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Abstract
Urbanicity is a growing environmental challenge for mental-health. While the impact of urban life on brain and behavior might
be distinct in different sociocultural conditions and geographies, there might exist features shared between regions. To
investigate correlations of urbanicity with brain structure and function, neuropsychology and mental illness symptoms in young
people from China and Europe, we developed a remote-sensing satellite-measure termed ‘UrbanSat’ quantifying population-
density, a general measure of urbanicity. UrbanSat is correlated with brain volume, surface area and brain-network-connectivity
in the medial prefrontal cortex and cerebellum, which mediate its effect on perspective-taking and depression- symptoms.
Susceptibility to high population-density is greatest during childhood for the cerebellum and from childhood to adolescence for
the prefrontal cortex. As UrbanSat can be generalized to different geographies, it will enable assessing the impact of urbanicity
on mental illness and resilience globally, especially in young people where prevention and early interventions are most effective.

Introduction
Mental disorders account for 28% of disease burden among non-communicable diseases1. Environmental factors account for
up to 50% of the attributable risk for mental disorders2. The environmental measures investigated in mental-health research
include not only individual life events3, such as trauma, abuse, neglect, or psychosocial stress, but also, albeit to a lesser extent,
individual physical environments4.

Urbanicity, the living conditions particular to urban areas, is among the most important environmental challenges globally5.
While the physical environments are hallmarks of a city, urbanicity also includes the social environment and access to health
and social services5. The physical, social and service dimensions of urbanicity form a complex relation with each other that has
hitherto prevented the development of a unifying concept and measurement of urbanicity5.

In 1950, less than 30% of the world’s population lived in urban areas, but this number has increased to presently 55% and is
expected to rise to 68% in 20506. While Europe is among the most stable urbanized regions, Asia is home to 54% of the world’s
urban population and subject to massive demographic changes: for example, by 2050 China will have added 255 million urban
dwellers7. The increasing global urban population emphasizes the importance of investigating how the living conditions
particular to urban areas affect human brain and behavior.

We were interested to investigate the relation of urbanicity with brain and behavior in different sociocultural conditions and
geographies and further to identify possible susceptibility periods across the life span in young people, enabling targeted
preventions when the developing brain may benefit most from environmental modification. Whereas there might be distinct
influences of increased population-density in urban settings in different sociocultural conditions and geographies, there are
likely to exist common associations with brain and behavior shared in different areas of the globe.

Several studies have focused on the relation of individual physical environments linked to urban living with brain and behavior,
such as green space, air and noise pollution4,8. However, a more general measure of urbanicity that can objectively assess urban
environment with high spatiotemporal resolution and coverage is still lacking. Such a general measure is important, as it
registers the overall and susceptibility-period effects of urbanicity on brain and behavior, and may in a subsequent step enable
the identification and ranking of the individual features of the physical, social and service environment, and their interactions,
that contribute most to the observed relation.

Traditionally, the characterization to urbanicity was carried out using census data, which are ascertained infrequently in different
ways and at different times in different countries5. Thus, census data are less useful for comparing urbanicity across different
countries. More recently, the Global Human Settlement Layer (GHSL) has provided globally standardised human settlements,
including urbanisation and urbanicity9. GHSL data, however, are only available at large and infrequent intervals, namely 1975,
1990, 2000 and 20159.
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To facilitate global comparative analyses of the overall effects of urbanicity on brain and behavior and to identify potential
susceptibility-periods, dense quantitative and longitudinal environmental measures that can be obtained from different
geographies are required. Remotely-sensed satellite-data provide globally standardized quantitative environmental measures
enabling the tracing of environmental features going back nearly 50 years10. Population-density is a well-established and
quantifiable general measure of urbanicity, frequently applied for neighbourhood classification and used around the globe9.
Here, we aimed to use population-density as a general measure of urbanicity to investigate if the urban environment is
correlated with brain and behavior, and if these correlations are comparable in China and Europe. Specifically, we developed a
satellite-based measure of population-density termed ‘UrbanSat’, and applied UrbanSat in China and Europe to investigate the
relation of population-density, as a proxy of urbanicity, with brain structure, function and behavior in two neuroimaging datasets
of young people: as exploration dataset, we used the Chinese CHIMGEN cohort (www.chimgen.tmu.edu.cn)11 and as replication
dataset, we used the European longitudinal IMAGEN-cohort (www.imagen-europe.com)12. While we did not have any a priori
hypotheses, we were interested in investigating if: (i) UrbanSat is associated with brain structure, function and behavior; (ii)
Brain features associated with UrbanSat mediate the association between UrbanSat and behavior; (iii) Correlations of UrbanSat
with brain and behavior are similar in Chinese and Europeans; Furthermore, we were interested in (iv) identifying susceptibility-
periods for the effects of UrbanSat during child and adolescent development on brain and behavior. A schematic summary is
shown in Fig. 1.

Results
Demographics

We recruited young-adult participants with lifetime-residential geographies from CHIMGEN (n=3306) and IMAGEN second
follow-up (FU2) (n=561). Detailed inclusion and exclusion criteria are presented in Supplementary Tables 1 and 2.
Demographics of samples used in statistical analyses and sample attrition are described in Supplementary Table 3 and
Supplementary Figs.1-2. Demographic comparisons between the analysed sample and total sample are shown in
Supplementary Table 4. Demographic variables showing significant differences between the analysed sample and excluded
sample were adjusted during analyses (Online Methods and Supplementary Tables 5-6).

