Enteric CH4 formation is an intractable problem and is a consequence of complex microbial interactions in the forestomach of ruminant animals. Using 3-NOP, a potent CH4 inhibitor, as a feed supplement to dairy cow diets has been previously shown to reduce CH4 formation by 26 to 30% [7, 14]. This study enabled us to gain a deeper understanding of the complex interdependencies between methanogens and bacteria for H2 under normal and inhibited methanogenesis in the rumen of dairy cows supplemented with 3-NOP. Using a combination of omic approaches, this study provides new information on temporal dynamics in individual methanogenic lineages and their contribute to total methanogenesis. Further, this study has elucidated both temporal changes in bacteria populations in response to fluctuating H2 concentrations in the rumen and some of the possible mechanisms by which the spared H2 under inhibited methanogenesis by 3-NOP was directed to alternate sinks.
Methanogenesis in the rumen can occur via hydrogenotrophic, methylotrophic, and aceticlastic pathways [27, 28], although the contribution of these pathways to total CH4 formation has not been clearly described. In the current study, using both metagenomic and metatranscriptomic approaches, we have identified that the CO2-reducing (hydrogenotrophic) pathway was predominant followed by the methanol-utilizing pathway and the methylamine-utilizing pathway regardless of treatment. However, metatranscriptomics showed that the methylotrophic methanogenic (methanol- and methylamine-reducing) pathways had greater contributions to total methanogenesis compared with their corresponding gene content, revealing that methylotrophic methanogens may have a greater contribution to CH4 formation in the rumen than what was originally anticipated. For example, we found that the total number of gene copies for the methanol-utilizing enzyme methanol–corrinoid protein co-methyltransferase (EC: 2.1.1.90) in Methanosphaera was < 100 cpm in metagenomic data, whereas it was > 600 cpm in metatranscriptomics (Fig. 2B), revealing that Methanosphaera has greater metabolic activity than what we would anticipate from the total number of gene copies alone. We also found that 2 lineages of Methanomassiliicoccales, Methanogenic archaeon ISO4-H5 and Thermoplasmatales archaeon BRNA1, which contributed to the methylamine-reducing pathway, also had a greater contribution from transcripts than their corresponding genes. These findings agree with those of Söllinger et al. [21] who employed metatranscriptomics to report that methylotrophic methanogens may have a greater role in methanogenesis than was originally thought.
Several studies have reported negative correlations between Methanobrevibacter and Methanosphaera lineages in the rumen [29, 30]. Because it was assumed that Methanobrevibacter is the predominant methanogenic genus and the contribution of Methanosphaera lineages is small, the competition among methanogens has been largely ignored until metatranscriptomic approaches were employed [20, 21] to understand methanogenesis. Differences in metabolic capabilities in hydrogenotrophic and methylotrophic methanogens have been discussed in our recent paper [23]. Although both Methanobrevibacter and Methanosphaera belong to the same order, Methanobacteriales, there are contrasting features between the 2 methanogenic genera that have functional relevance to CH4 formation and rumen fermentation. First, Methanobrevibacter lineages reduce CO2 or formate whereas Methanosphaera has acquired the ability to extract the methyl group from methanol and therefore adopts a methanogenic pathway that is a hybrid between the hydrogenotrophic and methylotrophic pathways [31]. Second, affinity and thresholds for H2 are lower for Methanosphaera than Methanobrevibacter [32]. Recently, Feldewert et al. [33] reported that CO2-reducing Methanobrevibacter species have higher H2 thresholds (> 5.0 Pa) compared with methanol-utilizing Methanosphaera (1.0 Pa) and methylamine-utilizing Methanomassiliicoccales (< 0.1 Pa) suggesting that methylamine- and methanol-utilizing methanogens have an advantage over CO2-reducing methanogens. Particularly under conditions when the dissolved H2 concentrations in the rumen are low and there is availability of methylamines and methanol substrates, methylotrophic methanogens may outcompete hydrogenotrophic methanogens and may serve as the major pathways for methanogenesis. However, when the concentrations of dissolved H2 in the rumen fluid are higher than the thresholds of hydrogenotrophic methanogens, the latter methanogens may dominate due to the abundance of CO2 concentrations in the rumen.
