

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

AaCYPdwf, a new growth regulatory cytochrome p450 gene from Artemissia annua

Mahmuda Umme Rayhan

Seoul National University Agriculture and Life Sciences Library: Seoul National University College of Agriculture and Life Sciences

Tofazzal Islam (tofazzalislam@bsmrau.edu.bd)

Bangabandhu Sheikh Mujibur Rahman Agricultural University https://orcid.org/0000-0002-7613-0261 Soo-un Kim

Seoul National University Agriculture and Life Sciences Library: Seoul National University College of Agriculture and Life Sciences

Research Article

Keywords: Artemisia annua, cytochrome P450, overexpression, RNAi

Posted Date: April 20th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1560430/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1	AaCYPdwf, a new growth regulatory cytochrome p450 gene from Artemissia annua
2	Mahmuda Umme Rayhan ^{1, 2} , Tofazzal Islam ^{2*} , Soo-un Kim ¹
3	¹ Department of Applied Life Chemistry, College of Agriculture and Life Sciences, Seoul
4	National University, Seoul 151-912, Republic of Korea.
5	² Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur
6	Rahman Agricultural University, Gazipur 1706, Bangladesh
7	*Corresponding author's E-mail: tofazzalislam@bsmrau.edu.bd
8	
9	Abstract
10	Artemisia annua L. produces artemisinin (qinghaosu), which is inhibitory against malarial parasite,
11	Plasmodium falciparum. Genetic engineering is thought to be one of the most reasonable
12	approaches to enhance the production of artemisinin by A. annua plant. This study aimed to clone
13	and investigate a growth regulatory cytochrome p450 gene from A. annua. We cloned a cDNA
14	coding growth regulatory gene from A. annua. The gene had high homology with the steroid 23-
15	alpha-hydroxylase produced-gene of A. thaliana, Oryza sativa and Zinnia elegans. The full-length
16	cDNA was 1708 bp long, containing an open reading frame of 1443 bp that encodes 480 amino
17	acids. We transformed A. annua plants with the full-length cDNA driven by 35S promoter through
18	Agrobacterium-mediated transformation. To identify the function of the gene, we applied RNAi
19	gene silencing technique. The plants transformed with the full-length cDNA were normal in
20	growth but the plants transformed with RNAi showed extreme dwarfism. The dwarfism in the gene
21	silenced plants was rescued by the application of brassinolide and gibberellin hormones indicating
22	that the mutants were deficient in the synthesis of a growth regulatory gene which we named

AaCYPdwf. Phenotypic characteristics of mutant and phylogenetic analysis clustered the
 AaCYPdwf with other brassinolide producing genes. Our results suggest that *AaCYPdwf* is a new
 gene which likely involved in regulation of brassinosteroid biosynthesis in *A. annua* plants.

26 Keywords: Artemisia annua, cytochrome P450, overexpression, RNAi.

27

28 **1. Introduction**

Malaria is one of the most destructive diseases, which affects millions of people across Asia and 29 30 Africa every year. According to a report of the World Health Organization (2019) [1], there were 31 228 million cases of malaria infection in 2018. Majority of the malarial cases and deaths are associated with the Plasmodium falciparum [2]. Malaria caused by P. falciparum can have 32 devastating effects like anemia, cerebral complications (from coma to convulsions), hypoglycemia 33 34 and glomerulo-nephritis [3–5]. It is particularly more serious in non-immune people including children, tourists and pregnant women. For such a serious disease, there are few remedies in the 35 36 form of herbs that contain important chemical compounds [3,5–8]. The current available effective 37 therapies for malaria include the combination of artemisinin with other drugs. Artemisinin is a sesquiterpene lactone present in the aerial parts of an Asian plant, Artemisia annua L [9]. It was 38 initially isolated by the Chinese scientist, Tu Youyou in 1972 from Artemisia herb and used as an 39 antimalarial drug against *Plasmodium* [10]. For that great discovery, Tu Youyou received the 40 Nobel Prize in Physiology or Medicine in 2015 [11,12]. 41

42

The natural product, artemisinin has many biological activities including antimalaria, anticancer
and anti-inflammatory [13–16]. The artemisinin and its derivatives also possess anthelmintic,

45 fungicidal and antiviral properties [17]. Although it has been found to be a useful medicine, the content of artemisinin in the aerial parts of A. annua is only 0.01-1.2%, while the annual world 46 demand of this life saving compound is around 119 metric tons (MT) [18]. It is not sufficient to 47 fulfill the rising demand of artemisinin while total synthesis of artemisinin is too costly [19]. It is 48 not possible to chemically synthesize a large amount of artemisinin on a commercial basis, due to 49 high cost and strong toxicity[10]. Conventional breeding of high artemisinin yielding plants have 50 also not been successful [19]. The content of artemisinin in the A. annua plant was tried to increase 51 through metabolic engineering [20]. In this regard, two different approaches were used, one is 52 53 overexpression of the enzyme genes involved in the biosynthetic pathway of artemisinin[21-23], and the other one is to block enzyme genes that are in competition with the artemisinin pathway 54 from expression [20]. A number of studies have been done to elaborate the biosynthetic pathway 55 of artemisinin and its expression in different laboratory subjects like *Escherichia coli* and Baker's 56 yeast [24,25]. In one strategy, yeast is exploited for the production of artemisinin acid by 57 expression of the biosynthetic pathway of artemisinin [25–27]. This semisynthetic method is also 58 expensive because of the cost of growth media and maintenance of yeast culture in bioreactors 59 [27]. On the other hand, Paddon et al. [26] developed a genetically modified strain of 60 61 Saccharomyces cerevisiae by expressing the artemisinin pathway genes in this yeast. The artemisinin production rate achieved was around 25 g/L of the fermentation media. However, there 62 are a number of disadvantages such as these include the costly media, and complication of isolation 63 64 and purification of artemisinin from the fermenting media[26].

65

Overexpression of a key enzyme of the growth regulatory hormone can enhance the growth as wellas production of dry matter or biomass production of the plant [28]. By genetic engineering, the

high-yielding transgenic A. annua plant could be a tool for more artemisinin production. It is 68 thought to be one of the most reasonable approaches to enhance the production of artemisinin. 69 Gibberellin, brassinosteroid and auxin are the main growth promoting plant hormones [29]. 70 Among them brassinolide significantly promotes biomass production, growth [28] and helps in 71 regulating many biological process[30–32]. Discovery of genes that involved in regulation of the 72 biosynthesis of brassinosteroid hormones is important for genetic engineering of the A. annua for 73 higher growth and dry matter production to obtain the higher artemisinin in this medicinal plant. 74 In biosynthesis pathway of brassinolide (BR), oxidation and hydroxylation are the crucial steps 75 [33]. A number of cytochrome p450 genes like CYP85A, CYP90A, CYP90B, CYP90C, CYP90D 76 and CYP724 are known to involve in oxidation and hydroxylation of BR biosynthetic pathway 77 [34]. This study aimed to clone and investigate the characteristics of a putative cytochrome p450 78 gene from A. annua, which involves in the biosynthesis of brassinolide. 79

80

81 **2.** Materials and methods

82 **2.1.** Plant materials

Seeds of *A. annua* were collected from *A. annua* stock maintained in Gangwha-do Island (no specific permissions were required), Korea. Seeds were surface sterilized by soaking in 5% NaOCl for 20 min after immersing in 70% (v/v) ethanol for 2 minutes. They were then rinsed in sterile distilled water several times until the pH was 7 or lower. They were finally germinated under sterile conditions in 90×20 mm Petri dishes containing MS-germination medium. One quarter Murashige and Skoog salts (Duchefa, Haarlem, Netherlands) were supplemented with 2% (w/v) sucrose and solidified with 0.8% (w/v) agar. Germinated plants were grown in an experimental

90 greenhouse maintained at 16 h light (using Hg-and Na-vapour lamps) and 8 h dark condition at
91 22°C and a relative humidity of 40%.

92

2.2. Strains and culture media

Bacterial strains used in this experiment were *Escheriahia coli* DH10B and EHA105 for plasmid
propagation and transformation. *E. coli* was cultured on Lurita-Bertani (LB) broth (1% tryptone,
0.5% yeast extract, 0.5% NaCl). LB medium was prepared with 1.5% (w/v) Bacto-agar. Different
selection mediums were used for plant transformation (Supplementary Table 1).

97

2.3. Plasmids and primers

pGEM[®] –T Easy System vector (Promega, Madison, WI, USA) was used for the subcloning.
pBI121 and pFG5941 plant expression vectors (Clontech, Seoul, Korea) were used for plant
transformation. Oligonucleotides used for DNA sequencing were synthesized by Bioneer. Co.
(Daejeon, Korea) for the subsequent polymerase chain reaction (PCR) and DNA sequencing. The
sequences of primers are listed in Supplementary Table 2.

103

2.4.

Enzymes and chemicals

Reverse transcriptase, dNTPs, and Taq DNA polymerase were purchased from Invitrogen
(Carlsbad, CA). Restriction enzymes, plasmid DNA purification kit and PCR purification kit were
from Promega (Madison, WI, USA) and TaKaRa (Kyoto, Japan). Other chemicals were purchased
from Sigma-Aldrich (Milwaukee, WI, USA), Fluka (Buchs, Switzerland), and Merck (Darmstadt,
Germany).

