft-core potentials.41,78 All LaDyBUGS simulations
were performed at 25°C and 1 atm in the isothermal-isobaric ensemble. In OpenMM, this was
accomplished with a Monte Carlo barostat79,80 and a Langevin integrator81 with a friction coe�cient of
10 ps− 1. An integration time step of 2 fs was used, facilitated by constraining all hydrogen to heavy atom
bond lengths with the SHAKE algorithm.82 Periodic boundary conditions were employed, and force
switching was used to gradually smooth nonbonded forces to zero between 10 and 12 Å.78 During a
LaDyBUGS simulation, trajectory frames were saved at the end of a GS step, if an alchemical end state
was sampled. VMD83 and PyMOL84 were used to visualize and analyze simulation trajectories.

LaDyBUGS Free Energy Calculations. Ligands in the three test systems were grouped together as follows:
6 MUP1 ligands were sampled collectively, 7 DNA ligase ligands were sampled collectively, and 11 c-Met
ligands were grouped into two sets of 6 ligands each, including a common reference compound to
connect the datasets (Fig. 4). A symmetric lambda spacing (Δλ) of 0.1 was used for all transformations.
For ligands with a single site of alchemical perturbation, the number of total λ states (Nλ) scales
quadratically with the number of ligands analyzed (Ns), as shown in Eq. 5. As a result, 141 λ states were
used in LaDyBUGS calculations analyzing 6 ligands, and 196 λ states were used to evaluate 7 ligands
collectively. Though this work only investigates single-site perturbations, multisite perturbations would be
equally feasible as well, as demonstrated with d-GSλD.47

5

Nλ = Ns + ( − 1)
Ns (Ns − 1)

2

1

Δλ
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For each LaDyBUGS calculation, the chemical system was subjected to 1000 steps of energy
minimization at a random �xed λ state, followed by 5000 steps of MD equilibration to brie�y relax the
system. The work�ow in Fig. 3 was then followed, with iterative sampling of P(X|λ) and P(λ|X)
conditional distributions. A 100 time steps (200 fs)-long MD trajectory was used to sample P(X|λ), and
biases were updated after every P(λ|X) sample was taken. After 1000 Gibbs sampler steps, a FastMBAR
calculation was performed, and the  results were used to update the biases according to Eq. 4.
Gibbs sampling with bias updates then resumed. LaDyBUGS simulations were run for 15 ns each, during
which FastMBAR was called 75 times for bias re�nement (every 1000 GS steps). Simulations were run in
triplicate for a total of 45 ns of simulation time expended per compound group. FastMBAR was used to
collate data from all duplicate runs to yield the �nal free energy results, and free energy differences were
bootstrapped to provide an estimate of precision. To further account for the variability in the relative free
energies and bootstrapped errors, this last FastMBAR calculation was performed 10 times and the
average value of the relative free energy and bootstrapped error estimates were used as the �nal results.
To investigate the effects of running LaDyBUGS for shorter or longer, simulations were also run for 5 ns
and 25 ns each, respectively. Computed relative free energy differences (ΔΔGcomp) were converted into

absolute free energy differences (ΔGcomp) for comparison to experiment (ΔGexpt) with Eq. 6.16,49

