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Abstract: Compared with traditional linear elastic materials, the soft structure composed of 

incompressible hyperelastic materials has not only geometrical nonlinearity but also material 

nonlinearity during deformation. In this paper, the absolute nodal coordinate formulation (ANCF) is 

used to study the large deformations and large overall motions of incompressible hyperelastic curved 

beams. A novel large deformation dynamic modeling method for curved beams made of hyperelastic 

materials is proposed, in which a simplified Neo-Hookean model is combined with the one-

dimensional ANCF beam element. The elastic force vector is calculated according to the exact 

expression of curvature. The dynamic equations are derived by using the virtual work principle. The 

dynamic responses of a cantilever silica gel beam under gravity are calculated based on the present 

method and compared with those of the improved low-order beam element (ILOBE), high-order beam 

element (HOBE), and commercial finite element analysis software (ANSYS). Simulation results show 

that the proposed method can accurately describe the large deformation and large overall motion of the 

beam, and has better computational efficiency. Research in this paper provides an efficient dynamic 

model for the dynamics analysis of soft robot arms. 

Keywords: Absolute nodal coordinate formulation, Hyperelastic materials, Curved 

Beam, Large deformation. 

  



1. Introduction 

Soft robots are usually made of hyperelastic soft materials or incompressible 

materials (e.g., rubber, silicone) that can be continuously deformed (similar to muscle 

drive) [1], which can achieve large deformations and large overall motions [2]. In 

order to more accurately describe the dynamical behavior of soft robots, it is 

important to consider not only the geometric nonlinearity due to the large range of 

motion but also the material nonlinearity due to the application of hyperelastic 

materials. Therefore, it is a hotspot in recent years to establish an accurate dynamics 

model for soft body structures using multi-body dynamics theory and to study 

efficient and stable methods for calculating the dynamical responses. 

In the past decades, abundant research results have been achieved in this field, and 

many practical engineering problems have been solved. A large number of 

components for practical engineering applications can be simplified to a flexible beam 

mechanics model [3]. Due to the influence of new materials and technologies, the 

large deformation of the mechanism becomes more obvious. Shabana [4] proposed 

the absolute nodal coordinate formulation (ANCF) in 1996. The ANCF describes the 

motion of a flexible body in a unified inertial coordinate system and avoids the 

complex cornering problem of the flexible body using the slope vector. The mass 

array in establishing the dynamic equations is a constant array and the generalized 

force expression is simple. There will be no Coriolis force and centrifugal force, and 

the elastic force is the only nonlinear term. The simplicity of programming in solving 

large deformation problems has greater advantages and has achieved more widespread 

applications [5, 6]. 

Modeling for curved beams can be broadly divided into two types, one using straight 

beams to approximate curved beams and the other developing new curved beam 

elements. Shabana [6] first applied ANCF to flexible bodies with discontinuous slope 

vector coordinates and demonstrated that the method can effectively analyze large 

deformations of flexible curved beam structures through the example of a folded 

beam. Since the elements established by Shabana may produce coupled deformation 

and shear locking, Sugiyama et al. [7, 8] adopted the Hellinger-Reissner variational 

principle to correct the shear stress and established a fully parametric curved beam 

element and gradient defect curved beam element for analyzing large deformations in 

flexible multibody systems. Pan et al. [9, 10] derived nonlinear strain-displacement 

relations for planar curved beams based on the exact calculation of Green-Lagrangian 

strains in spatially curved beams and verified the effectiveness of curved beam 

elements by comparing them with physical experiments. Besides, Zhang et al. [11] 



and Wu et al. [12] used ANCF to derive a one-dimensional two-node curved beam 

element based on the exact expression of curvature and studied the large deformation 

problem. Based on the work of [11, 12], Hewlett et al. [13] developed a more efficient 

first-order integration method. It should be mentioned that, all the above studies are 

based on linearly elastic materials. 

Most current curved beam models are limited to the linear constitutive equation with 

stress-strain, however, hyperelastic materials usually have nonlinear constitutive 

equation and are usually completely incompressible [14, 15], and all commercial 

finite element method (FEM) packages for nearly incompressible materials do not 

fully satisfy this constraint [16]. 

Farzam et al. [16, 17] developed a fully Lagrangian finite element calculation 

method based on the three-dimensional constitutive equations of isotropic hyperelastic 

materials. However, their study used traditional generalized coordinates, which made 

it difficult to capture some important modes in large deformations. Maqueda et al. 