109 **2.5.** Equipment used

110 The thermal cycler used for polymerase chain reaction was T gradient (Biometra, Gottingen, Germany). The centrifugation was carried out with AvantiTM 30 centrifuge using F1202 and C0650 111 rotors (Beckman, Palo Alto, CA). 112

113

2.6. RNA extraction, cDNA synthesis and cloning of full-length gene

Total RNA was extracted from the leaves of A. annua by the method of acid: phenol: guanidinium. 114 First-strand cDNA was reverse-transcribed by the SuperScriptTM II RT reaction followed the 115 manual of the GeneRaceTM Kit (Invitrogen). All the primers for rapid amplification of cDNA ends 116 by PCR are shown in the supplementary Table 2. The specific primers for amplification of this 117 gene were designed by primer 3. PCR was conducted in a 50 µL total volume containing 100 ng 118 cDNA of A. annua 0.8 µM each primer, and 1unit Taq DNA polymerase (Promega, Madison, WI, 119 120 USA) in a reaction buffer composed of 10 mM Tris-HCl, pH 9.0, 50 mM KCl, 2 mM MgCl2, and 0.2 mM each deoxyribose nucleotide. Reaction mixture was preheated at 94°C for 5 min, followed 121 by 40 cycles of denaturing at 94°C for 1 min, annealing at 52.5 °C for 1 min, and polymerization 122 123 at 72°C for 2 min. The reaction was completed by an additional 10 min extension at 72°C. The PCR product was purified and cloned into the pGEM®-T Easy vector (Promega) for sequencing. 124

2.7. 125

Bioinformatics analysis

Open reading frame (ORFs) was determined using NCBI online tools (http://www.ncbi. 126 nlm.nih.gov/gorf.html). The physical and chemical parameters, such as molecular mass (MW), 127 128 theoretical pI and stability of the deduced amino acids were predicted by ProtParam software online (http://web.expasy.org/protparam/). Gene was analyzed by ExPASy website to check the 129 130 hydrophobicity.

132 **2.8.** Multiple sequence alignment

133 The protein sequence was compared with ent-kaurenoic acid hydroxylase and steroid 23-alphahydroxylase produced gene of Arabidopsis thaliana, Pisum sativum, Cucurbita maxima, Hordeum 134 vulgare, Ginkgo biloba, Oryza sativa and Zinnia elegans. The amino acid sequences of respective 135 gene were used as query to search the respective genome in NCBI database 136 (http://www.ncbi.nlm.nih.gov/) **BLASTP** with the 137 program (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). Based on domain 138 composition 139 analyses by using the Pfam (http://pfam.sanger.ac.uk/) and **NCBI** CDD (http://www.ncbi.nlm.nih.gov/cdd) programs. 140

141 **2.9.** Phylogenetic tree analysis

Phylogenetic analysis was performed to understand the relationship between protein sequence of
GA and BR. To gain insight into the phylogenetic relationships and functional associations of p450
genes, monocots and dicot plants (*A. thaliana, P. sativum, C. maxima, H. vulgare, G. biloba, O. sativa and Z. elegans*) were used to construct a phylogenetic tree based on maximum-likelihood
(ML) methods using MEGA 5.0 [35].

147 **2.10.** Recombinant plasmid construction

For the over expression of the gene a full-length cDNA clone was constructed into pBI121binary vector. A full-length cDNA clone of this gene is 1708 bp long and carried an open reading frame of 480 amino acids. Primer ORF -F and ORF -R were designed from the ORF of this gene including 95 upstream region. The purified DNA was sub clone into pGEMT-easy vector. To generate the RNAi constructs for gene suppression 499 bp fragments of sense and antisense gene sequences are generated by PCR from the gene into pFGC vector as described in Fig. 1. At first 154 for the construction of sense sequence pFGC vector was digested by AscI and SwaI enzymes and 155 ligate the sense fragment using RNAi -F and RNAi -R which were designed from 95 bp upstream 156 of ORF regions of the gene. Afterwards, antisense sequence was ligated into pFGC sense ligated 157 vector. For this pFGC vector was digested by BamHI and XbaI enzymes later on ligated with 158 antisense fragment of the gene.

159

160

162

163

2.11. Introduction of constructed vectors into E. coli

166 Constructed pBI121 and pFGC vectors were mobilized into *A. tumifaciens* strain EHA105 using
167 the liquid nitrogen Freeze-thaw method according of An et al. [36] with minor modifications.
168 Transformed monoclones were selected on the LB agar plate containing kanamycin (100mg/L).

169

2.12. Plant transformation

Fresh explants of A. annua were transformed by A. tumifacience and co-cultivated on MS medium 170 (Supplementary Table 1) in the dark for 3 days. Subsequently, the explants were transferred to 171 172 shoot-inducing medium Ms-shoot (Supplementary Table 1) with 500 mg/L Cefo to destroy the 173 Agrobacterium. The uninfected explants on MS- shoot medium were used as controls. Seven days later, the explants were transferred to MS-shoot medium with 400 mg/L Cefo. The infected 174 explants then transferred to fresh medium weekly for the first month. One month later, the shoots 175 176 were transferred to MS-shoot medium with 250 mg/L Cefo and sub-cultured every 2 weeks. One month later the shoots were transferred to MS-root medium (Supplementary Table 1). 177

178

2.13. Extraction of genomic DNA and PCR analysis of transgenic plants

Transgenic plants were screened through PCR with gDNA isolated from the transgenic lines for the presence of the expected sequence. For this genomic DNA was extracted from the leaves of transgenic lines for the presence of the expected sequence. Genomic DNA was extracted from the leaves of transgenic plants using genomic DNA extraction kit provided by Promega (Madison, WI, USA). Supplementary Table 3. depicts the primer name and annealing temperature used for each plant gDNA.

186 **2.14. NMR analysis**

187 Three control plants and three overexpressed plants were sampled for this purpose. NMR spectra 188 were recorded on JNM LA 400 spectrometer (JEOL, Japan) operating at 400 MHz. Samples were 189 dissolved in CDCl₃. Chemical shift values were given in δ (ppm) with respect to TMS.

190 **2.15.** Spray application of brassinolide and gibberellic acid on plants

For BR epibrassinolide (>90%) was sprayed on RNAi mutant plants at 0.1 μ M with 0.01% Tween 20 daily for 7 days. Side by side we also apply the exogenous GA to show the interaction. GA was sprayed in the form of gibberellin GA₃ (TLC, >90%) on RNAi mutant plants at the dose of 25 ppm with 0.01% Tween 20 daily for 7 days. Control plants were treated with 0.01% Tween 20 only.

195 **2.16.** Experiment design and statistical analysis

For in vitro culture 135 plant explants were taken per sample. Three identical and independent
experiments were performed and data were pooled from these experiments. All experiments
were repeated three times and data were combined from all experiments for each parameter (45
explants per replicate). Transformation efficiency has been expressed as percentage of number of
PCR-positive plants to the initial number of explants. Statistical analysis was done with SPSS
20.0 (IBM SPSS Statistics, Chicago, USA). Student's t test was employed to determine if there
were significant differences between the control and each of the other plant types at p < 0.05.

3. Results

3.1. Full-length cloning of *AaCYPdwf* from *A. annua*

After searching the different growth regulatory gene from NCBI database, several primers were designed. Among them, one pair of primer amplify the gene in *A. annua*. Finally, a full-length putative cytochrome P450 gene was cloned using 5' and 3' RACE PCR. A 1411bp 5' end and 855bp
3' end was obtained for the gene listed in Table 1. This full-length gene contained 1443bp ORF
encoding 480 amino acids, which was deposited in NCBI Genbank with an accession number of
DQ363133.

211	Table 1. Information	of AaCYPdwf unig	ene from RACE-l	PCR fragment.
			,	

Gene name	Unigene length (bp)	5'-RACE fragment (bp)	3'-RACE fragment (bp)	Full length of ORF (bp)
AaCYPdwf	541	1411	855	1443

212

213 **3.2.** Bioinformatics analysis

214 The proteomics analysis of this unigene are computed by the online Pxpasy's ProtParam tool. 215 Primary structure analysis revealed that the molecular mass of the putative cytochrome P450 protein was 54.81 kDa with a theoretical pI = 9.14. The instability index of this protein was 34.59, 216 which indicated that it is a stable protein. The grand average of hydropathicity (GRAVY) value 217 was close to zero that means the gene AaCYPdwf has both hydrophilicity and lipotropy. The 218 cDNA-coding DQ363133 was analyzed by ExPASy website to check the hydrophobicity, which 219 220 showed hydrophobicity in N-terminal region of the translated protein. It indicates that gene AaCYPdwf anchored to the ER membrane as a typical signature of P450 [37]. 221

222

3.3. Regeneration of transgenic plants

The number of explants producing Km- and Basta-resistant calli or shoots, respectively for over expressed and pBI121-only plants and for RNAi-inserted and pFGC-only plants were recorded after 8 weeks of selection (Fig. 2). Initially, there were three plates for each transformant category with 45 explants per plate. Three weeks after infection, the Km- and Basta-resistant

explants were selected and cultured separately. After 8 weeks of infection, small shoots were 227 separated and cultured on MS root medium. These shoots induced root within 1-2 weeks and the 228 rooted shoots were transferred into soil. The frequency of regeneration ability was almost similar 229 (Table 2, Fig. 3). The pBI121, pFGC, RNAi and control plants showed same frequency of 230 antibiotic resistant callus, shoot and root. The overall performance of overexpressed plant was 231 lower than the others. Transformation efficiency of pBI121 and pFGC plants were higher than 232 233 the over expressed and RNAi plants. Extraction of gDNAs from all RNAi plants were not possible due to very low amounts of leaf samples. 234

Fig. 2. Regeneration of transgenic plants. (A) After infection of plant explants kept 3 days in dark, (B) Plant explants place on MS shoot with 500 mg/L Cefo, (C) Antibiotic resistant plant explants maintained in MS shoot medium with 300 mg/L Cefo, (D) Plant explants turned into callus form, (E) Combined shoot lets, (F) individual shoot on MS shoot medium, (G) Shoot on MS root medium, (H) Root formation, (I) Small plant transfer into soil.