6
TI/MBAR Free Energy Calculations. For each chemical system, pairwise perturbations were run between a
reference ligand, highlighted with a gray box in Fig. 4, and all other ligand analogues. This perturbation
approach has sometimes been called a “star map” (Fig. 2); redundant calculations for cycle closure were
not performed to maximize TI/MBAR e�ciency.18–20 Alchemical transformations were accomplished
over 11 λ windows with a Δλ schedule of 0.1. For each λ window, the chemical system was subjected to
1000 steps of energy minimization and 5000 steps of MD equilibration. MD simulations were run for 5 ns
per λ window, and con�gurations were saved every 100 time steps (200 fs) for a subsequent FastMBAR
analysis. Similar to LaDyBUGS, each calculation was run in triplicate for a total of 165 ns of sampling per
pairwise perturbation. Con�gurations from all λ windows and duplicates were pooled together and
supplied to FastMBAR to estimate a �nal relative free energy difference. We refer to these results as
“TI/MBAR (5 ns/window)”. Bootstrapping and duplicate FastMBAR calculations were performed to
account for variability in the free energy differences and bootstrapped errors, and averaged values were
used as the �nal results. Relative binding free energies were again converted into absolute binding
a�nities (ΔGbind) for comparison to LaDyBUGS and experiment. To investigate the effects of running
TI/MBAR for longer, λ window simulations were also extended and sampled for 15 ns each, referred to as
“TI/MBAR (15 ns/window)”. These longer simulations required 495 ns of total sampling for a single
pairwise perturbation.

Results And Discussion

ΔGt=u

ΔGcomp = ΔΔGcomp − ( − )
∑ΔΔGcomp

n

∑ΔGexpt

n
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Benchmarking Results. In this work, we assess the accuracy and e�ciency of the introduced LaDyBUGS
method compared to experiment and a community standard alchemical free energy method (TI/MBAR).
Free energies of binding were calculated for 24 ligands bound to one of three benchmark protein
systems: DNA ligase, MUP1, or c-Met. Figure 5 plots the correlation between experiment and computed
ΔGbind with LaDyBUGS (15 ns) and TI/MBAR (5 ns/window); all data points are reported in Table S1 of

the Supplementary Information. Root mean square error (RMSE) and Kendall τ scores85 were computed
for each test system individually and for the combined dataset. Using these metrics, we see a uniform
improvement in both RMSE and Kendall τ with LaDyBUGS relative to TI/MBAR. For all 24 ligands, the
LaDyBUGS RMSE was 0.89 kcal/mol and the Kendall τ was 0.67. For every test case, the calculated
LaDyBUGS RMSE was about or below 1.0 kcal/mol, a typical goal and state-of-the-art for predictive
accuracy in free energy calculations for drug discovery.5–7, 11,16,17,24 It is important to note that accuracy
is dependent on both correct force �eld representation of a chemical system and thorough
con�gurational sampling with a given free energy method.86 The larger RMSE of 1.03 kcal/mol and
reduced Kendall τ of 0.59 from TI/MBAR (5 ns/window), which used the same force �eld parameters as
LaDyBUGS, suggests LaDyBUGS is providing improved sampling pro�ciency over TI/MBAR for the same
benchmark systems. This seems extraordinary, since LaDyBUGS used 19.2 times less sampling than
TI/MBAR (5 ns/window) (Fig. 6).

Because both LaDyBUGS and TI/MBAR calculations used the same force �eld parameters, we can also
compare the precision of their ΔGbind predictions (Fig. 6). The two computational methods agree well
with each other, with an overall RMSE of 0.43 kcal/mol. Considering that most protein-ligand ΔGbind