In the current study, although the overall contribution of hydrogenotrophic methanogens was much greater than methanol-utilizing and methylamine-utilizing methanogens, the genes encoding for the enzyme EC: 1.2.7.12, which facilitates conversion of CO2 to formylmethanofuran, were approximately 1000 cpm while its transcripts were 1500 cpm. In contrast, the genes encoding for the enzyme EC: 2.1.1.90, which facilitates conversion of methanol, were less than 50 cpm and its transcripts were less than 1000 cpm, a value which is similar to EC: 1.2.7.12, suggesting a greater contribution from methanol-utilizing methanogens than what would be anticipated from their gene copies. Recently, we reported a greater contribution of Methanosphaera compared with other methanogens in the rumen of dairy cows during the first 6 h post-feeding owing to the abundance of methylated substrates due to rapid fermentation of carbohydrates; a gradual decrease in Methanosphaera was observed after 6 h post-feeding with an increasing abundance of Methanobrevibacter around 10 h post-feeding [34]. More information on what conditions favor the abundance of Methanosphaera and Methanomassiliicoccales representatives and their contribution to total methanogenesis in a temporal manner using RNA-based approaches may help us better understand CH4 formation in the rumen.
The CH4 inhibitor 3-NOP is an analog of methyl Co-M and therefore inhibits MCR, an enzyme that catalyzes CH4 formation [35]. In the current study, genes encoding for MCR (EC: 2.8.4.1) did not differ between control and supplemented treatment groups. However, their corresponding transcripts were 3 times higher compared with their gene copies across all samples and showed a tendency to reduce in 3-NOP supplemented dairy cows compared with control cows. The effective inhibition of methanogenesis by 3-NOP was clearly observed in reduced gene expression more than gene content which corroborates the findings of Shi et al. [20] that CH4 yield in sheep is tightly correlated with gene expression. Further, as indicated in our previous report, the higher dose of 3-NOP ingested by the cows as a result of greater dry matter intakes may have led to greater inhibition of 3-NOP on the methanol pathway at week 8 (34), because a higher dose (> 1 µM) of 3-NOP is needed to inhibit Methanosphaera whereas only 0.25 µM of 3-NOP is sufficient to inhibit Methanobrevibacter ruminantium [18]. Collectively, it can be inferred that 3-NOP inhibits MCR but has differential effects on individual methanogenic linages. It is important to understand the factors governing the distribution of individual methanogenic lineages and at what doses these lineages are inhibited to more effectively reduce CH4 formation in the rumen.
Previous reports [7, 14] showed that during 3-NOP supplementation to dairy cows for prolonged periods (15 weeks), while CH4 emissions were persistently reduced by 26 to 30%, H2 concentrations increased progressively from week 1 through week 9 and then declined by week 15. These changes in H2 emissions occurred in 2 phases which may be explained as follows: the first phase was characterized by a drop in CH4 formation resulting in a spike in H2 concentrations that accumulated during this time period. Based on DNA- and RNA-based 16S rRNA sequencing analysis, we found that certain bacteria including Prevotella, Succinivibrionaceae, Veillonellaceae, Succiniclasticum, and Sharpea, which have been associated with rapid fermentation of hexoses [36], were increased at week 8 when H2 concentrations were the highest but then were significantly lower at weeks 4 and 12. In contrast, the slow fermenting bacteria such as Clostridiales, Butyrivibrio, and Ruminococcus did not fluctuate as did the rapid fermenting bacteria but were increased by week 12. Because methanogens were inhibited, H2 was now available for other hydrogenotrophic bacteria that transiently increased in response to H2 accumulation. However, this increase in H2 concentration may have stimulated the expression of H2-sensing hydrogenases that then began the second phase of H2 dynamics in the rumen. These H2-sensing [FeFe] hydrogenases, as described in Zheng et al. [37], then enabled expression of A1 [FeFe] hydrogenases that led to a reduction in H2 production by H2-producing bacteria. Interestingly, this shift was also accompanied by an increase in ethanol production (26, 57, and 65 mg/kg of rumen contents at weeks 4, 8, and 12, respectively) suggesting that the amount of H2 released is indeed regulated in H2-producing bacteria under inhibited methanogenesis as described in Melgar et al. [14]. This process was also accompanied by a significant decrease in the molar proportion of acetate and an increase in molar proportion of butyrate in the rumen.