241

Table 2. Response of regeneration ability in different steps and transformation efficiency of transgenic plants.

Plant	Frequenc y of Antibiotic resistant callus (mean ±SE)	Frequenc y of Antibiotic resistant shoot (mean ±SE)	Frequenc y of Root induced shoots (mean ±SE)	Frequenc y of PCR positive plants (mean ±SE)	Average number of regenerate d plantlets per plant (mean ±SE)	Transformatio n efficiency (%)
pBI121	12.33±0.6 7	5.67±0.33	3±0.58	1.33±0.33	1.33±0.33	3.3
pFGC	12±0.58	5.33±0.33	3.33±0.33	1.33±0.33	1.33±0.33	3.3
Over	11.67±0.6	4.67±0.33	2.67±0.33	1±0.58	1±0.58	2.5
expresse	7					
d						
RNAi	12 ± 0.58	7±0.58	4.67 ± 1.45	1 ± 0.58^{a}	1±0.58	2.5
Control	12.33±0.6	7±0.58	5.33±0.33	1.33±0.33	1.33±0.33	

245

a. RNAi transgenic plant samples was too small to extraction of gDNA

246

247

248

249

Fig. 3. Response of regeneration ability in different steps of transgenic plants. (a) pBI121
plants, (b) Overexpressed plants, (c) pFGC plants, (d) RNAi plants. Data is represented as Mean
± SE. The asterisk (*) indicates the significant difference at P < 0.05.

3.4. PCR analysis of gDNA of transgenic plants

All regenerated transgenic plants were analyzed by PCR (Figs. 4-7). The transgenic lines had a band which was absent in the gDNA of untransformed control plants. The PCR product bands obtained from the transgenic plants gDNAs were longer than the original lengths (Table 3) that confirmed the integration of the transgene in the genome [38].

261

Fig. 4. Agarose gel electrophoresis of the PCR analysis of pBI121 plants. The templates for P
CRs were: 1-4, Transgenic plant genomic DNA; 7, untransformed plant genomic DNA as negativ
e control; 6, pBI121 vector as positive control. M is the molecular weight marker [*Hin*dIII/*N*coI d
igest of pUC 19].

Fig. 5. Agarose gel electrophoresis of the PCR analysis of pFGC plants. The templates for PC
Rs were: 1-4, transgenic plants genomic DNA; 5, pFGC vector as a positive control; 6, untransfor
med plant genomic DNA as negative control; M is the molecular weight marker [HindIII/NcoI di
gest of pUC 19].

Fig. 6. Agarose gel electrophoresis of the PCR analysis of over expressed plants. The templat
es for PCRs were: 1- 3, transgenic plants genomic DNA; 4, untransformed plant genomic DNA a
s negative control; 5, constructed pBI121 vector as positive control. M is the molecular weight m
arker [HindIII/NcoI digest of pUC 19].

Fig. 7. Agarose gel electrophoresis of the PCR analysis of RNAi plants. The templates for PC
Rs were 1-3, transgenic plant genomic DNA; 4, untransformed plant genomic DNA as negative c
ontrol; 5, pFGC vector as positive control. M is the molecular weight marker [*Hind*III/*N*coI diges
t of pUC 19].

Plants gDNA	Endogenous length (bp)	Original length (bp)
pBI121 vector	1100	800
pFGC vector	1900	1366
Overexpressed	2200	1443
RNAi	1449	1366

Table 3. PCR products bands of transgenic plants gDNAs.

291

292

3.5. Analysis of overexpressed and RNAi mutant plants

The overexpressing transgenic plants were morphologically similar to the control and pBI121 vector plants (Fig. 8). On the other hand, RNAi mutant plants showed extremely dwarf phenotypes than control and empty pFGC vector plants and display darker green dwarfed stature with epinastic round leaves, short petioles and reduced apical dominance (Fig. 8). These results indicate that the RNAi mutants are brassinolide deficient dwarf plants [39].

298

Fig. 8. Fourteen weeks old transgenic plants. (a) Control (Wild) plant, (b) pBI121 vector plant,
(c) pFGC vector plant, (d) overexpressed plant, (e) RNAi plant

302 3.6. Effects of GA and BR on RNAi mutant plants

Four-month-old RNAi mutant plants were treated with GA and BR. It was found that GA and BR promoted the growth of the plants, whereas mutant plant with mock treatment showed no development and the condition of the plant deteriorated. Completely dead plants were confirmed
at seven-leaf stage (Fig. 9). These results suggest that *AaCYPdwf*, a P450 gene, plays a key role in
GA or BR biosynthesis pathway in *A. annua* plants.

The growth rate of GA-treated plant was higher than that of BR-treated plant (Fig. 9). There was a rapid growth phenomenon in GA-treated plants. The growth pattern remained the same from the initial stage to the final stage (45th day). On the other hand, BR-treated plants showed stagnant growth up to 20 days, and then retained rapid growth phenomena.

Fig. 9. Effects of GA and BR on plants. (a) Control plant, (b) GA-sprayed plant, (c) BR-sprayed
plant, (d) 12 days of control plant, (e) 12 days of GA-sprayed plant, (f) 12 days of BR-sprayed pl
ant, (g) 17 days of control plant, (h) 17days of GA-sprayed plant, (i) 17 days of BR-sprayed plant
, (j) 20 days of GA-spayed plant, (k) 20 gays of BR-sprayed plant, (l) 25 days of GA-sprayed plant
nt, (m) 25 days of BR-sprayed plant, (n) 30 days of GA-sprayed plant, (o) 30 days of BR-sprayed

plant, (p) 37 days of GA-sprayed plant, (q) 37 days of BR-sprayed plant, (r) 45 days of GA-spray
ed plant, (s) 45 days of BR-sprayed plant.

320

321

3.7. Multiple sequence alignment and phylogenetic tree

The cloned P450 gene *AaCYPdwf* showed 30-31% identity with ent-kaurenoic acid hydroxylaseproduced protein. On the other hand, it showed 30-32% identity with steroid 23-alpha-hydroxylase produced protein (Fig. 10). Hypothetical phylogenic tree of gibberellic acid (GA)- and brassinosteroid (BR)-produced protein families were created. These results demonstrated that the cloned new gene is more similar to a BR-producing than a GA-producing gene (Fig. 11). Taken together of these results, the full-length cDNA was named as *AaCYPdwf*.