calculations have computed uncertainties between 0.3–0.5 kcal/mol,16,48,49 and that LaDyBUGS
bootstrapped errors ranged from 0.08–0.48 kcal/mol (Table S1), these results suggest good agreement
exists between these free energy methods. To explore the effect of sampling time on the ΔGbind results,
we also compared these methods with less sampling per LaDyBUGS (5 ns) simulation and more
sampling per TI/MBAR calculation (15 ns/window). In Fig. 7, agreement between LaDyBUGS simulations
with only 5 ns of sampling compared to TI/MBAR (5 ns/window) remains high with a RMSE of 0.40
kcal/mol and a Kendall τ of 0.83. As expected with a reduction in sampling, the mean bootstrapping error
for LaDyBUGS increased from 0.21 to 0.37 kcal/mol, although the RMSE between LaDyBUGS (5 ns) and
experiment remains about the same at 0.92 kcal/mol. This level of agreement seems remarkable
considering LaDyBUGS (5 ns) used 57.8 times less sampling on average than TI/MBAR (5 ns/window).
For the DNA ligase test case, LaDyBUGS used 66 times perturbations in all benchmark systems, for the
protein-bound edge of the thermodynamic cycle less sampling than TI/MBAR. Thus, from a total of 60 ns
expended to sample 24 alchemical (Fig. 1), LaDyBUGS (5 ns) provided ΔGbind predictions with errors at or
below 1.0 kcal/mol compared to experiment. On a per-ligand basis, LaDyBUGS spent only an average of
2.5 ns of protein-ligand sampling. These results highlight that signi�cant cost savings are achievable
with LaDyBUGS without compromising accuracy in the computed ΔGbind results. In contrast, TI/MBAR
required almost 3.5 µs of total protein-ligand sampling (165 ns/ligand), without employing commonly
used redundant calculations for cycle closure and hysteresis error reduction.18–20 To test LaDyBUGS
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convergence, 25 ns simulations were also run. No large deviations were observed and the RMSE between
15 ns LaDyBUGS and 25 ns LaDyBUGS simulations was 0.11 kcal/mol, well within statistical noise
(Table S1). The RMSE of 0.23 kcal/mol between 5 ns and 25 ns LaDyBUGS results was slightly larger but
still within noise, suggesting a high degree of convergence even with a minimal amount of LaDyBUGS
sampling. Figure 7 also shows the effects of extending TI/MBAR sampling to 15 ns/window for the DNA
ligase and c-Met systems. Large improvements are observed in comparison to TI/MBAR (5 ns/window).
The RMSE to experiment improves to 0.93 kcal/mol, and the RMSE to LaDyBUGS decreases to 0.27
kcal/mol. The strong agreement between short 5 ns runs of TI/MBAR and LaDyBUGS, as well as between
the longer 15 ns runs of TI/MBAR and LaDyBUGS, suggests LaDyBUGS is able of deliver comparable
accuracy as TI/MBAR with signi�cant cost savings in terms of sampling (18–66 times less simulation
time required). Improved e�ciency with LaDyBUGS directly stems from its ability to investigate several
alchemical perturbations collectively within a single simulation, without the need to break up
transformations into separate λ windows spread across multiple separate simulations (Fig. 2).

Uniformity of λ Sampling with LaDyBUGS. One potential issue associated with expanded ensemble free
energy methods is a di�culty in achieving sampling smoothness of all λ states, e.g., avoiding becoming
stuck primarily sampling one or several states too often and neglecting to sample all other λ states.41,87

This problem has been observed in an expanded ensemble investigation that used a Wang-Landau
algorithm to propagate λ switching.28 In conventional λD simulations, including d-GSλD, static biases are
added to a simulation to reduce free energy barriers between λ states and facilitate transitions between λ
states.41,47 In most situations these biases work well, all λ states are evenly sampled, and reliable free
energy predictions are obtained. But burn-in time is required to �rst identify appropriate biases for these
methods, which decreases their overall e�ciency. Furthermore, if the protein-ligand system experiences a
rare event during production sampling, such as a conformational change associated with a slow degree
of freedom, static biases may be mismatched to the free energy surface of the new conformation and
thus unable to facilitate continuous λ sampling; the simulation would become trapped, requiring new
biases to be identi�ed and sampling to be restarted. However, the dynamic biases used in LaDyBUGS
continuously propagate the sampling of many λ states without prior burn-in time for bias identi�cation
and allow for conformational plasticity of the chemical system without getting trapped in a small number
of λ states. Biases from Eq. 4 rely solely on the number of times each λ state has been sampled and on-
the-�y FastMBAR free energy estimates; thus, LaDyBUGS can provide incredibly smooth λ sampling
throughout an entire simulation. Figure 8 shows the difference between the minimum and maximum
number of times a λ state was sampled as a function of time, referred to as “counts”, averaged across all
protein simulations used for benchmarking. The difference does not exceed a count of 4, even though λ
states are sampled more than 500–800 times by the end of each simulation. This level of sampling
smoothness ensures that LaDyBUGS does not become trapped in λ sampling and provides rapid
transitions between multiple ligand end states for accurate free energy calculation with FastMBAR.