[18] and Jung et al. [19] first used the ANCF to derive the elastic force expressions for 

three nonlinear hyperelastic material constitutive models (Neo-Hookean, Mooney-

Rivlin, and Yeoh), and applied them to three-dimensional low-order beam element 

and discussed the validity and simulation accuracy of the three models through 

simulation and experiment. Luo et al. [20] established hyperelastic thin-shell elements 

of compressible Neo-Hookean and incompressible Mooney-Rivlin materials and 

compared the shell dynamics response of different materials. Orzechowski and 

Frączek [21, 22] based on their work investigated a volume-locking suppression 

method applied to a nonlinear hyperelastic nearly incompressible material model with 

fully parametric beam elements. Based on the work of [21, 22], Xu et al. [23, 24] 

improved the low-order beam element (ILOBE) using a reduced integration technique 

and proposed an ANCF high-order beam element (HOBE) with quadratic 

interpolation in the transverse direction. Two kinds of beam elements are combined 

with four kinds of nonlinear material models, and the accuracy of the different 

nonlinear material models is compared by numerical simulation arithmetic and 

physical experiments. 

However, in the previous work, researchers all used three-dimensional fully 

parametric beam elements to simulate the bending large deformation of straight 

rubber beams, and the derivation of the elastic force vector was also based on the 

three-dimensional nonlinear constitutive equation of continuum mechanics. The 

elements had more degrees of freedom and the nonlinear material itself requires more 

iterations to converge, which leads to computational inefficiency. 



In this paper, a new dynamical modeling method for large deformations and large 

overall motions of hyperelastic material curved beams is proposed. In Section 2, the 

ANCF one-dimensional two-node curved beam elements are combined with the Neo-

Hookean model simplified to the uniaxial tensile case, and the elastic force vector 

with precise curvature expression and nonlinear constitutive relation is derived. The 

dynamics equation based on ANCF is established. Four numerical simulation 

examples of statics and dynamics are given in Section 3 to demonstrate the 

correctness and effectiveness of the method. This new method is more efficient and 

has certain applicability to different nonlinear constitutive relations. 

2. Kinetic models 

2.1 Curved beam element based on ANCF 

The large deformation a flexible Euler Bernoulli curved beam is shown in Fig. 1. 

The initial central angle of the curved beam is 0  and the initial radius of curvature is 

sR , which is much larger than the height of the cross-section. The cross-section of the 

beam is perpendicular and symmetric to the central axis, and the rotational inertia and 

shear deformation of the beam cross-section is not considered. The flexible pendulum 

beam is discretized by finite elements, and the beam with length L  is equally divided 

into n  curved beam elements.  

Fig. 2 shows the schematic diagram of the curved beam element before and after the 

deformation, where OXY is the global inertial coordinate system and e e eO X Y  is the 

element coordinate system. 

 

Fig. 1 Large deformation curved beam model. 

 

Fig. 2 Curved beam element in the initial and current configuration. 

The global absolute position vector r of any point P on the axis of the curved beam 

element can be expressed as:  

2 3
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where 1 2,  r r  is the component of the absolute position vector of the point P  in the X  

and Y directions, respectively; and x  is the arc coordinates of the point P  on the 



center axis of the curved beam unit in the element coordinate system. The matrix S  is 

the shape function of the curved beam element [11, 12] as:  
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where /x l  ,  and l  is the length of the center axis of the beam element without 

deformation in Fig.2. 

The absolute nodal coordinate vector e  of the 8-DOF curved beam element in the 

inertial coordinate system can be expressed as:  
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2.2 Nonlinear elastic forces based on the Neo-Hookean model 

Hyperelastic materials are distinguished from linear elastic materials by no longer 

following the small deformation assumption and having nonlinear constitutive 

relations. The deformation energy of a material can be written as a scalar function 

related only to its current strain state. The strain energy density function U of a 

material can be expressed as a function of three invariants 1 2 3 ,   ,  I I I  that depend 

only on the right Cauchy-Green deformation tensor C  as [25]:  

1 2 3(  ,  , )U U I I I (5) 

where the three invariants of the right Cauchy-Green deformation tensor C  can be 

expressed as: 
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where 1i i    is the tensile ratio in each of the three principal axes and i  is the 

strain in the tensile directions. The partial derivative of strain energy density function 