328

	*	20	*	40	*	60	*	80	*	100	*	120	*	140	*	
p450 DQ363 : -			MPMTVMLLFV	FLLFIAICFFI	VHRHNSTTTK	LPPG <mark>SF</mark> GW	FIGETLAYI	RSKRGG-DPER	TKERIEKY	STLVFRTS	AGERMAN	FCGPEGNEFI	GN-ENKLVA	SWWPNSVRI	FEK-CITIR	: 124
AT5G36110 : -		1	YMAINIILFL	SILSLLLLI	RKHLSHFSYP	LPPGNTGL	LIGESFSFLS	AGROG-HPEK	TTDRVRRES	SSSSCVENTH	FESETAV	VTGASGNKEL	TN-ENKLVV	SWWPDSVNK	FPS-SACTSS	: 127
AT2G42850 : -	MVLE	EPNFVLSW	FLCIAATISS	LFFFRKKHHF	FITKKIOKKK	TIPCEMOL	WIGETMOFY	AOKSNRVFED	VNPRIIRH	NUFRTR	MESETIV	VNGAEANEL	SN-EFSLVV	SSWESSSVO	MEMNOMAKO	: 136
AT5G45340 : -		-MDFSGLFI	TLSAAALFLCI	LRFIF	GVRRSSSTKL	LPPGTMGY	YVGETFOLY-	SQ-DPNV	FAAKORRYG	SVERTH	LECECVM	ISSPEAAKFVI	VT-KSHLFK	PTFPASKER	LEKOALFFHO	: 122
AT4G19230. : -		-MDISALFI	TLFAGSLFLY	LRCLI	SORRFGSSKLI	LPPG <mark>T</mark> MGW	YVGETFOLY-	SQ-DPNV	FOSKOKRY	SVERTH	LECECVM	ISSPEAANFVI	VT-KSHLFK	PTFPASKER	I CKOA FFHO	: 122
LOC 0s07a3 : -		MDSSI	PFALLTALLT	PILLHEVIR	RKYSSYN	LPPGSLGE	VIGOSISLLE	ALRSN-TDYO	YODRIKKY	PVERMS	FGSETVI	MAGPAANHEVE	SNODLI	FTOTKAINT	HE-RSHLTLS	: 119
LOC Os07q3 : -		MDSSI	LPALLIALFI	PILLHLVTR	FKYSSYN	LPPGSLGF	FVGQSISFLF	ALRSN-TDHO	YOGRIGKY	PUSRMW	FCSPAVI	MAGPAAN	SNKDLL	FTGTRSMNL	SE-RNILMLS	: 119
LOC 0s07q3 : -		MDSSN	PFALLIALLI	PILLHFVIR	RKYSSYN	LPPGSLGF	VIGOSISLLE	ALRSN-TDYO	YODRIKKY	PUSRMS	FGSPTVL	LTGPAANEFVE	SNQDLI	ITETKAANA	IC-RSULTLS	: 119
LOC 0s07q3 : -		MDSSN	PFALLIALLI	PTLLRFVIR	RKYSSYN	LPPGSLGE	P <mark>LIGOSI<mark>S</mark>LLE</mark>	ALRSN-TDYQ	YODRIKKY	PVF (MS	FGSPTVL	MAGPAANHEVE	SNQDLI	FTQTKAINT	IC-RSILTLS	: 119
LOC 0s07q3 : -		MEFSI	VVALIAVASS	CVFVHFLARGA	TKKRRSPAAK	LPPGSLGL	VIGOSLGLLE	AMRSN-SGER	VRRRIDRYG	AVSNLS	FCKPTVL	VAGAAANEFVE	FSGALA	LOOPRSVOR	TEDRSILDLV	: 126
LOC 0s07q3 : -		MALA	VVVALLVAFL	PLAVYLAG-F	STRTKPPPRR	IPPG <mark>S</mark> LGL	P <mark>LVGQSL<mark>S</mark>LLF</mark>	AMRRN-TAER	ALOGRIDRY	PVSKLS	FCAPTVI	LAGPAAN	LSEALA	PKQPRSLAA	ICRRNMLELV	: 125
LOC 0s07q3 : -										MS	FGSPTVL	LAGPGANHEVE	SNQDLI	FTETKAINA	VG-RSILTLS	: 46
LOC 0s09q2 : -		MLVALL	TILATAAAAAAA	AAAVASSSLR-	RRKN	NOPPOSICIE	VVGHILALLE	ALRSN-AAED	LRRRAAA	PISTIS	FCRETAF	LAGASCNEL	SSDKLA	AMSSASFLR	VERRNIREVA	: 120
HORVU4Hr1G : -		MAYS	LLGLVLALLVA	AAVVQLLHKN-	-FYRLYYAAYN	LPPGNLGV	FICSUFSLL	AFRSN-TDEO	FRDRIK	PVSTMS	LOSPTVI	LAGPAANHE	SNDGLI	LTOTGALRA	VG-RSVLTLT	: 123
HORVU2Hr1G : -		MDYL	LVVAVMVTAS	SIAIHLLTR	-AKKTQPAN	LPPGSLGL	VIGOSLSLLF	AMRGD-GGSR	VODRIDRYG	PUSULS	EGTETVI	LAGPAAN	FSSALS	TROPRSVOR	ICENSILDLH	: 121
HORVU2Hr1G : -		MEMEAST	LAALAGVIIA	FILLLEPHLRP	QSPSQDDRRRQ	LPPGSFGL	VAGOTVGLLE	ALRAN-TGEA	LRRWASE	PuSRLSI	FELETAF	LVGPTANEFI	TSTALT	AKSSASENS	WERRNIRELV	: 128
HORVU2Hr1G : -		MSMT	GDLVLAAPAI	LALLALVLS	HFLPLL-LNPH	ALRESFEW	LVGETLRFL	PHASN-TLGS	LEDHCSRYG	RVFKSH	FCTPTVV	SCDQELNHFII	ON-EERLFQ	CSYPRPING	LCKSSMLVVL	: 127
Ps ARW7086 : -		MELS-IM	CFFSSILFIVI	JFRIFIKE	LVSKRQHLI	LPPGSMGW	YIGET FOLY-	SQ-DPSV	FASKIKRY	SMEKSH	LECECVM	ISSPEAARFVI	NKAQLFK	PTFPASKER	TEKOAIFFHO	: 120
Ps ARW7086 : -		ML:	FYFLSILFIL	FILKSLFKSF	SFSSNGKKLL	LPPG <mark>S</mark> MCY	YIGET FOMY-	SQ-DPNL	FANKIKRYG	AMFRSH	LGCECVM	ISSPEAAKEVI	NKAQLFK	PTFPASKER	ICKOSIFFHO	: 121
Ps BAF5623 : -			MAIIL	FFVIILTVIFI	IHRSTYRRRY	LPPCSLCL	FIGETIQLIS	AYKTD-NPEP	DKRMNRYG	PIFTTH	FGEPTVF	SADPETNEFII	MN-EGKLFE	CSYPGSISN	TEKHSTLLMK	: 118
Ps BAF5623 : -			MAYLVI	FFFIFFFVFLE	LLRKLRYGRL	RIPPGNICI	FIGETLOMIS	AYKTD-NPEP	LDORVN RYG	SVFTSH	FGEPTVF	STOPETNRFII	TN-D-KLFE	CSYPGSISN	I CKHSILLMK	: 117
Ps BAF5623 : -		MSDSI	ITFYCLSSI	LSLLLIFILI	KTKQTK-PKLM	LPPGKMGW	FLGETIGYL	PYSAT-TIGE	MECHIARY	KIYKSKI	FGEPAIV	SADAGLNRFII	QN-EGKLFE	CSYPRSIGG	IGKWSMLVLV	: 125
Ps AA02306 : -	MILE	EMGSMWVVI	MAIGGALLVI	RSILKNVNWWI	YESKLGVKQYS	LPPG <mark>D</mark> MGW	FIGNMWSFLF	AFKSK-DPDS	ISSIVSRY6	SSGIYRAL	FGNESVI	VTTPEGCKRVI	TD-DEK-FT	TGWPOSTIE	ICKNSFIAMT	: 136
Ps_AA02306 : -		-MASLWFI	GAIAGALLVL	RSLLKNVNWFI	YEAKLGDKQYS	SLPPG <mark>D</mark> MG <mark>W</mark> I	IIC <mark>NMWSFL</mark>	RAFKSS-KPDS	EMDSIVKREG	NTGIYRVFN	FGFPSVI	VTSPEACKKVI	TD-DEN-FE	PGWPQSTVE	ICEKSFIKMP	: 132
Ps BAF5623 : -		MVFI	MVIFGVFFIL	CLCSALLRWN-	EVRYRKKO	LPPG <mark>T</mark> MG <mark>W</mark> I	VFGETTEFLE	QGPN	MKNORLRFG	SFFKSH	LGCPTIV	SMDAEVNRYIII	MN-ESKGLV	PGYPQSMLD	I CKCNIAAVH	: 118
Cm_XP_0229 : -		MEI	FLISLLILFLS	SFISLTLFVLF	YKHKSLFSYP	NTPPGAIGL	PIIGESLEFLS	TGWKG-EPEK	FIFDRLNKYF	SDIFKTS	VEVEAAI	FCGPVCNKFI	SN-ENKLVT	SWWPDSVNK	FPA-STEINS	: 126
Cm XP 0229 : -		MIAT	LLLITIFLYL	RLRATFFSS	AEAKN	IPPG <mark>P</mark> LG <mark>V</mark>	P <mark>F</mark> IGQS <mark>LSLL</mark> F	AMRAN-SAEQ	LOORVAKY	PISKMT	FCKPTVF	VHGVAANKAVV	FSGEEEAVS	NRQTESLRR	ICERNITELS	: 121
Cm_XP_0229 : -		M	GGKIVVSEYV	GAPLYR	SIKGSKH	KVPPG <mark>Q</mark> MGL	P <mark>W</mark> IGQI <mark>MAFY</mark> F	RAQRKNRLFED	E <mark>VGPRVA</mark> KYO	KIIFRTSI	MGSETVV	INGAEANRFFI	SN-EFKLVV	SSWPAASVQ	MEEECIMQKQ	: 117
Cm_XP_0229 : -		MI	LFLSAILIIS	LIFVFR	SIKGSKH	KVPPG <mark>Q</mark> MGLI	WIGCIMAFYE	RAQRKNRLFED	F <mark>VGPRVA</mark> KYG	KIIFKTSI	MGSPTVV	INGAEANRFFI	SN-EFKLVV	SSWPAASVQ	MEEECIMQKQ	: 117
Cm_XP_0229 : -						MGL	WIGQI <mark>MAFY</mark> F	RAQRKNRLFED	a <mark>vgprva</mark> ky@	KUFRTSI	MG <mark>S</mark> PTVV	INGAEANRFFI	SN-EFKLVV	SSWPAASVQ	MEEECIMQKQ	: 87
Cm_XP_0229 : -		MI	CFAAVIAAFFI	LLLHFLF	KFSAPARRKLI	LPPG <mark>S</mark> MGW	YMGETLQLY-	SQ-DPNV	FASKKKRYG	Pufiksh	LGYPCVM	VSSPEAAKFVI	VT-KAHLFK	PTFPASKER	ILCKNAIFFHR	: 118
Zv_BAE1697 : -	MC	CSTTLNMC	DLEFFILASCL	/LALFLILKLV	KRRTNNGSTRN	IPPG <mark>N</mark> MGWI	FIGETIGYL	PYSAT-TICK	FMEQHISKY6	KIIYKSSI	FGERTIV	SADPGLNKYII	QN-EGRLFE	CSYPRSIGG	ICKWSMLVLV	: 133
Zv_BAE1697 : -			DYLLLSLLS	STVTFFFLLLF	LATTSSRRKT	LPPGTVGL	FIGEXLOLIX	AYKTQ-NPEP	FIDSRVAKY0	TIFTTH	FGERTVF	SADPETNRFII	ON-EGRLFE	SSYPGSILN	VEKHSISFMR	: 121
Zv_BAE1697 : -		MIT	DLLLSPLSLL	LISLSTILIII	HTTTSSRRNH	ISPPCATCII	FIGETLOLIS	AYKTE-NPEP	S <mark>IDTRVE</mark> KYG	VVFTTH	FGERTVF	SADGETNRFII	KN-EGRLFE	SSYPGSIAN	VCKNSILLMR	: 127
Gb_AHF4953 : -		MVWSGE	WDAAAFAVTL	FLGFLLVISAR	RYQYGRGRGR	NAPPGTEGLI	LIGETLEFLO	CORSG-KPAE	FDTRINKY	EIFKTSI	VEHETAN	FCSPAGNRLLE	SN-ENKLVV	SSWPSSVGK	FCK-SILTAT	: 129
Gb_AHF4953 : M	GILLWIKAAIVAKYY	YDVLQAHQA	TAVGVCSLTI	TIMIAGFLIL	VYLKDDKPQSH	KIPPG <mark>S</mark> IG <mark>I</mark>	FLGETLOFL	WALKSN-KPEE	FDERVKKEG	HVFRTSI	LSDETVV	VTGPSGNRLLI	SN-ENKLVV	GAFPNSFLR	ICIDS MSRS	: 147
Gb_AAT2822 : -		-MASIFVP	CVSVAVITIT-	CLKKFNGWF	RYECGLSSKK-I	LPPG <mark>D</mark> MGW	LIGNMLSFLI	AFKFN-RPNS	VSAFVS RFG	RTGI YR PFN	FGSPTIL	ATTPETCKQVI	MD-DAH-FV	PGWPVSTVQ	MERKSFVALS	: 129
						ppg g H	p g		g	k e	gp				6 g	