LaDyBUGS Samples a Mixture Distribution of λ States. Smooth transitions between states are also
facilitated by strong energetic overlap between neighboring λ states. In our benchmark studies, c-Met
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group 1 consists of different 5-membered heterocycles while group 2 contains a mixture of carbamate
and aryl substituents (Fig. 4). As shown in Fig. 9 for two example c-Met group 1 and 2 perturbations, a
uniform Δλ schedule provides good energetic overlap between both similar (c-Met Group 1) and
dissimilar (c-Met Group 2) transformations. This enables facile transitions to adjacent λ states when
sampling the P(λ|X) conditional distribution (Fig. 3). As shown in Fig. 9, most transitions occur to + 1 or + 
2 states away, although large jumps (> 4 states) are sometimes observed. The degree of overlap between
λ states affects the transition distance traveled, with higher overlap facilitating larger jumps (see also
Table S2). The mean transition distance traveled for c-Met group 1 is 2.47 states, but it is smaller at 1.64
states for c-Met group 2 which has less overlap between adjacent states (Fig. 9). Fortuitously, transitions
between energetically similar and adjacent λ states enables the chemical system to quickly relax and
equilibrate during the brief 200 ps MD simulation whenever a new λ state is sampled. Therefore, we
assume the MD con�guration drawn from P(X|λ) in each GS step represents an equilibrium sample. By
constant sampling of different λ states and atomic coordinates, LaDyBUGS can e�ciently sample a
mixture distribution of λ states within a single simulation. Pairing free energy determination with the
MBAR algorithm is natural then, because MBAR pools and reweights samples as if they originated from a
mixture distribution.15,88 Our proof in the SI demonstrates that samples drawn from the same λ state with
different external biases can be treated as coming from the same state. We then use FastMBAR to obtain
equilibrium free energy results from a LaDyBUGS simulation, under the stated assumptions of the proof.
Furthermore, because sampling of the P(λ|X) conditional distribution requires energies to be calculated
for every λ state at every sampled P(X|λ) con�guration, no postprocessing of LaDyBUGS trajectories is
required to run MBAR; all necessary information is generated on-the-�y and available at the conclusion of
a LaDyBUGS simulation.

Software Implementation. LaDyBUGS has been implemented in OpenMM51 and all LaDyBUGS scripts are
available for download on the Vilseck-Lab GitHub page. One advantage of using OpenMM for LaDyBUGS
is the ability to use force groups to partition the interactions of different components of an alchemical
system and thus enable λ state-dependent energies to be evaluated without recalculating the energy of
the entire chemical system. This feature speeds up the sampling of P(λ|X) which requires λ-dependent
energies to be calculated for every λ-state at every P(X|λ) con�guration. Consequently, we �nd that
sampling a group of 6 ligands collectively with 141 λ states is only marginally slower than performing a
standard pairwise perturbation of 11 λ states with LaDyBUGS. For example, on a NVIDIA 2080 TI
graphics processing unit (GPU), 6 duplicate 5 ns LaDyBUGS c-Met group 1 cmet_9 → cmet_10 pairwise
perturbations each took ca. 10.85 hours to run. Similarly, 6 duplicate 5 ns simulations of all 6 c-Met
group1 ligands sampled collectively took ca. 11.01 hours each. Thus, the combined 6-ligand calculation
was only ~ 1.5% slower, highlighting the effectiveness and cost-savings of sampling multiple ligands
simultaneously with LaDyBUGS. With our current implementation of LaDyBUGS in OpenMM and using an
assumption of sampling 6 perturbations per LaDyBUGS simulation, we estimate that ca. 4–13 compound
perturbations can be investigated per day per 1 GPU with LaDyBUGS using a range of 15 ns to 5 ns of
sampling per calculation, respectively. On a modest cluster of 25 GPUs, this readily scales to 100–325
perturbations per day! Hence, rapid high-throughput screening of hundreds of lead compound analogues
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with highly accurate free energy predictions is obtainable with LaDyBUGS within a day using minimal
computational resources.