UrbanSat: a satellite-based measure of urbanicity

To develop a satellite-based measure of urbanicity, we selected information from nine types of satellite registrations relevant for
detecting and characterising urban settlements, including night-time light (NL), normalized difference built-up index (NDBI),
normalized difference water index (NDWI), normalized difference vegetation index (NDVI), and five measures derived from land
cover mapping (Built-up%, cropland%, grassland%, forest% and water body%) (Online and Supplementary Methods,
Supplementary Table 7). After imputing the nine annual satellite registrations for the participants with missing values using
Bayesian data augmentation (Supplementary Table 8 and Online Methods), we carried out a ten-fold cross validation stratified
by spatiotemporality to optimize the confirmatory factor analysis (CFA) models, and to predict annual UrbanSat scores of each
participant from birth to the age of recruitment (Online Methods). UrbanSat was generated by the optimized CFA model
consisting of NL, built-up%, cropland% and NDVI, which best captured variation of urban features while maximizing goodness-
of-fit. UrbanSat in CHIMGEN (Supplementary Tables 9-10) and IMAGEN-FU2 (Supplementary Tables 11-12) had a Tucker-Lewis-
Index (TLI) and comparative-fit-index (CFI)>0.95, root mean-square-error of approximation (RMSEA)<0.06 and standard root
mean-square-residual (SRMR)<0.08, indicating excellent model fit (Online Methods). UrbanSat was robust across time and
geographies, as validated by its correlations with ground-level population-density from GHSL-POP9 for China and Europe for the
years 1990, 2000 and 2015 (Fig.2). Histograms of the distribution of UrbanSat score in each center are shown in Supplementary
Fig.3. UrbanSat showed higher correlations with population-density in different residential categories (rural, town, city and
overall), countries (Asia and Europe) and years (1990, 2000 and 2015) than any individual satellite-measures (Fig. 2).

Correlations of UrbanSat with brain structure

http://www.chimgen.tmu.edu.cn/
http://www.imagen-europe.com/
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Voxel-wise multiple-regression of mean UrbanSat before age 18 with brain gray-matter-volume (GMV) was performed in
CHIMGEN (n=2176). We controlled for age in all analyses, thus accounting for the older and wider age spread in CHIMGEN (age:
23.54±2.33 years) compared to IMAGEN (age: 18.89±0.66 years). We also controlled throughout for gender, education, site,
body-mass-index (BMI), genetic population-stratification and socioeconomic status (SES) (Supplementary Tables 13-14). Total
intracranial volume was controlled in all imaging analyses, except for the analyses of cortical thickness (CT) and surface area
(SA), where mean CT and total SA were controlled, respectively. Parental history of mental illness was an exclusion criterion for
CHIMGEN and controlled for in IMAGEN. Uncorrected statistical maps of the association of UrbanSat with brain GMV in
CHIMGEN adjusting for confounding covariates under parametric testing and non-parametric permutation testing are shown in
Fig.3a and Supplementary Fig. 4. We found negative correlation of UrbanSat with medial prefrontal cortex (mPFC) volume (peak
MNI-coordinate: x=-7.5, y=30, z=45; 676 voxels; peak t-value=-6.42; Fig.3b) and a positive correlation with cerebellar volume
(peak MNI-coordinate: x=10.5, y=-51, z=-18; 978 voxels; peak t-value=6.22; Fig.3b) (Parametric testing Pc<0.05, family-wise error
(FWE) corrected for voxel numbers, imaging modalities and data categories; see Online Methods). We confirmed the results with
non-parametric permutation-testing (TFCE-FWE, Pc<0.05, Supplementary Methods and Supplementary Fig.4). Potential
imputation-bias was ruled-out by sensitivity-analyses in 1491 participants with complete satellite and neuroimaging data
(Supplementary Fig.5 and Supplementary Results). Uncorrected and adjusted vertex-wise correlation maps of UrbanSat with
whole-brain CT and SA are shown in Supplementary Fig.6 (n=2164). The mPFC-region of interest (ROI) from GMV-analyses was
projected onto fsaverage surface of Freesurfer v5.3.0 (Supplementary Fig.7). UrbanSat was correlated with mean SA (rho=-0.07,
P=8.12×10-4) but not mean CT (rho=-0.02, P=0.28) of the mPFC cluster (Fig.3b and Supplementary Table 15). Using voxel-wise
multiple regression of individual satellite- measures with GMV, we found significant correlation with mPFC-GMV being driven by
NL and built-up%, and correlation with cerebellar-GMV being driven by NL and cropland%. We found no correlation of NDVI with
either mPFC- or cerebellar-GMV (Supplementary Fig.8). We observed similar results in GHSL ground-level population-density
data, thus validating the relation of UrbanSat and GMV (Supplementary Fig.8).

In IMAGEN-FU2 (n=415), we replicated CHIMGEN findings. The uncorrected statistical correlation map of UrbanSat with brain
GMV in CHIMGEN showed significant spatial correlation (r=0.40, P<0.001) with that of IMAGEN-FU2 (Supplementary Fig.9).
UrbanSat was correlated with GMVs of the mPFC (rho=-0.20, P=4.49×10-5) and cerebellum (rho=0.11, P=0.03), and SA of the
mPFC (rho=-0.15, P=3.01×10-3), but not CT of the mPFC (rho=-0.03, P=0.58) (Fig.3b and Supplementary Table 15). In voxel-wise
analyses, we validated negative correlation of UrbanSat with mPFC volume and positive correlation with cerebellar volume
(Supplementary Fig.10), both driven by NL and built-up% (Supplementary Fig.11).