protein sequence. Our P450 shown with red filled circle and other reference sequences from

different plants are marked with different color circle.

336

337 **3.8.** NMR analysis

338 Artemisinin produced by control and overexpressed transgenic plants were analyzed by ¹H NMR.

But the RNAi transgenic plants were too miniscule to collect the sample. However, ¹H NMR

340 spectrum did not show any peak related to the H5 signal of artemisinin presumably due to the low concentration in the sample. Therefore, artemisinic acid produced by transgenic plants was 341 measured by ¹H NMR (Supplementary Fig. 1). The plant samples prepared for ¹H NMR were 342 343 dissolved in chloroform-D and NMR peaks at δ 6.4, 5.5 and 4.9, corresponding to H12a, H12b, and H5 of artemisinic acid, respectively, were integrated. The integration value of each peak was 344 normalized against chloroform peak at δ 7.2. The values presented in Fig. 12 are the averages of 345 346 three peak integrations. These results showed that the amount of artemisinic acid produced by control plants was higher than that of the over-expressed plants. The results of ¹H NMR study 347 suggest that A. annua over-expressing P450 was not able to produce higher levels of artemisinic 348 acid, indicating that the new P450 gene AaCYPdwf is not a regulatory switch for artemisinin 349 biosynthesis. 350

351

353 The control plant with the highest content was arbitrarily set at 1.0. (a), (b), (c) control and (d), (e),

354 (f) overexpressed plant samples.

4. Discussion

In this study, we successfully cloned a novel P450 gene AaCYPdwf from A. annua which is likely 357 to be involved in BR-production in the plant. Silencing of the AaCYPdwf gene in A. annua resulted 358 359 extreme dwarf plants which might be linked with lesions in phytohormone synthesis or sensitivity [40–42]. The BR and GA are plant growth regulators that control cell and plant size. Mutations in 360 361 the genes involved in biosynthesis of BR and GA impair plant growth and cause dwarfism [43]. Early physiological work on wild-type (WT) tissues of different plants showed that GA and BR 362 additively enhance growth, indicating that these two hormones act independently at the cellular 363 364 level [44]. Therefore, we selected BR and GA for treating the RNAi silenced extremely dwarf mutant plants. Recovering of the dwarf mutant plants by the exogenous application of BR 365 indicating that the novel gene, AaCYPdwf is linked to the growth regulation of the plants through 366 367 BR hormone pathway [45]. There are a number of possibilities, in response to exogenous BR, the transcription levels of this gene might increase [46] and stimulate BR production. The gene might 368 be downstream targets that are involved in the response of the plant cell to BR. Some BAHD 369 370 family members may be involved in cell-wall biosynthesis and many BR-responsive genes are 371 involved in cellular processes such as cell wall biosynthesis [47–50]. Another reason is that the 372 induction of these genes may indicate a mechanism for BR inactivation like the expression of GAinactivating oxidases through GA treatment [51]. Additionally, Divi et al. found that exogenous 373 BR increases JA levels in Arabidopsis [52]. 374

In the present study, it revealed that a P450 gene *AaCYPdwf* is involved in biosynthesis of BR. The interference might be in the GA synthesis pathway. The BR showed enhanced growth of the RNAi-treated dwarf plant, but at lower level than that of GA-treated plant, suggesting BR may have some regulatory effects on GA biosynthesis. There are several cross-talks about the 379 relationship between brassinosteroid, gibberellin and auxin biosynthesis in plants. Several lines of 380 evidence suggest that BR-induced effects in plants might be regulated through auxin-BR interaction and endogenous auxin levels or auxin sensitivity could be changed by BR treatment 381 382 [53,54]. Furthermore, in Arabidopsis seedlings, the early auxin-inducible genes IAA5, IAA19 and DR5-GUS are induced by BR, without increase in IAA levels [55]. Moreover, in case of plants 383 internodes auxin up-regulates GA biosynthesis [56,57]. In Arabidopsis, there are some overlaps in 384 the BR- and auxin-signaling pathways [58], and BRs and auxin have partly similar regulatory 385 functions [59]. This similarity might extend to regulation of the GA pathway [60]. In Arabidopsis, 386 387 BR treatment increased transcript levels of a key biosynthetic gene GA5 (a GA 20-oxidase gene), which is responsible for the production of GA9 and GA20 [61,62]. Additionally, in certain tissues, 388 BR potentiates GA activity [62], and some plant hormones can affect the concentration, perception 389 and response to other plant hormones [63]. 390

391 The amino acid sequence of AaCYPdwf showed identity to the previously registered deduced 392 amino acid sequence. The plant P450 sequences from the GenBank/EMBL database showed amino acid identities of 52 and 53% with putative cytochrome P450 of the AAC69934 A. thaliana family, 393 394 and cytochrome P450 of the BAD90972 [Oryza sativa (japonica cultivar-group)], respectively. The steroid 23-a hydroxylase which showed identity with this gene is an Arabidopsis subfamily 395 CYP85A2. The CYP85A2 subfamily is a cytochrome P450 enzyme that possesses BR C-6 oxidase 396 which converts castasterone to brassinolide represents the final and rate-limiting step in the 397 biosynthesis of brassinosteroids in plant [34]. Considering the phenotypic characteristics, multiple 398 sequence alignment and phylogenetic tree of AaCYPdwf gene, we assume that this novel gene is 399 400 linked with brassinolide biosynthesis in A. annua plant. However, a further study in warranted for confirmation of this conclusion. 401

402 Interestingly, our overexpressed plants displayed similar phenotypes to control one. The BRs 403 biosynthesis and inactivation are critical components for maintaining the endogenous levels in plants and very important for the regulation of plant growth and development. In case of 404 Arabidopsis and other plant species, several gene transcription, individually or as part of protein 405 complexes [64–67]. Tayengwa et al. [68]also observed the similar phenomena when they 406 407 overexpressed a flowering time regulator AHL gene, the transgenic plants took same time for flowering as like as control. It can be hypothesized that several genes may function as part of 408 complex to regulate expression of a specific gene [69,70]. 409

Several lines of evidence suggest that overexpression of a key regulatory enzyme was found to 410 411 enhance the production of terpenoid in plants [71,72]. For example, Panax ginseng overexpressing *PgSSI* is able to produce high levels of phytosterol and ginsennosides, indicating that 412 413 *PgSSI* is a key regulatory enzyme for triterpene biosynthesis [71]. Similarly, *Elueutherococcus* 414 senticosus transgenic plants overexpressing squalene synthase (encoding gene pgSS1), which is an important enzyme in the production of phytosterols produced $2\sim2.5$ - fold phytosterols (β -sitosterol 415 and stigmassterol) than that of wild type plants, suggesting that this gene catalyzes the sterol 416 417 biosynthesis [72]. Based on these results, it is clear that overexpression of the related enzyme increases the production of terpenoid in the plant. On the other hand, in the current study, 418 overexpression of our cloned P450 AaCYPdwf gene had no direct effect on artemisinic acid 419 420 production. Therefore, this gene seemed no relevancy to the biosynthetic pathway of artemisinin but likely to be involved in biosynthesis of brassinolide in A. annua. To elucidate the precise role 421 422 of AaCYPdwf, a further investigation is needed.