U  with respect to the principal tensile ratio i  can obtain the relationship between 

stress and strain of hyperelastic material as [26]:  

31 2

1 2 3

ij
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II IU U U U

I I I
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      

(7) 

The strain energy density function of the one-parameter Neo-Hookean model for 

hyperelastic materials can be expressed as [18, 27]: 

2

H 1( 3) ( 1)
N NH

U C I k J    (8) 

where NHC  is the material coefficient related to the deformation response, k  is the 

penalty coefficient to ensure incompressibility, and J  is the determinant of the 

deformation gradient tensor J . For bending incompressible materials there is 

det( ) 1J , or 3 det( ) 1I  C . 

According to the uniaxial tensile test characteristics, the relationship between the 

principal tensile ratio is:  

 1  2  3

1
 ,    


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By substituting Eqs. (9) and (8) into Eq. (7) and assuming that the material is 

completely incompressible, the nonlinear stress-strain relationship in the tensile 

direction of the Neo-Hookean model is obtained as 
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According to continuum mechanics, the strain   at any point on the non-central axis 

of the curved beam element can be expressed as the expression of the exact curvature 

of the curved beam element as:  

0 y    (11) 

where 0  represents the longitudinal strain on the axis of curvature, which can be 

replaced by the Green Lagrange strain:  
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  is the curvature change before and after deformation at the centerline, which can be 

expressed by the partial derivative of the element's absolute position vector r  about 

the curved beam arc coordinate x : 
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Substituting Eq. (1) into Eq. (12) and Eq. (13) can be obtained 
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Based on the Euler-Bernoulli beam hypothesis, the virtual work of the elastic force 

of the curved beam element based on the Neo-Hookean model of the incompressible 

hyperelastic material is: 
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in which V  is the volume of the beam element.  

Eq. (18) differentiates the generalized coordinate e  to obtain the generalized elastic 

force of the element. Substitute Eq. (11) into Eq. (18), and assume that the 

hyperelastic beam is symmetric about the central axis, then  d 0y A  , and the 

moment of inertia of the cross-section is 2dz
A

I y A  . The generalized elastic force of 

the element can be expressed as: 
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in which 
0( / )  e and ( / )  e  can be obtained by differentiating the generalized 

coordinates of Eqs. (15) and (16). 

It is assumed that B  is the Boolean positioning matrix in the beam element absolute 

node coordinate vector e  corresponding to the total absolute node coordinate vector 

q , q Be  can be obtained. Then the virtual work done by the total elastic force of 

the beam system is:  
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where kQ  is the generalized elastic force vector of the beam system as: 
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2.3 Generalized mass matrix and generalized external force vector 

The kinetic energy of the beam element can be expressed as: 
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where eM  is the beam element mass matrix, which can be expressed as: 
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in which 0 is the density and A  is the cross-sectional area of the beam element 

without deformation. 

Thus, the total kinetic energy of the beam can be expressed as: 
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where the overall generalized mass matrix M  of the system is: 
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Beam elements are subjected to uniformly distributed gravity, and the virtual work 

done by gravity can be expressed as: 

deg eg
V
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The curved beam moves only in the vertical plane and has [0, ]g  G  in the 

inertial coordinate system, where g  is the gravitational acceleration; ekQ  is the 

gravity vector of the unit, which can be expressed as: 
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So the generalized virtual work done by the external force of the curved beam is: 
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The generalized external force vector 
g

Q of beam system is 
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2.4 Dynamic equations 

By adopting the virtual work principle and combining Eqs. (20), (24) and (28), 

yields: 

0k gW W     q Mq&& (30) 

The boundary conditions of the curved beam are considered and transformed into the 

constraint equation  , 0t Φ q . By the Lagrange multiplier method, the set of 

differential-algebraic dynamics equations of the flexible curved beam multibody 

system can be obtained: 
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When the statics problem is solved, the statics equilibrium equation becomes: 
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3. Numerical simulations 

In order to verify the feasibility and correctness of the proposed method in analyzing 

the large deformation problems of incompressible hyperelastic curved beams, statics 

and dynamics simulations of flexible curved beams subjected only to gravity are 

carried out through several examples in this section. In numerical calculation, the 

Gaussian integral method was used to integrate the volume of the curved beam 

element, the Generalized-α method [28, 29] was used to solve the dynamics equation 

(29), and the Newton-Raphson method was used to solve the static equation (30). 