To exclude possible scanner and site effects, we performed separate analyses for each acquisition-site of CHIMGEN and
IMAGEN-FU2, carrying out a meta-analysis with an inverse variance-weighted random-effects model (Online and Supplementary
Methods). UrbanSat remained significantly negatively correlated with mPFC-GMV and SA, and positively correlated with the
cerebellar-GMV (Supplementary Fig.12 and Supplementary Table 16). Heterogeneity of effect sizes was from low to moderate
for all regions (I2-range: 0.19%-41.35%) (Supplementary Table 16). Thus, the observed correlation between UrbanSat and brain
structure is robust across geographies and socio-cultural conditions.

We applied distributed lag models (DLMs) to identify susceptibility-periods of lifetime UrbanSat on GMV and SA (Online
Methods). We observed a negative association of UrbanSat with mPFC-GMV from age 4 to 15 (Fig.3c) and SA from age 5 to 7
(Fig.3c), indicating a susceptibility-period during childhood and adolescence, driven by NL, built-up%, cropland% and NDVI
(Supplementary Fig.13). Correlation of UrbanSat with cerebellar GMV was significant from age 1 to 10 years, indicating a
susceptibility-period during childhood (Fig.3c), driven by NL, built-up% and cropland% (Supplementary Fig.13).

To investigate the relation between UrbanSat and brain development, we used the longitudinal IMAGEN dataset to calculate
volumetric (n=340) and SA/CT change-rate/year (n=325) between baseline (BL) at 14 and FU2 at 19 years (IMAGEN BL-FU2).
Consistent with the susceptibility periods identified, UrbanSat was significantly correlated with brain volumetric development in
the mPFC-ROI (rho=0.17, P=2.10×10-3), but not with the cerebellum-ROI (rho=0.02, P=0.70). This correlation was driven by mPFC
SA changes (rho=0.24, P=1.31×10-5), not by CT changes (rho=-0.01, P=0.93) (Supplementary Table 15).
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To measure the relation between age of migration and brain structure, we split CHIMGEN participants into who migrated to the
city before age 14 years (n=229, mean-age at migration=8.24±4.86 years), after age 14 (n=1385, mean-age at
migration=17.17±2.68 years), and life-long city-dwellers (n=562) (Fig.3d). We found that participants born in the city or early
migrants showed smaller mPFC-GMV (P=0.040) and SA (P=7.28×10-9) as well as greater cerebellar-GMV (P=5.00×10-5) than
those with later exposure (Fig.3e and Supplementary Table 17).

No correlation of UrbanSat with white-matter microstructure

Using tract-based spatial statistics (TBSS) analysis of diffusion-tensor imaging (DTI) data, we did not find significant
correlation of UrbanSat with brain fractional anisotropy (FA) in either CHIMGEN or IMAGEN-FU2 (TFCE-FWE Pc <0.05).

Correlations of UrbanSat with resting-state functional network connectivity

Using group-independent-component-analysis (GICA) of estimated 30 independent components (Supplementary Methods), we
identified 17 resting-state networks (RSNs) related to cognitive and sensory-motor processes13 in both CHIMGEN and IMAGEN
(n=2156) (Supplementary Fig.14). For each RSN, we tested the relation between mean UrbanSat and within-network functional
connectivity (WNFC). A voxel-wise multiple-regression analysis controlling for all confounders revealed a negative correlation of
UrbanSat with WNFC in the mPFC of the anterior default-mode-network (aDMN) (peak MNI-coordinate: x=-3.5, y=69, z=0; 142
voxels; peak t-value=-6.96), and positive correlations in the cerebellar vermis of the cerebellar-network (CN) (peak MNI-
coordinate: x=3, y=-72, z=-9; 122 voxels; peak t-value =7.21), in the left lingual gyrus (LG) of the medial visual-network (mVN)
(peak MNI-coordinate: x=-12, y=-90, z=3.5; 143 voxels; peak t-value=6.97) and in the left LG of the lateral visual-network (lVN)
(peak MNI-coordinate: x=-24, y=-81, z=-12; 141 voxels; peak t-value=6.97) (FWE Pc<0.05, additionally corrected for 17 RSNs,
Online Methods) (Fig. 4a). Voxel-based correlations of individual satellite-measures with WNFCs of each RSN are shown in
Supplementary Fig.15. The correlations of UrbanSat with WNFCs in CHIMGEN were replicated in ROI-based analyses in IMAGEN-
FU2 (n=351) (aDMN: rho=-0.18, P=7.20×10-4; CN: rho=0.21, P=1.41×10-4; mVN: rho=0.24, P=1.05×10-5; lVN: rho=0.19, P=3.97×10-

4) (Fig.4b and Supplementary Table 15). Only the aDMN and CN results were replicated in voxel-wise analyses in IMAGEN-FU2
(Supplementary Fig.16).