It has been reported that inhibited methanogenesis and increased H2 concentrations may result in an increase in partial pressure of hydrogen (P[H2]) [38] which may have happened in the rumen of cows that received 3-NOP supplementation. Greening et al. [39] reported differences in stoichiometries of Ruminococcus albus 7 in response to high and low H2 concentrations which have been attributed to the presence of putative sensory group C [FeFe] hydrogenases that can sense H2 concentrations. Accordingly, we have identified that group C hydrogenases were increased in 3-NOP supplemented cows compared with control cows at weeks 4, 8, and 12, thus indicating that increasing H2 concentrations under inhibited methanogenesis induced by 3-NOP were sensed by group C [FeFe] hydrogenases, whereas these remained fairly stable in control cows. Although we did not see a consistent increase in expression of A1, we found that B group [FeFe] hydrogenases were consistently increased in 3-NOP supplemented cows to regulate the amount of H2 produced. In pure cultures of R. albus, H2 production is regulated by either A1 [FeFe] hydrogenases, which are ferredoxin-only hydrogenases, or the A3 group which are electron-bifurcating hydrogenases. Under low P[H2], such as when grown in the presence of methanogens, R. albus favors the energy-efficient pathway via production of acetate and H2 which is regulated by the electron-bifurcating A3 group of [FeFe] hydrogenases. However, under high P[H2], i.e., in the absence of methanogens, H2 production is regulated by the ferredoxin-only hydrogenase (group A1 [FeFe]-hydrogenase), a bifunctional alcohol and aldehyde dehydrogenase, and regulatory elements including a putative sensory hydrogenase (group C [FeFe]-hydrogenase) [39]. In the current study, H2 concentrations were higher at weeks 4 and 8 which may have resulted in a relatively lower expression of bifurcating enzymes [FeFe]A3 in 3-NOP supplemented dairy cows. By week 12, there had been adjustments within fiber-digesting bacteria resulting in a decrease in H2 concentrations which was accompanied by an increase in electron-bifurcating enzymes. Based on these H2 concentrations, the ratio of A1:A3 hydrogenase expression was regulated. This may be directly associated with H2 concentrations with increasing H2 concentrations inversely related to bifurcating enzymes whereas these hydrogenases increased with a reduced H2 concentrations.
In the rumen, methanogens serve as the major H2 sink and this interdependency for H2 between methanogens and other fermenting microbes drives fermentation of feeds [40, 41]. Janssen [38] conceptualized a model in which changes in diet (altering forage to grain ratio), lowering pH in the rumen, and inhibiting methanogens may lead to an increase in P[H2] thus creating a negative feedback mechanism on H2-producing bacteria to reduce H2 production. This negative feedback mechanism results in a shift in fermentation pathways in H2-producing bacteria from higher H2 and acetate production to the formation of more reduced products such as succinate or ethanol as described in Greening et al. [39]. Melgar et al. [14] observed that molar concentration as well as proportion of acetate was reduced in the rumen contents collected from 3-NOP supplemented cows compared with control cows at weeks 4, 8, and 12. However, the H2 that would be spared by an approximately 26% reduction in CH4 has not been completely accounted for in that study. Although these authors reported a significant increase in pH, formic acid, ethanol, butyrate, gaseous H2 emission, and dissolved H2 in ruminal contents of cows supplemented with 3-NOP compared with control cows, these increases were not able to account for H2 spared under inhibited methanogenesis by 3-NOP. It is interesting to note that the genes or transcripts that code for some of the alternative sinks [39] such as nitrate and nitrite reductase, CO-dehydrogenase/acetyl CoA synthase, fumarate reductase, and sulfite reductase showed only marginal increases and their overall contribution to the total gene or transcript abundance was insignificant. However, transcripts of formyl-tetrahydrofolate synthetase, a marker enzyme of acetogenesis or the Wood-Ljungdahl pathway, were increased in 3-NOP samples indicating that acetogens may have increased under inhibited methanogenesis. It has been reported that acetogens may serve as one of the alternative H2 sinks under reduced methanogenesis in sheep with low CH4-yield phenotype [39] and they are the main H2 sink in the intestinal tract of marsupials and termites. In a monoculture of Acetobacterium woodii, an acetogen, 1 mole of fructose is fermented to 3 moles of acetate, but this bacterium was shown to shift its fermentation pathway to produce 2 moles of acetate, 2 CO2, and 4 H2 when co-cultured with Methanobacterium strain AZ, which kept the H2 concentration in the media low [42]. Other than hydrogenotrophic methanogens, all known acetogens can grow on sugars and reduce CO2 with H2 to acetate only when sugars are not available. It is thus very likely that the acetogens in the rumen normally ferment sugars to 2 moles acetate, 2 CO2, and 4 H2 when the H2 concentration is very low and that they switch to forming 3 moles acetate when the H2 concentration increases after 3-NOP inhibition. Rather than reducing CO2 with 4 H2 to acetate, 4 H2 are spared by not being produced.