423 **5.** Conclusion

We cloned a novel cytochrome p450 *AaCYPdwf* gene from *A. annua*. Findings of our studies show that there is no overexpression phenotype of this gene but the absence (silencing) of this gene seemed very critical for plant growth as knockout of this gene resulted extremely dwarf plants. However, exogenous application of brassinolide recovered the dwarfism of the mutants. Taken together, these results suggest that *AaCYPdwf* gene is essential for growth of the plant, which may be linked with the biosynthesis of brassinolide in *A. annua*. However, a further study is needed to elucidate the precise role of *AaCYPdwf* gene in brassinolide biosynthesis and growth of *A. annua*.

431

432 Author contributions

- 433 **Conceptualization:** Soo-Un Kim
- 434 Data curation: Soo-Un Kim
- 435 **Formal analysis:** Mahmuda Umme Rayhan
- 436 **Investigation:** Mahmuda Umme Rayhan
- 437 **Resources:** Mahmuda Umme Rayhan
- 438 **Methodology:** Mahmuda Umme Rayhan
- 439 **Project administration:** Soo-Un Kim
- 440 **Software:** Mahmuda Umme Rayhan
- 441 **Supervision:** Soo-Un Kim
- 442 **Funding acquisition:** Soo-Un Kim
- 443 Visualization: Soo-Un Kim
- 444 Validation: Soo-Un Kim
- 445 Writing original draft: Mahmuda Umme Rayhan
- 446 Writing review & editing: Tofazzal Islam, Mahmuda Umme Rayhan

447

448 Funding

- 449 This work was funded by the Korea Science and Engineering Foundation (KOSEF), South Korea,
- 450 through a coordinated project to Soo-Un Kim of the Program in Applied Life Chemistry,
- 451 Department of Agricultural Biotechnology, Seoul National University, Seoul 08826.

452 Declaration of Competing Interest

453 The authors declare no conflict of interest

454

- 455 Ethical approval: This article does not contain any studies with human participants or animals
- 456 performed by any of the authors.
- 457

458 Acknowledgements

459 The authors are thankful to the Korea Science and Engineering Foundation (KOSEF), South

460 Korea, for funding this work. The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript. We sincerely appreciate Tahsin Islam Sakif

- 462 of West Virginia University, USA for generous linguistic editing of this manuscript.
- 463

464 **References**

- 465 [1] WORLD HEALTH ORGANIZATION., WORLD MALARIA REPORT 2019., WORLD466 HEALTH ORGANIZATION, 2019.
- 467 [2] A.P. Kourtis, J.S. Read, D.J. Jamieson, Pregnancy and Infection, New England Journal of
 468 Medicine. 370 (2014) 2211–2218. https://doi.org/10.1056/NEJMra1213566.
- S.I. Hay, M.E. Sinka, R.M. Okara, C.W. Kabaria, P.M. Mbithi, C.C. Tago, D. Benz, P.W.
 Gething, R.E. Howes, A.P. Patil, W.H. Temperley, M.J. Bangs, T. Chareonviriyaphap, I.R.F.
 Elyazar, R.E. Harbach, J. Hemingway, S. Manguin, C.M. Mbogo, Y. Rubio-Palis, H.C.J. Godfray,
 Developing global maps of the dominant anopheles vectors of human malaria, PLoS Medicine. 7
 (2010). https://doi.org/10.1371/journal.pmed.1000209.
- 474 [4] G. Macdonald, Harrison's Internal Medicine, 17th edition. by A. S. Fauci, D. L. Kasper, D. L.
 475 Longo, E. Braunwald, S. L. Hauser, J. L. Jameson and J. Loscalzo, Internal Medicine Journal. 38
 476 (2008) 932–932. https://doi.org/10.1111/j.1445-5994.2008.01837.x.
- 477 [5] D. Gurarie, P.A. Zimmerman, C.H. King, Dynamic regulation of single- and mixed-species
 478 malaria infection: Insights to specific and non-specific mechanisms of control, Journal of
 479 Theoretical Biology. 240 (2006) 185–199. https://doi.org/10.1016/j.jtbi.2005.09.015.
- J.K. Baird, Neglect of Plasmodium vivax malaria, Trends in Parasitology. 23 (2007) 533–539.
 https://doi.org/10.1016/j.pt.2007.08.011.

J. Schantz-Dunn, N.M. Nour, Malaria and Pregnancy: A Global Health Perspective, REVIEWS IN OBSTETRICS & GYNECOLOGY. 2 (2009) 186–192. https://doi.org/10.3909/riog0091.

484 485	[8]	B.T. Grimberg, R.K. Mehlotra, Expanding the antimalarial drug arsenal-now, but how?, Pharmaceuticals. 4 (2011) 681–712. https://doi.org/10.3390/ph4050681.
486 487 488 489	[9]	P.J. Weathers, P.R. Arsenault, P.S. Covello, A. McMickle, K.H. Teoh, D.W. Reed, Artemisinin production in Artemisia annua: Studies in planta and results of a novel delivery method for treating malaria and other neglected diseases, Phytochemistry Reviews. 10 (2011) 173–183. https://doi.org/10.1007/s11101-010-9166-0.
490 491	[10]	D.L. Klayman, Qinghaosu (Artemisinin): An Antimalarial Drug from China, Science, 31 (1985) 1049-1055, doi: 10.1126/science.3887571
492 493 494	[11]	Y. Tu, Artemisinin: Ein Geschenk der traditionellen chinesischen Medizin an die Welt (Nobel-Aufsatz), Angewandte Chemie. 128 (2016) 10366–10382. https://doi.org/10.1002/ange.201601967.
495 496	[12]	L.Y. Kong, R.X. Tan, Artemisinin, a miracle of traditional Chinese medicine, Natural Product Reports. 32 (2015) 1617–1621. https://doi.org/10.1039/c5np00133a.
497 498 499	[13]	D. Chaturvedi, A. Goswami, P.P. Saikia, N.C. Barua, P.G. Rao, Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents, Chemical Society Reviews. 39 (2010) 435–454. https://doi.org/10.1039/b816679j.
500 501	[14]	C. Shi, H. Li, Y. Yang, L. Hou, Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives, Mediators of Inflammation. 2015 (2015). https://doi.org/10.1155/2015/435713.
502 503 504	[15]	Y.K. Wong, C. Xu, K.A. Kalesh, Y. He, Q. Lin, W.S.F. Wong, H.M. Shen, J. Wang, Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action, Medicinal Research Reviews. 37 (2017) 1492–1517. https://doi.org/10.1002/med.21446.
505 506 507	[16]	M.P. Crespo-Ortiz, M.Q. Wei, Antitumor activity of artemisinin and its derivatives: From a well- known antimalarial agent to a potential anticancer drug, Journal of Biomedicine and Biotechnology. 2012 (2012). https://doi.org/10.1155/2012/247597.
508 509 510	[17]	V.A. Vil, I.A. Yaremenko, A.I. Ilovaisky, A.O. Terent'ev, Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions, Molecules. 22 (2017). https://doi.org/10.3390/molecules22111881.
511 512 513 514	[18]	P. Nair, A. Misra, A. Singh, A.K. Shukla, M.M. Gupta, A.K. Gupta, V. Gupta, S.P.S. Khanuja, A.K. Shasany, Differentially Expressed Genes during Contrasting Growth Stages of Artemisia annua for Artemisinin Content, PLoS ONE. 8 (2013). https://doi.org/10.1371/journal.pone.0060375.
515 516 517	[19]	M. Raymond, K. Miriam, K. Oliver, M. Edwin, K. Stephen, Enhancement of Artemisinin in Artemisia annua L. through Induced Mutation, OALib. 02 (2015) 1–11. https://doi.org/10.4236/oalib.1102189.
518 519	[20]	K. Tang, Q. Shen, T. Yan, X. Fu, Transgenic approach to increase artemisinin content in Artemisia annua L., Plant Cell Reports. 33 (2014) 605–615. https://doi.org/10.1007/s00299-014-1566-y.