3.1 Statics simulation of cantilever curved beam 

Consider the cantilever silica gel curved beam model as shown in Fig. 3. The left end 

of the curved beam is fixed and the right end of the curved beam is free. The curved 

beam falls freely from the initial position shown in the plumb plane. The physical 

parameters of the beam are shown in Table 1. 

 

Fig. 3 Cantilever curved beam model. 

Table. 1 Physical parameters of the curved beam [19] 

Property Symbol Value 

Material coefficients 
NH

C  0.953018 MPa  

Density   32150 kg/m  

Initial radius of curvature 
s

R  0.5 m  

Initial curved angle 
0  π/6 rad  

Width of section b  0.02 m  

Height of section h  0.02 m  

Gravitational acceleration g  29.81 m/s  

 

The number of elements affects the convergence of the ANCF calculation results. 

Different numbers of elements are selected to calculate the same problem. Fig. 4 

shows the absolute position coordinates of the tip of the curved beam (the right node 

javascript:;
javascript:;


of the last element) in the horizontal and vertical directions during the static 

equilibrium, respectively. When the number of elements is less than 10, the numerical 

error cannot be ignored, and when the number of elements reaches 12, the simulation 

results of the free end of the curved beam are sufficiently converged, which also 

shows that the method proposed in this paper does not have locking problem. 

 

Fig. 4 Variations of (a) the horizontal and (b) the vertical displacements of the tip of the curved beam 

with different numbers of elements. 

To further verify the correctness of the method in this paper, the above model is 

discretized into 14 elements to simulate the configuration of the silica gel curved 

beams in static equilibrium, and the simulation results are compared with those of the 

commercial finite element software ANSYS. SOLID185 element is selected in 

ANSYS, which is suitable for large deformation and large overall motions analysis of 

the Neo-Hookean constitutive model of hyperelastic material. 

Fig. 5 shows the comparison of the simulation calculation results between the 

proposed method and the ANSYS, where the red solid line is the initial configuration 

of the curved beam, the black solid line is the numerical calculation result of the 

proposed method, and the blue dashed line is the result using ANSYS. It can be found 

that the results obtained by the current method are consistent with those calculated by 

ANSYS. Therefore, the method proposed in this study can accurately describe the 

large deformation problem in the static analysis of hyperelastic materials. 

 

Fig. 5 The configuration of the curved beam. 

3.2 Dynamic simulation of cantilever curved beam 

In order to verify the simulation accuracy of the proposed method in analyzing the 

dynamics of hyperelastic material curved beam, one dynamics simulation is 

performed for the model shown in Fig. 3. The initial central angle of the hyperelastic 

curved beam 0  is π/3 rad , the radius of curvature sR  is 1 m , the section size is 

0.05 m 0.05 m , and other parameters are consistent with Table.1. The simulation is 

calculated for 1.0 s. 

Fig. 6 shows the evolution of the absolute position of the endpoint over time, where 

the black and blue solid lines indicate the absolute positions in the horizontal and 

vertical directions of the proposed method respectively, and the red and green dashed 



lines indicate the calculation results of ANSYS, respectively. Fig. 7 shows the 

deformation at 0.2 s interval using the method of this paper compared with the 

deformation at the corresponding moment in ANSYS. It can be found that there is a 

good consistency between the results, and the simulation results of the proposed 

method and ANSYS simulation results converge to almost the same solution. With 

the increase of time, the deformation of the silica gel beam increases, and there is a 

small error between the two calculation results, but the current method still has a good 

simulation accuracy. It is worth noting that the number of elements divided by the 

method proposed in this paper is 16, which is much less than that of the ANSYS solid 

model that requires 1080 elements. In general, this method can accurately calculate 

the dynamic response of beams with large deformation and large overall motions. 

 

Fig. 6 The absolute displacements of the tip of the curved beam. 

 

Fig. 7 The deformations of the curved beam from 0 s to 1.0 s. 

3.3 Dynamic simulation of the straight cantilever beam 

The method in this paper is based on the exact curvature expression. When the initial 

curvature of the curved beam is 0 0   and the initial node coordinate vector in the 

form of the straight beam is adopted, the curved beam model degenerates into straight 

beam model. Dynamic simulation was carried out on the cantilever silica gel straight 

beam fixed at the left end. The physical parameters of the straight beam are shown in 

Table 3, which are consistent with Ref. [21]. The physical parameters of the straight 

beam are consistent with Ref. [21], where the coefficient of hyperelastic material NHC  

is 0.8 MPa , the density   is 37200 kg/m , the length of the straight beam L  is 1 m , 

and the section size is 0.02 m 0.02 m . 