The steady state acetate concentration in the rumen was found to be lower after 3-NOP supplementation, which does not exclude sugar-fermenting acetogens being involved as indirect sinks. In the rumen, ethanol is formed from sugars by bacteria such as Ruminococcus albus when the H2 concentration is high. The ethanol reacts with acetate to butyrate and caproate and with propionate to valarate in a fermentation catalyzed by Clostridium kluyveri [43]. Indeed, Melgar et al [14] found that the steady state ethanol concentration was significantly higher in 3-NOP supplemented rumen samples compared to control samples, although the absolute steady state ethanol concentration was not high. Further, both butyrate and caproate were significantly higher in 3-NOP rumen samples compared to control samples as reported in Melgar et al. [14].
Butyrate and caproate formation from ethanol and acetate in C. kluyveri involves butyryl-CoA dehydrogenase, which catalyzes the reduction of ferredoxin and crotonyl-CoA with 2 NADH to butyryl-CoA and reduced ferredoxin [43]. In the current study, we noticed a significant increase in the genes and transcripts (overall across all sampling weeks) for butyryl-CoA dehydrogenase (EC: 1.3.8.1), by 10% and 15%, respectively. Furthermore, we also noted that C. kluyveri’s contribution for this enzyme was increased in 3-NOP samples compared to control samples.
There are 2 major pathways for butyrate synthesis in the rumen [21]: one mechanism mediated via the butyrate kinase pathway (BP1), which is mostly predominant in Clostridia, and the other mechanism mediated via the butyryl-CoA: acetate-CoA-transferase pathway (BP2) which is mostly predominant in Negativicutes (Selenomondales, Veillonellaceae, and Acidaminococcaceae) but also in C. kluyveri. It has been shown that BP2 and C. kluyveri are dependent on acetate for butyrate formation [44] which indicates a synergy between acetate-producing and butyrate-producing bacteria [45]. In the current study, we found that 3-NOP numerically increased the gene expression of the enzyme acetate-CoA transferase (EC: 2.8.3.8) by approximately 25%, suggesting that the BP2 pathway of butyrate synthesis may be an alternative pathway under inhibited methanogenesis by 3-NOP. However, it remains to be determined how much of spared H2 is diverted to butyrate and other reduced products such as ethanol and formic acid. Before we determine the fate of spared H2, it is also essential to determine how much H2 is spared. The amount of H2 spared under inhibited methanogenesis is dependent on methanogen diversity and to what extent individual methanogenic lineages are inhibited. Methanogens that reduce CO2 require 4 moles of H2 whereas methylotrophic methanogens require only 1 mole of H2; thus, the amount of H2 spared when the latter methanogens are inhibited is much lower than when the former methanogens are inhibited. Further studies on methanogen diversity and to what extent different CH4 inhibitors may inhibit individual methanogenic lineages may help to better quantify the amount of H2 spared and then to determine the diversion of H2 to alternate sinks to understand energy conservation in the rumen. Such information may help design strategies to formulate diets to reduce enteric CH4 formation without perturbing rumen microbiota and to safely divert H2 to more reduced fermentation products that are then available for the host metabolism.