520 [21] L. Maes, F.C.W. van Nieuwerburgh, Y. Zhang, D.W. Reed, J. Pollier, S.R.F. vande Casteele, D. 521 Inzé, P.S. Covello, D.L.D. Deforce, A. Goossens, Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua 522 523 plants, New Phytologist. 189 (2011) 176–189. https://doi.org/10.1111/j.1469-8137.2010.03466.x. 524 P. Alam, M.Z. Abdin, Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase [22] genes in Artemisia annua L. and its influence on artemisinin content, Plant Cell Reports, 30 (2011) 525 526 1919-1928. https://doi.org/10.1007/s00299-011-1099-6. Y. Wang, F. Jing, S. Yu, Y. Chen, T. Wang, P. Liu, G. Wang, X. Sun, K. Tang, Co-overexpression 527 [23] of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L, Journal of 528 Medicinal Plants Research. 5 (2011) 3396–3403. http://www.academicjournals.org/JMPR. 529 530 [24] Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel 531 antimalarial drug artemisinin. Planta, 212 (2001) 460-465, https://doi.org/10.1007/s004250000428 532 533 [25] P.J. Westfall, D.J. Pitera, J.R. Lenihan, D. Eng, F.X. Woolard, R. Regentin, T. Horning, H. 534 Tsuruta, D.J. Melis, A. Owens, S. Fickes, D. Diola, K.R. Benjamin, J.D. Keasling, M.D. Leavell, 535 D.J. Mcphee, N.S. Renninger, J.D. Newman, C.J. Paddon, Production of amorphadiene in yeast, 536 and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin, 537 PNAS, 109 (2012) 111-118, https://doi.org/10.1073/pnas.1110740109/-/DCSupplemental. 538 [26] C.J. Paddon, P.J. Westfall, D.J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M.D. Leavell, A. Tai, 539 A. Main, D. Eng, D.R. Polichuk, K.H. Teoh, D.W. Reed, T. Treynor, J. Lenihan, H. Jiang, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K.W. Ellens, S. Fickes, J. Galazzo, 540 541 S.P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L.F. Westblade, L. Xu, M. Yu, 542 Y. Zhang, L. Zhao, J. Lievense, P.S. Covello, J.D. Keasling, K.K. Reiling, N.S. Renninger, J.D. 543 544 Newman, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature. 496 (2013) 528-532. https://doi.org/10.1038/nature12051. 545 546 [27] C.J. Paddon, J.D. Keasling, Semi-synthetic artemisinin: A model for the use of synthetic biology 547 in pharmaceutical development, Nature Reviews Microbiology. 12 (2014) 355–367. 548 https://doi.org/10.1038/nrmicro3240. 549 Y.L. Jin, R.J. Tang, H.H. Wang, C.M. Jiang, Y. Bao, Y. Yang, M.X. Liang, Z.C. Sun, F.J. Kong, [28] 550 B. Li, H.X. Zhang, Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees, Plant Biotechnology Journal. 15 (2017) 1309–1321. 551 552 https://doi.org/10.1111/pbi.12717. K. Wu2, L.I. Li3, D.A. Gage, J.A.D. Zeevaart, Molecular Cloning and Photoperiod-Regulated 553 [29] Expression of Gibberellin 20-Oxidase from the Long-Day Plant Spinach, Plant Physiol. 110 554 555 (1996) 547-554, doi: 10.1104/pp.110.2.547

556 557 558	[30]	T.M. Nolan, N. Vukasinović, D. Liu, E. Russinova, Y. Yin, Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses, in: Plant Cell, American Society of Plant Biologists, 2020: pp. 298–318. https://doi.org/10.1105/tpc.19.00335.
559 560 561 562	[31]	Q. Yan, J. Li, L. Lu, L. Gao, D. Lai, N. Yao, X. Yi, Z. Wu, Z. Lai, J. Zhang, Integrated analyses of phenotype, phytohormone, and transcriptome to elucidate the mechanism governing internode elongation in two contrasting elephant grass (Cenchrus purpureus) cultivars, Industrial Crops and Products. 170 (2021). https://doi.org/10.1016/j.indcrop.2021.113693.
563 564 565	[32]	Y. Feng, X. Zhang, T. Wu, X. Xu, Z. Han, Y. Wang, Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock, Biochemical and Biophysical Research Communications. 482 (2017) 604–609. https://doi.org/10.1016/j.bbrc.2016.11.080.
566 567 568	[33]	S. Fujioka, T. Noguchi, T. Watanabe, S. Takatsuto, S. Yoshida, Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus, Phytochemistry, 53 (2000) 549-553, https://doi.org/10.1016/S0031-9422(99)00582-8
569 570 571	[34]	T. Ohnishi, Recent advances in brassinosteroid biosynthetic pathway: Insight into novel brassinosteroid shortcut pathway, Journal of Pesticide Science. 43 (2018) 159–167. https://doi.org/10.1584/jpestics.D18-040.
572 573 574 575	[35]	K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular Biology and Evolution. 28 (2011) 2731–2739. https://doi.org/10.1093/molbev/msr121.
576	[36]	P.R. Ebert, A. Mitra, S.B. Ha, Binary vectors, Molecular Biology Manual, 1988, pp. 1-19.
577 578	[37]	C. von Wachenfeldt, E.F. Johnson, Structures of Eukaryotic Cytochrome P450 Enzymes, doi: 10.1007/978-1-4757-2391-5_6
579 580 581 582	[38]	S. Kanrar, J. Venkateswari, P. Dureja, P.B. Kirti, V.L. Chopra, Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea Fatty Acid Elongation1 (BjFAE1) gene, Plant Cell Reports. 25 (2006) 148–155. https://doi.org/10.1007/s00299-005-0068-3.
583 584 585	[39]	S.D. Clouse, M. Langford, T.C. Mcmorris, A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development, Plant Physiol, 111 (1996) 671-678, doi: 10.1104/pp.111.3.671
586 587	[40]	J. Li and J. Chory, A putative leucine-rich repeat receptor kinase involved in Brassinosteroid signal transduction, Cell, 90 (1997) 929-938.
588 589 590	[41]	J. Peng, P. Carol, D.E. Richards, K.E. King, R.J. Cowling, G.P. Murphy, N.P. Harberd, The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses, Genes Dev, 11 (1997) 3194-3205, doi: 10.1101/gad.11.23.3194.

591 [42] P.R. Johnson, J.R. Ecker, THE ETHYLENE GAS SIGNAL TRANSDUCTION PATHWAY: A 592 Molecular Perspective, Annual Review of Genetics, 1998 (32) 227-254, https://doi.org/10.1146/annurev.genet.32.1.227 593 594 Z. Hong, M. Ueguchi-Tanaka, K. Umemura, S. Uozu, S. Fujioka, S. Takatsuto, S. Yoshida, M. [43] 595 Ashikari, H. Kitano, M. Matsuoka, A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is 596 Caused by a Loss of Function of a New Member of Cytochrome P450, Plant Cell. 15 (2003) 2900-2910. https://doi.org/10.1105/tpc.014712. 597 598 L.E. Gregory, N. Bhushan, M. Gregory, L.E. And Mandava, L.E. Gregory, N.B. Mandava, The [44] 599 activity and interaction of brasslnolide and gibberellic acid in mung bean epieotyls, Physiologia Plantarum, 54 (1982) 239-243. 600 601 [45] S. Duan, Z. Zhao, Y. Oiao, C. Cui, A.G. Condon, L. Chen, Y.G. Hu, Vigorous responsiveness of dwarf gene Rht14 to exogenous GA3 evaluated on important morphological and agronomic traits 602 in durum wheat, Agronomy Journal. 112 (2020) 5033-5044. https://doi.org/10.1002/agj2.20409. 603 604 [46] S. Pearce, L.S. Vanzetti, J. Dubcovsky, Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1, Plant Physiology. 163 (2013) 605 606 1433-1445. https://doi.org/10.1104/pp.113.225854. H. Goda, Y. Shimada, T. Asami, S. Fujioka, S. Yoshida, Microarray analysis of brassinosteroid-607 [47] 608 regulated genes in arabidopsis, Plant Physiology. 130 (2002) 1319–1334. 609 https://doi.org/10.1104/pp.011254. L. Hoffmann, S. Besseau, P. Geoffroy, C. Ritzenthaler, D. Meyer, C. Lapierre, B. Pollet, M. 610 [48] Legrand, Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate 611 hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis, Plant Cell. 16 (2004) 1446– 612 1465. https://doi.org/10.1105/tpc.020297. 613 [49] 614 S. Besseau, L. Hoffmann, P. Geoffroy, C. Lapierre, B. Pollet, M. Legrand, Flavonoid 615 accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth, Plant Cell. 19 (2007) 148-162. https://doi.org/10.1105/tpc.106.044495. 616 J.-Y. Gou, X.-H. Yu, C.-J. Liu, A hydroxycinnamoyltransferase responsible for synthesizing 617 [50] 618 suberin aromatics in Arabidopsis, PNAS, 106 (2009) 18855-18860, 619 https://doi.org/10.1073/pnas.0905555106 S.G. Thomas, A.L. Phillips, P. Hedden, Molecular cloning and functional expression of gibberellin 620 [51] 2-oxidases, multifunctional enzymes involved in gibberellin deactivation, Proc Natl Acad Sci U S 621 A. 1999 Apr 13;96(8):4698-703. doi: 10.1073/pnas.96.8.4698. 622 623 U.K. Divi, T. Rahman, P. Krishna, Gene expression and functional analyses in brassinosteroid-[52] 624 mediated stress tolerance, Plant Biotechnology Journal. 14 (2016) 419-432. 625 https://doi.org/10.1111/pbi.12396. 626 [53] N.B. Mandava, PLANT GROWTH-PROMOTING BRASSINOSTEROIDS, Ann. Rev. Plant 627 Physiol Mol. Biol. 39 (1988) 23-52.