In 136 between-network functional connectivity (BNFC), UrbanSat was correlated with 49 BNFCs in CHIMGEN (Pc<0.05, 10,000
permutations, see Online Methods) (Fig.4e), four of which were replicated in IMAGEN-FU2 (Fig.4f). These four BNFCs (aDMN-CN,
aDMN-ECN, aDMN-rFPN and rFPN-lFPN) connect five brain functional-networks (aDMN; CN; executive-control-network (ECN);
rFPN/lFPN, right or left frontoparietal-network (FPN)), implicated in self-referential thoughts14 and executive control15.

The correlations of UrbanSat with WNFCs and BNFCs were stable in a meta-analysis of all CHIMGEN and IMAGEN sites
(Supplementary Fig.12 and Supplementary Table 16). Brain localization (Fig.4b and Fig.4f) and susceptibility- periods (Fig.4d
and Fig.4h) of WNFCs and BNFCs in CHIMGEN and IMAGEN were consistent with those observed for brain structure
(Supplementary Fig.15-17), except for non-significant during adolescence. The WNFCs and BNFCs changes between 14 and 19
years in IMAGEN were correlated with UrbanSat (Fig.4b and Fig.4f and Supplementary Table 15 and Supplementary Results). In
CHIMGEN, WNFCs and BNFCs were correlated with age of migration to the city (Fig. 4c and Fig.4g and Supplementary Results).

Correlations of UrbanSat with behavior

We investigated whether UrbanSat is related to measures of cognition and mental- health, i.e. depression and anxiety. In
CHIMGEN (n=2148), the social-cognition measure ‘perspective-taking’, perceiving a situation from an alternative point of view16,
was positively correlated with UrbanSat (reaction-time for perspective-taking: rho=-0.14, Pc<0.05, Bonferroni-corrected for data-
categories and 21 behavioral assessments, see Online Methods) and replicated in IMAGEN-FU2 (rho=0.14, Pc<0.05) (Table 1). A
negative correlation between UrbanSat and reaction-time for perspective-taking performance was observed from 12 to 22 years
in CHIMGEN (Fig.5a).

UrbanSat was correlated with depression-symptoms assessed by Beck-Depression-Inventory (BDI) in CHIMGEN (n=2170)
(rho=0.14, Pc<0.05) (Table 1) with a susceptibility-period from 3 to 12 years (Fig. 5a). As BDI was not available in IMAGEN, we
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validated this association using an instrument measuring core features of depression, the Ruminating-Scale-Questionnaire
(RSQ) (rho=0.14, Pc<0.05) (Table 1 and Supplementary Methods).

In CHIMGEN and IMAGEN, increased NL and built-up%, decreased NDVI and cropland% were significantly correlated with
enhanced perspective-taking performance and increased depression-symptoms (Table 1). The susceptibility-periods for
individual satellite-measures were similar to UrbanSat in CHIMGEN (Supplementary Fig.18). Although most correlations of
UrbanSat with brain and behaviour were consistent between males and females, some correlations, especially with brain
development in IMAGEN BL-FU2, were sex-specific (Supplementary Tables 19-20).

Multiple mediation in UrbanSat-brain-behavior

We applied multiple-mediation analysis to investigate if the significant brain imaging measures mediate correlations of
UrbanSat with perspective-taking and depression-symptoms in CHIMGEN and IMAGEN-FU2 (Online Methods). In CHIMGEN,
19.32% of the correlation between UrbanSat and reaction-time for perspective-taking was mediated by brain, namely mPFC-GMV
(2.55%), the cerebellar-GMV (2.94%), WNFCs in aDMN (2.89%) and CN (3.21%), as well as by the BNFCs of the aDMN-CN
(2.27%), aDMN-ECN (4.54%) and aDMN-rFPN (4.14%) (Fig. 5b). Mediation was replicated in IMAGEN-FU2, with the association
of UrbanSat with perspective-taking being mediated by the mPFC-GMV (1.47%), WNFCs in the aDMN (1.96%) and CN (0.89%) as
well as BNFCs of the aDMN-CN (1.45%) and aDMN-rFPN (1.22%) (Fig.5b). There was no mediation of the cerebellar GMV in
IMAGEN-FU2 (Supplementary Table 21).

In CHIMGEN, 20.32% of the correlation between UrbanSat and BDI was mediated by brain, namely mPFC-GMV (4.81%) and SA
(1.80%), cerebellar-GMV (6.88%), WNFCs in aDMN (2.45%) and mVN (2.18%), BNFC of aDMN-ECN (4.04%) (Fig.5c). In IMAGEN-
FU2 the correlation between UrbanSat and rumination was mediated by mPFC GMV (1.93%), WNFC in aDMN (0.96%) and BNFC
of the aDMN-ECN (1.62%) (Fig.5c), but not by the cerebellar-GMV (Supplementary Table 21).

Discussion
Using a remote-sensing satellite-measure, ‘UrbanSat’, we characterized the relation of population-density, a proxy of urbanicity,
with brain structure, function and behavior during childhood and adolescence in large datasets in China and Europe. We provide
converging evidence for association of UrbanSat during childhood and adolescence with GMV and SA of the mPFC and aDMN,
but not with CT and FA. The mPFC and aDMN mediate the correlation between UrbanSat and improved perspective-taking and
increased depression-symptoms. We also found positive correlations of UrbanSat during childhood with cerebellar volume,
which mediated the association with perspective-taking and depression-symptoms. We are extending previous observations
reporting an association of depression-symptoms with urban settings17, by demonstrating the stability of this observation in
different geographical and sociocultural regions, and by discovering possible underlying brain mechanisms and susceptibility-
periods during childhood and adolescent development.