Work is on-going to further optimize our implementation of LaDyBUGS in OpenMM as well as incorporate
it into other software suites, including CHARMM. If a program lacks the ability to partition energetic
interactions via a “force group”-like algorithm, P(λ|X) may be sampled by calculating the energy of the
entire chemical system; all non-alchemical environment-to-environment interactions should cancel out
when λ state-dependent energies are compared. Though some wall-time slowdown may be expected to
occur as a consequence of running a larger energy evaluation, we anticipate that LaDyBUGS would still
provide highly e�cient results, nonetheless. Incorporating LaDyBUGS into CHARMM, or other programs,
could provide additional bene�ts too. For example, the CustomNonbondedForce class in OpenMM makes
it challenging to use particle mesh Ewald (PME) methods with LaDyBUGS. However, a λD-based PME
approach is already available in CHARMM and BLaDE for running MSλD simulations,45,76,77,89 and this
could be utilized with LaDyBUGS in CHARMM to facilitate the inclusion of long-range electrostatic
interactions in future calculations.

Multisite sampling. Finally, we emphasize that the e�ciency gains for LaDyBUGS reported in this work
used only single site perturbations, where substituent group modi�cations occurred at only one site off a
central ligand core. Multisite perturbations, with functional group substitutions occurring at multiple sites
around a ligand core, could also be accomplished by using the previously described d-GSλD approach for
creating two- or three-dimensional λ states.47 Such LaDyBUGS simulations may need longer total
sampling to obtain converged results due to the increased number of λ states required for multisite
sampling, but this has not been tested yet. Instead, this work focused on single site perturbations to
match structure-activity relationship strategies typically pursued experimentally by changing one
component of a lead compound at a time.16,56−58 In this manner, LaDyBUGS seems especially adept at
exploring incremental changes to a lead compound. Future investigations will reveal the applicability of
LaDyBUGS to tackling larger or more challenging perturbations or for molecular decoupling to compute
absolute free energies of binding directly.

Conclusions
Alchemical free energy methods such as FEP and TI have played pivotal roles in the lead optimization
phase of drug design,1–3,5−11 yet they require large computational costs to explore many tens to hundreds
of alchemical perturbations. λD-based methods have shown improved scalability and e�ciency in
exploring large chemical spaces with reduced costs.6,33,34,44,46−49 Hence, the object of this study was to
investigate new approaches to further accelerate λD-based free energy methods by eliminating burn-in
time commonly expended to identify static biases prior to production sampling. In this work, we have
described the λ-Dynamics with Bias Updated Gibbs Sampling method, which is a Gibbs sampler-based λ-
dynamics approach. To eliminate time spent for bias identi�cation, LaDyBUGS uses continuous bias
updating to rigorously drive the sampling of multiple λ states, and consequently multiple different
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ligands, simultaneously within a single simulation. This results in very even and complete sampling of all
λ states and signi�cant e�ciency gains, compared to TI/MBAR. Evaluated against three experimental
benchmarks, LaDyBUGS root-mean-square errors of computed ΔGbind compared to experiment were less
than 1 kcal/mol on average with only 5 to 15 ns of sampling per simulation. LaDyBUGS RMSEs were
lower than the corresponding error with TI/MBAR in all test cases notwithstanding the use of only ~ 2–5%
of the total amount of TI sampling. From these results, we estimate that highly accurate ΔGbind estimates
can be obtained with only ~ 2.5–5 ns of LaDyBUGS sampling per ligand. From timing benchmarks of
LaDyBUGS implemented in OpenMM, we estimate that ca. 4–13 perturbations can be examined per day
per GPU with LaDyBUGS, depending on the length of sampling. Using a modest amount of GPU resources
(with as few as 25 GPUs), this can easily scale to hundreds of compounds examined within a day. We
envision that the rapid delivery of ΔGbind predictions via LaDyBUGS could thus be used to screen
hundreds of compound analogs with minimal computational costs, accelerating computer-aided drug
discovery at an incredible pace.
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Figure 1