628 [54] J.M. Sasse, Physiological Actions of Brassinosteroids: An Update, Journal of Plant Growth 629 Regulation. 22 (2003) 276-288. https://doi.org/10.1007/s00344-003-0062-3. 630 A. Nakamura, K. Higuchi, H. Goda, M.T. Fujiwara, S. Sawa, T. Koshiba, Y. Shimada, S. Yoshida, [55] Brassinolide Induces IAA5, IAA19, and DR5, a Synthetic Auxin Response Element in 631 632 Arabidopsis, Implying a Cross Talk Point of Brassinosteroid and Auxin Signaling, Plant 633 Physiology. 133 (2003) 1843–1853. https://doi.org/10.1104/pp.103.030031. J.J. Ross, D.P. O'neill, J.J. Smith, L. Huub, J. Kerckhoffs, R.C. Elliott, Evidence that auxin 634 [56] promotes gibberellin A 1 biosynthesis in pea, Plant J, 21 (2000) 547-552, doi: 10.1046/j.1365-635 313x.2000.00702.x. 636 D.P. O'Neill, J.J. Ross, Auxin regulation of the gibberellin pathway in pea, Plant Physiology. 130 637 [57] (2002) 1974–1982. https://doi.org/10.1104/pp.010587. 638 639 [58] H. Goda, Y. Shimada, T. Asami, S. Fujioka, S. Yoshida, Microarray analysis of brassinosteroid-640 regulated genes in arabidopsis, Plant Physiology. 130 (2002) 1319–1334. 641 https://doi.org/10.1104/pp.011254. C. Müssig, S. Fischer, T. Altmann, Brassinosteroid-regulated gene expression, Plant Physiology. 642 [59] 129 (2002) 1241-1251. https://doi.org/10.1104/pp.011003. 643 644 [60] T. Bouquin, C. Meier, R. Foster, M.E. Nielsen, J. Mundy, Control of specific gene expression by gibberellin and brassinosteroid, Plant Physiology. 127 (2001) 450-458. 645 https://doi.org/10.1104/pp.010173. 646 647 [61] A. 1 Phillips, D.A. Ward, S. Uknes, N.E.J. Appleford, T. Lange, A.K. Huttly, P. Caskin, J.E. 648 Craebe, P. Hedden, C.A. Biotechnology, Isolation and Expression of Three Gibberellin 20-649 Oxidase cDNA Clones from Arabidopsis, Plant Physiology, 108 (1995) 1049-1057. 650 Y.-L. Xu, L.I. Li, K. Wu, A.J.M. Peeterst, D.A. Gage, J.A.D. Zeevaart, The GA5 locus of [62] 651 Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression, Proc Natl Acad Sci U S A, 92 (1995) 6640-6644, doi: 652 653 10.1073/pnas.92.14.6640. 654 J.J. Ross, D.E. Weston, S.E. Davidson, J.B. Reid, Plant hormone interactions: How complex are [63] they?, Physiologia Plantarum. 141 (2011) 299-309. https://doi.org/10.1111/j.1399-655 3054.2011.01444.x. 656 657 D.S. Favero, C.N. Jacques, A. Iwase, K.N. Le, J. Zhao, K. Sugimoto, M.M. Neff, Suppressor Of [64] 658 phytochrome B4-#3 represses genes associated with auxin signaling to modulate hypocotyl growth, Plant Physiology. 171 (2016) 2701–2716. https://doi.org/10.1104/pp.16.00405. 659 660 K. Lee, P.J. Seo, Coordination of matrix attachment and ATP-dependent chromatin remodeling [65] regulate auxin biosynthesis and Arabidopsis hypocotyl elongation, PLoS ONE. 12 (2017). 661 662 https://doi.org/10.1371/journal.pone.0181804.

663 664 665 666	[66]	J. Yun, Y.S. Kim, J.H. Jung, P.J. Seo, C.M. Park, The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis, Journal of Biological Chemistry. 287 (2012) 15307–15316. https://doi.org/10.1074/jbc.M111.318477.
667 668 669 670	[67]	J. Zhao, D.S. Favero, H. Peng, M.M. Neff, Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain, Proceedings of the National Academy of Sciences of the United States of America. 110 (2013). https://doi.org/10.1073/pnas.1219277110.
671 672 673	[68]	R. Tayengwa, P. Sharma Koirala, C.F. Pierce, B.E. Werner, M.M. Neff, Overexpression of AtAHL20 causes delayed flowering in Arabidopsis via repression of FT expression, BMC Plant Biology. 20 (2020). https://doi.org/10.1186/s12870-020-02733-5.
674 675 676	[69]	I.H. Street, P.K. Shah, A.M. Smith, N. Avery, M.M. Neff, The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis, Plant Journal. 54 (2008) 1–14. https://doi.org/10.1111/j.1365-313X.2007.03393.x.
677 678 679	[70]	C. Xiao, F. Chen, X. Yu, C. Lin, Y.F. Fu, Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana, Plant Molecular Biology. 71 (2009) 39–50. https://doi.org/10.1007/s11103-009-9507-9.
680 681 682	[71]	MH. Lee, JH. Jeong, JW. Seo, CG. Shin, YS. Kim, JG. In, DC. Yang, JS. Yi, YE. Choi, Enhanced Triterpene and Phytosterol Biosynthesis in Panax ginseng Overexpressing Squalene Synthase Gene, 2004. http://pcp.oxfordjournals.org/.
683 684 685 686	[72]	J.W. Seo, J.H. Jeong, C.G. Shin, S.C. Lo, S.S. Han, K.W. Yu, E. Harada, J.Y. Han, Y.E. Choi, Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation, Phytochemistry. 66 (2005) 869–877. https://doi.org/10.1016/j.phytochem.2005.02.016.
687		

688 SUPPORTING INFORMATION

689 Supplementary Figure 1. ¹H NMR analysis of artemisinic acid produced by transgenic

690 **plants.** The plant samples prepared for 1H NMR were dissolved in chloroform-d and NMR peaks

- at δ 6.4, 5.5 and 4.9, corresponding to H12a, H12b, and H5 of artemisinic acid, respectively, were
- integrated. The integration value of each peak was normalized against chloroform peak at δ 7.2.

693 Three control plants (a), (b), (c) and three overexpress plants (d), (e) and (f) were used for this694 work.

706Supplementary Table 1. Culture media for A. annua in vitro culture.

Medium	Composition
MS	0.44% MS salt, 3% (w/v) sucrose, 0.8% agar, pH 5.7
MS shoot 1a	MS + 0.05 mg/L NAA + 0.5 mg/L BAP + 15 mg/L Kanamycin. pH 5.7
MS shoot 1b	MS + 0.05 mg/L NAA + 0.5 mg/L BAP + 50mg/L Basta, pH 5.7
MS root 1a	MS + 0.05 mg/L NAA + 15 mg/L kanamycin, pH 5.7
MS root 1b	MS + 0.05 mg/L NAA + 50 ppm Basta, pH 5.7

707

708 Supplementary Table 2. List of oligonucleotide sequences used in this research.

Name	Usage	Sequence (5'- 3')
5' RACE primer	RACE PCR	AAG GAT GGA AGA TAA TCT GGA GTG
3' RACE primer	RACE PCR	GAA AGG GGT TGG CCC TGC TCC TCC
ORF -F	Full gene clone	GGATCCATGCCAATGACGGTTATG
ORF -R	Full gene clone	GGATCCTCAAACTTGATGAGGATG
RNAi -F	RNAi PCR	GCTCTAGAGGCGCGCCATTCCAATTCACATAAG
RNAi -R	RNAi PCR	CGGGATCCATTTAAATATCATCTTTCTCAACCA
Τ7	Sequencing	GTAATACGACTCACTATAGGG
Sp6	Sequencing	ATTTAGGTGACACTATAGAATAC
pBI121-F	Sequencing	CCTCTATATAAGGAAGTTCATT
pBI121-R	Sequencing	ATTTCACGGGTTGGGGGTTTCTA
pFGC sense -F	Sequencing	AACAACAACAAACAAACA
pFGC sense -R	Sequencing	TAAGATAAAACGTTGAATGTA
pFGC anti sense -F	Sequencing	GTTTATGTTTTAGTGTTTTCT

pFGC anti sense -R	Sequencing	TATCTCATTAAAGCAGGACTC
35S promoter-F	Transgenic plant sequencing	GGTTAGAGAGGCTTACGCAGG
35S promoter-R	Transgenic plant sequencing	GTCCCCGTGTTCTCTCCAAATGA
RNAi transgenic-F	Transgenic plant sequencing	AAATGTGTAAGAATTTCTTATG
RNAi transgenic-R	Transgenic plant sequencing	AAAAAGATGTGAAGAAAACAC

710 Supplementary Table 3. PCR of transgenic plants gDNAs.

Plants gDNA	Primer name	Annealing Temperature (°C)
pBI121 vector	35S promoter	56.3
pFGC vector	RNAi transgenic	37.8
Overexpressed	ORF	52.5
RNAi	RNAi transgenic	37.8