Our results suggest urban living has both beneficial and adverse correlations with health: enhanced social cognition
(perspective-taking) and increased depression- symptoms, in contrast to previous studies, which mainly reported adverse
aspects of urbanicity18. The mPFC, the core brain area of the aDMN, has been implicated in a variety of social-cognition and
affective functions commonly compromised in psychiatric disorders19. The susceptibility of mPFC to urban environment is
supported by the greater sensitivity of the mPFC, to urbanicity-related risk-factors, including chronic stress20 and air-pollution21.
While our findings are consistent with reports of an association between urbanicity and mPFC in smaller European samples22,
they differ from these studies as we found associations with GMV and SA rather than CT, and an absence of sex specificity.

We found a positive correlation of UrbanSat with cerebellar volume, a mediator for the association of UrbanSat with perspective-
taking and depression-symptoms. The functional network connectivity of the cerebellum also mediates the association of
UrbanSat with perspective-taking. Cerebellar lesions cause the ‘Cerebellar-Cognitive-Affective-Syndrome’, characterized by
impairments in executive-function and memory, as well as affect23. Animal studies extend these findings to stress-dependent
depressive affect24 and impairment in social behavior25. It is tempting to speculate that these pathways may connect to brain
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regions involved in perspective-taking and depression-symptoms26. Imaging features related to cerebellum showed
susceptibility-periods to high population-density at the age of 1-10 years, during which cerebellum and cortex are increasing in
volume27-29.

While previous studies focused on the effect of mean exposure to urban-living on brain and mental-health30, we identified
neurodevelopmental periods with increased susceptibility to urban-living. Consistent with observations of susceptibility-periods
of non-affective psychosis to residential mobility during childhood and adolescence31, we found that structure and function of
the mPFC, as well as depression-symptoms have pronounced susceptibility to high population-density during childhood and
adolescence, a period more sensitive to social stress32. The correlation of UrbanSat with mPFC-GMV, and change rate, was
driven by SA rather than CT, indicating that SA may be more sensitive to environmental factors than CT. Perspective-taking was
more sensitive to high population-density during adolescence and young adulthood, implying a time-window for
neurobehavioural interventions targeting social-cognition.

Our results are suggestive of a cumulative effect of urbanicity on brain and behavior, whereby participants born or migrating to
the city at an earlier age had more pronounced effects than those who become city dwellers later. Given that CHIMGEN
participants were students who moved to cities for their studies, we do not have any data on people who after spending some
years in the city moved back to the country side. We also do not have data to distinguish possible short but extreme exposure to
urban life, in utero or during susceptibility periods from a moderate continuous exposure.

We found several shared effects of high population-density in urban settings on brain structure and function as well as on
social-cognition and mental-health in both CHIMGEN and IMAGEN, indicating their generalization to other sociocultural
conditions and geographies. The effect of urban living on brain development during adolescence was confirmed by exploring
the correlation of UrbanSat with brain structural and functional changes from age 14 to 19 in IMAGEN. Taking into account
normative references27-29, our observations are consistent with an accelerated development in densely populated urban areas of
cerebellum during childhood and mPFC during childhood and adolescence. We also found inconsistent results between
CHIMGEN and IMAGEN: only 4/49 BNFCs correlating with UrbanSat in CHIMGEN were replicated in IMAGEN. The more extensive
effects of urban living on BNFCs in CHIMGEN may reflect the more drastic changes in urbanization in China compared to
Europe6, but may also relate to confounding factors beyond the covariates controlled in our study33.

UrbanSat was correlated with GMV, SA and functional connectivity, but not with FA and CT, indicating different sensitivities of
brain properties to residential environments. UrbanSat showed positive correlation with cerebellar volume, negative correlation
with mPFC volume, but non-significant correlation with volumes of other regions, suggesting different spatial sensitivities to
residential environments; the cerebellum was sensitive to urban residential environments during childhood, but the mPFC
sensitive during both childhood and adolescence, indicating different temporal sensitivities to residential environments. This
framework of different spatial and temporal sensitivities to urban residential environments may help to understand the
association of urban living with brain and mental-health.

High population-density a general measure of urbanicity, can cause increased social stress and air pollution, both of which
affect brain structure in young people34,35. A recent study has observed an association of urbanicity with brain activity in
regions linked to social stress processing30. Such brain changes may mediate the well-established impact of urbanicity on
mental-health, including on mood disorders36 and social-cognition37. Stress in childhood can accelerate brain development and
lead to faster maturation of certain brain regions during adolescence, including cerebellum and the mPFC38. Faster brain
maturation results in enhanced cognitive development39 and may account in part for the positive correlation of urbanicity and
perspective-taking observed in our study. However, faster maturation of the mPFC and cerebellum may come at a cost of
decreased plasticity, including of fear extinction mechanisms (mPFC), which may contribute to increased vulnerability for
anxiety and depression40. Air pollution induces neuroinflammation in the brain, leading to the damage and loss of neural tissue
in the prefrontal cortex35 and may provoke depression-symptoms41. Thus, urban upbringing may cause affective and anxiety
symptoms by way of both, increased social stress and pollution.
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Remotely-sense satellite data play a critical role in monitoring the Earth’s surface to track environmental conditions that are
intimately related to human health10. Satellite data are applied to map urbanization, poverty, climate change and pollution, as
well as spread of infectious disease10. Our study extends the application of remote-sensing satellite data and provides a
method to characterize and monitor spatial and temporal patterns of risk for mental disorders. In the optimized CFA models, the
four satellite- measures contributing to UrbanSat showed different factor-loadings. Night-time-light with the highest factor-
loading can capture the physical environmental features of urbanicity, such as patterns of human settlements42, urban
expansion43 and population counts44, as well as information about social-environmental features of urbanicity, such as
economic activity45. Built-up% and cropland% with medium factor-loadings mainly reflect physical-environmental features of
urbanicity. NDVI with the smallest factor-loading measures residential greenness and has been used extensively to record
distribution of green spaces in urban settings46. UrbanSat mainly reflects the physical- environmental features and indicates its
social-environmental features of urbanicity only indirectly.