Thermodynamic cycle for computing relative binding free energies. 
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Figure 2

λD-based methods sample a strongly connected graph of ligand end-states. E�ciency gains obtained
with λD-based methods over traditional TI or FEP free energy methods originate from two key sources: (1)
all physical and intermediate λ states are sampled within a single simulation, represented as a solid line,
and (2) multiple ligands can be sampled simultaneously. In contrast, without redundant calculations for
cycle closure, TI or FEP methods sample a weakly connected graph via pairwise perturbations (a “star
map”) and require many intermediate simulations to be run, represented as dashed lines with each dash
representing a separate simulation. 
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Figure 3

The LaDyBUGS work�ow. Gibbs sampling is used to sample atomic coordinates and λ states of an
alchemical system; a dynamic bias is continually updated to ensure continuous sampling of all λ states.
Free energy differences and periodic bias re�nements are computed with FastMBAR.
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Figure 4

Three benchmark systems with 24 total ligands were used to evaluate and compare LaDyBUGS and
TI/MBAR. LaDyBUGS calculations evaluated several ligands within a single simulation, and compounds
were grouped as shown above. For the TI/MBAR calculations, a star map of pairwise perturbations was
utilized (Figure 2). All relative free energy differences were calculated with respect to the gray-boxed
reference compound for each system. Ligand numbering was kept consistent with the original
experimental report (DNA ligase56 and c-Met58) or a previous benchmark study (MUP157). 

Figure 5
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Computed LaDyBUGS and TI/MBAR ΔGbind compared to experiment. The center black line represents
perfect one-to-one correlation; the shaded gray area represents an error of ± 1 kcal/mol. Root-mean-
square errors and Kendall τ statistics are reported.

Figure 6

Correlation between LaDyBUGS and TI/MBAR computed ΔGbind results. The center black line represents
y=x; the shaded gray area represents an error of ± 1 kcal/mol. Root-mean-square errors, Kendall τ
statistics, total amount of sampling, and e�ciency gain of LaDyBUGS over TI/MBAR in terms of
sampling only is reported.
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Figure 7

(Top) Correlation between 5 ns LaDyBUGS simulations with experiment (left) and TI/MBAR (right).
(Bottom) Correlation between TI/MAR 15 ns/window runs compared to experiment (left) and 15 ns
LaDyBUGS results (right), for DNA Ligase and c-Met data sets only. The center black line represents ideal
one-to-one agreement; the shaded gray area represents an error of ± 1 kcal/mol. Root-mean-square errors,
Kendall τ statistics, total amount of sampling, and e�ciency gain of LaDyBUGS over TI/MBAR in terms
of sampling only is reported.
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Figure 8

The average difference between the maximum and minimum number of times a λ state was sampled
(referred to as “counts”) as a function of time. Averages were calculated using all LaDyBUGS benchmark
simulations.
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Figure 9

(Left) Normalized LaDyBUGS con�guration energy distributions between adjacent λ states in two
example c-Met group 1 and a c-Met group 2 perturbations. (Right) Normalized probabilities of the
transition distances between λ states sampled in all c-Met group 1 and c-Met group 2 LaDyBUGS
simulations. The greater the degree of overlap between adjacent λ states, the more probable long-range λ
transitions become.
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