The simulation results of the proposed method are compared with the results 

calculated by the ILOBE in Ref. [23], the HOBE in Ref. [24], and ANSYS. It should 

be noted that the elastic force vector of hyperelastic materials modeled by ANCF 

three-dimensional ILOBE and HOBE are all based on the three-dimensional 

constitutive model of the right Cauchy-Green deformation tensor. Penalty functions 

are required to ensure incompressibility, and the penalty coefficient 1000 MPak   is 

selected [24]. 

Fig. 8 shows the comparison of the calculation results of the dynamics simulation 

using four different methods over time, showing the absolute positions in horizontal 



and vertical directions respectively. Among them, the black solid line is obtained by 

using the method proposed in this paper, the red dash-dotted line is obtained by using 

ILOBE, the green double dots line is obtained by using HOBE, and the blue dashed 

line is obtained by using ANSYS simulation results. It can be found that there is a 

good consistency between the results, and all the results can converge to almost the 

same solution. When 1.0 st  , there is little difference between the results of the four 

methods, which indicates that the four methods can describe the large deformation of 

the silica gel straight beam well. However, as time continues to increase, the 

difference between HOBE and other methods increases, and the deformation using 

HOBE is slightly behind other methods. This is because HOBE elements have more 

degrees of freedom, and more elements are needed to ensure the computational 

accuracy for large deformation. 

 

Fig. 8 Variations of (a) the horizontal and (b) the vertical tip displacements of the curved beam by 

different methods. 

Table. 2 shows the elements required and the CPU runtime consumed by the four 

different methods using the same computational platform (the operating memory is 8 

GB, the processor is Inter Core I5-8300H, and the CPU frequency is 2.3 GHz) to 

calculate the large deformation of the straight beam for 1.5 s. It can be found that 

when the model both established based on ANCF is used for dynamic numerical 

simulation, the proposed method takes the least number of elements and consumes the 

shortest CPU time to calculate the same problem, which is nearly 1/4 of ILOBE and 

1/40 of HOBE. Therefore, the proposed method can not only accurately describe the 

large deformation and large overall motions of the beam with fewer elements, but also 

has better computational efficiency compared with other methods under certain 

computational simulation accuracy. 

Table. 2 The number of elements and computation time consumed by different methods 

Methods Number of elements Computation time (s) 

Current method 12 355.4664 

ILOBE 16 1647.1779 

HOBE 64 13875.9386 

ANSYS 320 1651.1250 

 



3.4 Dynamic simulation of curved beam pendulum 

In order to verify the correctness of the proposed method when dealing with curved 

beams with different material constitutive models and different geometric parameters, 

a silica gel curved beam pendulum with the hinged left end and the free right end was 

considered as shown in Fig. 1. The curved beam pendulum falls under gravity and two 

incompressible material models are used for the calculation: Neo-Hookean and 

Mooney-Rivlin [18, 27]. The stress-strain relationship of Mooney-Rivlin is shown in 

Eq. (33), where the material coefficient is 1 0.8 MPaC   and 2 0.2 MPaC   

respectively, the density of the hyperelastic curved beam   is 37200 kg/m , the initial 

central angle 0  is π/3 rad , the length of the curved beam L  is π/3 m , and the 

section size is 0.05 m 0.05 m . 

     2 3

1 22 1 1 2 1 1
MR

C C                 (33) 

Note that when 2 0C  , this model is degraded into the previously introduced Neo-

Hookean material model. In addition, when only small strains are considered, the 

linear elastic material model can degenerate, and Young's modulus is 1 26( )E C C 
[20].  

Fig. 9 shows the comparison of the absolute position of the tip in horizontal and 

vertical directions over time with different material models. The black line, blue line, 

and red line are simulation results based on the Neo-Hookean nonlinear constitutive 

model, Mooney-Rivlin nonlinear constitutive model, and equivalent linear elastic 

model under small strain, respectively. It can be seen that when 0.5 st  , the 

calculation results of the three are not much different. However, with the increase of 

time, the simulation results based on the Neo-Hookean model and Mooney-Rivlin 

model are still in good agreement, whose dynamic characteristics are similar, but they 

are quite different from the linear elastic constitutive model. This is because the small 

strain hypothesis of linear elasticity is no longer satisfied with the increase of 

deformation. Therefore, incompressible nonlinear material constitutive relations need 

to be considered in the analysis of such large deformation problems, which also 

reflects the applicability of the proposed method to different constitutive models of 

hyperelastic materials. 