For privacy reasons, our satellite-measures were obfuscated to a spatial resolution of one kilometer, preventing the capture of
important aspects of urban life, such as daily mobility paths. Future studies will investigate the integrated effect of urban
physical and social environment, their interaction with genetics and relation to brain and behavior. This study is not
epidemiological but neurobiological, aiming to identify brain mechanisms by which urbanicity influences behavior. How
representative the identified mechanisms are among the general population is a different task for future epidemiological
studies.

Our findings were made possible due to recent advancements in remote-sensing satellite technologies which were leveraged to
measure the relation of urbanicity with brain and behavior. We were able to (1) apply a general measure of urbanicity,
population-density, which is not dependent on census definitions of urban areas that might be conflated by densely populated
rural areas, or sparsely populated areas within urban settlements, or may vary between nations5; (2) obtain a high spatial and
temporal resolution10; and (3) use a measure applicable anywhere on earth from 1970s to the present day. Thus, UrbanSat
provides a unique opportunity to identify the cumulative effects and susceptibility-periods of urbanicity on brain and behavior.
However, we note that UrbanSat cannot unravel environmental pathways and their interactions that cause the aversive effects
of urban living. This is a task for subsequent studies with access to sufficient ground level data for comprehensive
characterization of causal environmental pathways that underlie the observed correlations.

In the current work, we have provided proof of principle establishing the use of satellite-data to inform the relation between
urban environment, brain and behavior. As our approach can be extended and generalized to other geographies and is easy to
implement even in the absence of detailed or directly comparable ground level data, it may be relevant for public health, policy
and urban planning globally.

Table 1. Correlations of UrbanSat and individual satellite-measures with behavior in CHIMGEN and
IMAGEN
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Item Statistics# UrbanSat* Night-time light Built-up% Cropland% NDVI

CHIMGEN            

PT and Ag (n=2148)          

ACCpt 0.21
(0.38)

0.14(-0.03) 0.05(-0.04) 0.42(-0.02) 0.13(0.03) 0.02(0.05)

ACCagency 1.00×10-9

(0.21)
0.75(-0.01) 0.57(-0.007) 0.30(-0.02) 0.77(-0.006) 0.87(0.004)

RTpt (ms) 1160.67
(740.39)

2.26×10-11(-0.14) 6.09×10-11(-0.14) 3.53×10-9(-0.13) 2.35×10-10(0.14) 4.62×10-10(0.14)

RTagency(ms) -7.44
(363.22)

0.78(0.01) 0.34(0.02) 0.60(0.01) 0.88(-0.003) 0.13(-0.03)

Mental-health (n=2170)          

BDI 2.00
(5.00)

3.10×10-11(0.14) 2.01×10-13(0.16) 5.18×10-7(0.11) 1.49×10-10(-0.14) 5.90×10-6(-0.10)

SA 30.00
(9.00)

0.62(0.01) 0.56(0.01) 0.75(-0.007) 0.46(-0.02) 0.80(-0.01)

TA 33.00
(9.00)

0.28(0.02) 0.07(0.04) 0.47(0.04) 0.27(-0.02) 0.39(-0.02)

IMAGEN FU2            
PT            
IRI (n=342) 19.00

(5.00)

9.11×10-3(0.14) 0.74(0.02) 9.21×10-3(0.14) 0.08(-0.10) 0.81(0.01)

Mental-health          
RSQ (n=346) 35.00

(15.00)
9.02×10-3(0.14) 0.45(0.04) 8.58×10-3(0.14) 0.90(0.007) 0.56(0.03)

DAWBA-GA
(n=447)

(Y/N)

355/92 0.94(-0.01) 0.97(-0.003) 0.84(0.09) 0.18(-0.65) 0.61(-2.57×10-4)

CIDI-AS
(n=391)

6.00
(10.00)

0.20(0.07) 0.85(0.01) 0.19(0.07) 0.28(-0.06) 0.38(-0.05)

ACC, accuracy; Ag, agency performance; BDI, Beck Depression Index; CIDI-AS, Anxiety Screening from the Composite
International Diagnostic Interview; DAWBA-GA, Generalized Anxiety Scale from The Development and Well-Being Assessment
Interview; FU2, IMAGEN second follow up assessment acquired at 19 years; GHSL, global human settlement layer; IRI,
Interpersonal Reactivity Index; NDVI, normalized difference vegetation index; PT, perspective-taking; RSQ, ruminating scale

questionnaire; RT, reaction time; SA, state anxiety; TA, trait anxiety. #Statistics are shown as median (quantile interval).
*Spearman correlations are used to test the correlations between individual satellite measures and behaviors (except for DAWBA-GA)
controlling for confounding covariates, which is shown as correlation P value (rho value). In the DAWBA-GA, logistic regression is
used to test the correlations between individual satellite matures and anxiety, which is shown as P value (β value). In CHIMGEN,
the significant results after Bonferroni Pc<0.05 (uncorrected P<0.05/2/21=1.19×10-3) are in bold and italic; In IMAGEN, the

significant results after Bonferroni Pc<0.05 (uncorrected P<0.05/5=0.01) are in bold and italic.
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Figure 1

Schematic summary of study design. a. Top: The geographic distribution of recruitment sites and number of participants
collected in each city of China and in each country of Europe. Five sites in Tianjin, two sites each in Zhengzhou, Nanjing, Hefei
and Wenzhou; one site in the remaining cities. Bottom: Lifetime residential geopositions of each participant were collected from
1986 to 2018. Based on the individual geoposition data, the annual values of nine satellite-measures of urbanicity are obtained
for each participant, including the night-time light (NL), normalized difference built-up index (NDBI), normalized difference water
index (NDWI), normalized difference vegetation index (NDVI) and five measures derived from land cover mapping (Built-up%,
cropland%, grassland%, forest% and water body%). b. Ten-fold cross validation of confirmatory factor analysis (CFA) stratified
by spatiotemporality was applied to predict annual UrbanSat score for each participant. The optimized CFA model includes NL,
built-up%, cropland% and NDVI. The mean UrbanSat scores before 18 years showed higher correlation with ground level
population-density from global human settlement layers (GHSL) than any individual satellite-measures both in CHIMGEN and
IMAGEN-FU2. c. Investigation of the cumulative effects of UrbanSat on brain and behavior. d. Identification of susceptibility
periods of lifetime UrbanSat on brain and behavior using distributed lag models. S, satellite-measures of urbanicity; Sub,
subjects; Y, years old.
Note: The designations employed and the presentation of the material on this map do not imply the
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expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the
authors.

Figure 2

Maps of satellite-based measures of urbanicity in China and Europe. a. UrbanSat maps of China (left) and Europe (right) in
2013. b. Maps showing temporal changes of satellite-measures of urbanicity during available years in China (top) and Europe
(bottom). Left: Migration patterns of 3306 participants in CHIMGEN and 561 participants in IMAGEN-FU2. The blue, green and
orange dots represent geographic locations of participants in the year of 1990, 2000 and 2015, respectively. The box on the map
represents the extent of zoom-in maps of each satellite-measure of urbanicity in the right columns. Right: Changes of GHSL
population-density between 1990 and 2015, NL between 1992 and 2013, built-up% and cropland% between 1992 and 2015,
NDVI between 1981 and 2017 in zoom-in part of China and Europe. Note that different time ranges are available for different
satellite registrations. c and d. Correlations of UrbanSat and individual satellite-measures with population-density in 3306
CHIMGEN (c) and 561 IMAGEN-FU2 (d) participants. Columns demonstrate rho value (y-axis) of the UrbanSat and individual
(NL, built-up, cropland and NDVI) satellite-measures (x-axis) with GHSL population-density in rural (yellow), town (orange), city
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(red) and combined (dark red) in CHIMGEN for the years of 1990 (rho=0.74, P=1.29×10-60), 2000 (rho=0.73, P=1.82×10-317)
and 2015 (rho=0.65, P=3.73×10-244), and in IMAGEN for the years of 2000 (rho=0.69, P=1.75×10-55) and 2015 (rho=0.69,
P=3.40×10-39). Cl, cropland; GHSL POP, population-density of global human settlement layers; NDVI, normalized difference
vegetation index; NL, night-time light. *Significant correlations of satellite-measures of urbanicity with population-density using
Spearman correlation.
Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the
authors.

Figure 3

Correlations of UrbanSat with brain structure. a. Uncorrected statistical maps in the voxel-wise multiple regression of mean
UrbanSat before 18 years with brain GMV under parametric testing in CHIMGEN (n=2176). b. In CHIMGEN, UrbanSat is
negatively (blue) correlated with mPFC GMV (left) and positively correlated with cerebellar GMV (right) (FWE Pc<0.05). The
correlation of UrbanSat with mPFC GMV is driven by SA rather than CT and these correlations are replicated in IMAGEN-FU2
(n=415); UrbanSat is correlated with brain volumetric change in the mPFC (n=340) between 14 and 19 years in IMAGEN BL-FU2,
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which is driven by the change of SA rather than CT (n=325). The dashed red lines indicate the threshold of P=0.05. c.
Susceptibility-periods analysis of brain structure using DLM. In CHIMGEN, we observed a negative association of UrbanSat with
mPFC volume during childhood and adolescence (age 4-15 years) and mPFC SA during childhood (age 5-7 years old) as well as
a positive association with cerebellar volume during childhood (age 1-10 years). The y-axis represents the changes of brain
structural features associated with an increase of interquartile range of UrbanSat; the x-axis is UrbanSat lag in ages. Grey areas
indicate 95% confidence intervals (CI). A susceptibility window is identified for the ages where the estimated pointwise 95% CI
(shaded area) does not include zero. d. Lower left: Numbers of participants migrating to city at different ages. Upper right:
UrbanSat is highest in participants with life-long city living (n=562) (dark red), medium in participants moving to city before 14
years (n=229) (red) and lowest in participants moving to city after 14 years (n=1385) (light red) (P=5.96×10-256). e. The
participants who were born in the city or migrated to an urban environment at an earlier age showed smaller mPFC-GMV
(P=0.040) and mPFC-SA (P=7.28×10-9) as well as greater cerebellar-GMV (P=5.00×10-5) than those with later exposure. BL,
IMAGEN baseline assessment acquired at 14 years old; BL-FU2, IMAGEN BL-FU2 measures brain structural changes rate
between BL of 14 years and FU2 of 19 years; CT, cortical thickness; DLM, distributed lag model; FU2, IMAGEN second follow up
assessment acquired at 19 years old; GMV, gray matter volume; L, left; mPFC, medial prefrontal cortex; R, right; SA, surface area.
*P<0.05.
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Figure 4