 

Fig. 9 Variations of (a) the horizontal and (b) the vertical displacements of the tip of the curved beam 

under different constitutive relations. 

 



In addition, the geometric parameters of the material also have a great influence on 

the deformation of curvature. For intuitive analysis, it is necessary to transform the 

absolute node displacement into transverse deformation and longitudinal deformation 

of the tip. Suppose the rotation angle of the coordinate system e e eO X Y  relative to the 

coordinate system OXY  in the curved beam model is  , then: 

 
 

11

2 2
0

r lu l

u r l


    

     
     

H (34) 

where 1 2,u u  is the longitudinal and transverse deformation of the tip of the curved 

beam model, respectively, and H  is the direction cosine matrix: 

cos sin

sin cos

 
 

 
  
 

H (35) 

The simulation model is shown in Fig. 1. In order to control the variables, the length 

of the curved beam L  remains unchanged, and the initial curved angles 0  are set as

π/6 rad , π/4 rad , π/3 rad  and π/2 rad , respectively. Fig. 10 shows the comparison of 

longitudinal and transverse deformation of the end of a curved beam pendulum at 

different initial central angles over time. It can be found that within 1.5 s, the 

maximum longitudinal deformation and transverse deformation of the curved beam 

pendulum system will increase with the increase of the initial curved angle at any 

time, and the response time to reach the maximum longitudinal deformation and 

transverse deformation will shift backward. Therefore, more attention should be paid 

to the problem of the large deformation of hyperelastic curved beams with large 

curvature. 

 

Fig. 10 Variations of (a) the longitudinal and (b) the transverse displacements of the tip of the curved 

beam under different initial curved angles. 

4. Conclusions 

In this paper, a new dynamic modeling method for hyperelastic materials with large 

deformation curved beams is proposed based on the ANCF one-dimensional beam 

element. The elastic force vector established by this method is based on a simplified 

nonlinear incompressible Neo-Hookean model and the accurate curvature expression. 

Several statics and dynamics simulation examples of a cantilever silica gel curved 

beam under gravity are calculated by using this method, and the correctness and 



effectiveness of the model are validated. The calculation results based on the proposed 

method are consistent with those of the improved low-order beam element (ILOBE), 

high-order beam element (HOBE), and commercial finite element analysis software 

(ANSYS), and the current method requires fewer elements and is more efficient. In 

addition, when the deformation is too large, linear elastic constitutive relation is no 

longer applicable, and nonlinear material constitutive relation needs to be adopted. 

The method in this paper has certain applicability to different nonlinear constitutive 

models of hyperelastic materials. This study shows that the proposed method can 

effectively solve the problems of large deformation and large overall motions of 

incompressible hyperelastic soft structures with large curvature, which may provide 

an effective dynamic modeling and analyzing method for the soft robots and flexible 

manipulators in the future engineering practice. 
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Figure 

 

Fig. 1 Large deformation curved beam model. 

  



 

Fig. 2 Curved beam element in the initial and current configuration. 

  



 

Fig. 3 Cantilever curved beam model. 

  



 

(a) 

 

(b) 

Fig. 4 Variations of (a) the horizontal and (b) the vertical displacements of the tip of the curved beam 

with different numbers of elements. 

  



 

Fig. 5 The configuration of the curved beam. 

  



 

Fig. 6 The absolute displacements of the tip of the curved beam. 

  



 

Fig. 7 The deformations of the curved beam from 0 s to 1.0 s. 

  



 

(a) 

 

（b） 

Fig. 8 Variations of (a) the horizontal and (b) the vertical tip displacements of the curved beam by 

different methods. 
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(b) 

Fig. 9 Variations of (a) the horizontal and (b) the vertical displacements of the tip of the curved beam 

under different constitutive relations. 
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(b) 

Fig. 10 Variations of (a) the longitudinal and (b) the transverse displacements of the tip of the curved 

beam under different initial curved angles. 

 

 