Correlations of UrbanSat with within-network (WNFC) and between-network (BNFC) functional connectivity. a. Voxel-wise
multiple regression analysis controlling for confounders identified four WNFCs (aDMN, CN, mVN and lVN) correlated with mean
UrbanSat before 18 years in CHIMGEN (n=2156). b. UrbanSat is negatively (blue) correlated with WNFC in the mPFC of the
aDMN, positively correlated (red) with WNFC in the CV of the CN and left LG of the mVN and lVN (FWE Pc<0.05). These
correlations are replicated in IMAGEN-FU2 (n=351). UrbanSat is correlated with WNFCs change rate/year in these four WNFCs
between 14 and 19 years in IMAGEN (n=83). c. The lifelong city dwellers (n=559) (dark red) and earlier migrants (n=222) (red)
showed greater WNFCs in the CN, mVN and lVN but smaller WNFC in the aDMN than later migrants (n=1375) (light red); d.
Susceptibility period analysis of WNFCs using DLM. In CHIMGEN, we observed a significant negative association of UrbanSat
with WNFC in aDMN during childhood and adolescence (ages 4-12 years), a positive association with WNFC in CN during
childhood (ages 0-9 years) as well as with WNFC in lVN during childhood (ages 5-9 years). No significant susceptibility-periods
are observed in the association of UrbanSat with WNFC in mVN. The y-axis represents the changes in WNFCs associated with
an increase of interquartile range of UrbanSat; the x-axis is UrbanSat lag in ages. Grey areas indicate 95% confidence intervals
(CI). A susceptibility window is identified for the ages where the estimated pointwise 95% CI (shaded area) does not include
zero. e. There are 49 BNFCs correlating with UrbanSat and 45 BNFCs correlating with night-time light in CHIMGEN (Pc<0.05,
10,000 permutations). f. Correlations of UrbanSat with BNFCs of aDMN-CN, aDMN-ECN, aDMN-rFPN and rFPN-lFPN are
replicated in IMAGEN-FU2; UrbanSat is also correlated with these four BNFCs changes rate/year between 14 and 19 years in
IMAGEN BL-FU2. g. The lifelong city dwellers (dark red) and earlier migrants (red) showed greater BNFCs than later migrants
(light red); h. Susceptibility-periods analysis of BNFCs using DLM. In CHIMGEN, we observed a significant positive association
of UrbanSat with BNFCs of aDMN-CN (ages 3-7 years), aDMN-ECN (ages 3-6 years), aDMN-rFPN (ages 4-10 years) and rFPN-
lFPN (ages 4-9 years) during childhood periods. aDMN, anterior default mode network; CN, cerebellar network; CV, cerebellar
vermis; DLM, distributed lag models; ECN, executive control network; L, left; LG, lingual gyrus; lFPN, left frontoparietal network;
lVN, lateral visual network; mPFC, medial prefrontal cortex; mVN, medial visual network; R, right; rFPN, right frontoparietal
network.
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Figure 5

Susceptibility-periods of behavior using DLM and multiple mediation of UrbanSat-brain-behavior. a. UrbanSat is negatively
correlated with reaction-time for perspective-taking (top) from age 12 to 22 years but not with that for agency (medium) in
CHIMGEN (n=2148). UrbanSat is positively correlated with depression-symptoms (BDI) from age 3 to 12 years in CHIMGEN
(n=2170) (bottom). b. In CHIMGEN, the correlation of UrbanSat with perspective-taking performance is mediated by mPFC and
cerebellar GMVs, WNFCs in aDMN and CN, as well as BNFCs of aDMN-CN, aDMN-ECN and aDMN-rFPN (left); These mediation
effects are replicated in IMAGEN-FU2 except for cerebellar GMV and BNFC of aDMN-ECN (right). c. In CHIMGEN, the correlation
between UrbanSat and BDI is mediated by mPFC GMV and SA, cerebellar GMV, WNFCs in aDMN and mVN as well as BNFC of
aDMN-ECN (left); The mediation effects of the mPFC GMV, WNFC in aDMN and BNFC of aDMN-ECN are replicated in IMAGEN-
FU2 (right). aDMN, anterior default mode network; BDI, Beck depression index; CN, cerebellar network; DLM, distributed lag
models; ECN, executive-control-network; lFPN/rFPN, left or right frontoparietal-network; mPFC, medial prefrontal cortex; PT,
perspective-taking measured by interpersonal reactivity index (IRI); RSQ, ruminating scale questionnaire; RTpt and RTagency,
reaction-time for perspective-taking and agency.
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