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ABSTRACT

Predicting the properties of a chemical molecule is of great importance in many applications, including drug discovery and
material design. Machine learning-based models promise to enable more accurate and faster molecular property predictions
than the current state-of-the-art techniques, such as Density Functional Theory calculations or wet-lab experiments. Various
supervised machine learning models, including graph neural nets, have demonstrated promising performance in molecular
property prediction tasks. However, the vast chemical space and the limited availability of property labels make supervised
learning challenging, calling for learning a general-purpose molecular representation. Recently, unsupervised transformer-
based language models pre-trained on large unlabeled corpus have produced state-of-the-art results in many downstream
natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training
an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear
attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabeled molecules from
the PubChem and ZINC datasets.Experiments show that utilizing the learned molecular representation outperforms existing
baselines on downstream tasks, including supervised and self-supervised graph neural net baselines and language models, on
several classification and regression tasks from ten benchmark datasets while performing competitively on two others. Further
analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns
the spatial relationships between atoms within a molecule. These results provide encouraging evidence that the large-scale
molecular language models can capture sufficient chemical and structural information to predict various distinct molecular
properties, including quantum-chemical properties.

Main

Machine Learning (ML) has emerged as an appealing, computationally efficient approach for predicting molecular properties,
with implications in drug discovery and material engineering. ML models for molecules can be trained directly on pre-defined
chemical descriptors, such as unsupervised molecular fingerprints', or hand-derived derivatives of geometric features such as a
Coulomb Matrix (CM)?. However, more recent ML models have focused on automatically learning the features either from the
natural graphs that encode the connectivity information or from the line annotations of molecular structures, such as the popular
SMILES? (Simplified Molecular-Input Line Entry System) representation. SMILES defines a character string representation of
a molecule by performing a depth-first pre-order spanning tree traversal of the molecular graph, generating symbols for each
atom, bond, tree-traversal decision, and broken cycles. Therefore, the resulting character string corresponds to a flattening of a
spanning tree of the molecular graph. Learning on SMILES has been widely adopted for molecular property prediction*” as
SMILES is generally more compact than other methods of representing structure, including graphs. Additionally, meaningful
substructures such as branches, cyclic structures, and chirality information are explicitly represented in SMILES strings, which
is not the case for the graph representation.

However, the SMILES grammar is complex and restrictive; most sequences over the appropriate character set do not belong
to well-defined molecules. Alternative string-based representations exist, such as SMARTSS® and SELFIES®. Nevertheless,
string-based representations are thought to not be topologically-aware, while graphs are. Due to these limitations, deep
chemical language models may focus on learning the grammar of molecular strings and not the implicit topological structure
of the molecular graphs. Accordingly, while string-based deep neural nets have been employed in predicting molecular
properties>">1°, they are typically outperformed by graph neural networks (GNNs)!! and their variants'>2°, GNN frameworks
can be generally viewed as “message passing”, which includes local neighborhood information aggregation and information
updates across different levels of granularity, e.g., nodes, edges, or the full graph, according to the graph’s connectivity structure.
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Figure 1. Overview of MoLFormer pipeline. The transformer neural network based model is trained on the SMILES
sequences corresponding to a large collection of chemical molecules from PubChem and Zinc, two public chemical databases
in a self-supervised fashion. MOLFORMER was designed with an efficient linear attention mechanism and relative positional
embeddings, with the goal of learning a meaningful and compressed representation of chemical molecules. This foundation
model was then adopted to different downstream molecular property prediction tasks via fine-tuning on task-specific data. The
representative power was further tested by recovering molecular similarity using the MOLFORMER encodings, as well as by
analyzing the correspondence between the interatomic spatial distance and attention value for a given molecule.

One challenge with supervised training of GNNs and language models for molecular property prediction is the scarcity
of labeled data. Label annotation of molecules is typically expensive and this problem is compounded by the fact that the
size of the space consisting of plausible chemicals in need of annotation is astronomically large (10°° to 10'%)?! Such a
scenario creates the need for molecular representation learning which can be generalizable to various property prediction tasks
in an un-/self-supervised setting. The recent success of large transformer-based?> foundation models>®, using the paradigm of
learning a task-agnostic language representation, obtained by pre-training on large unlabeled corpora and subsequently using it
for fine-tuning on downstream tasks of interest, has been extended to other domains.

Pre-trained Language Models (LMs)>* and GNNs>> have only recently started to emerge for predicting molecular properties.
However, to what extent pre-trained LMs, trained on a large corpus of billions of molecules, are able to capture the molecule-
property relationships across various downstream tasks remains unexplored.

Towards this direction, here we present molecular SMILES transformer models referred to as MOLFORMER (Molecular
Language transFormer). We name our best performing MOLFORMER variant MOLFORMER-XL. MOLFORMER-XL was
obtained using an efficient linear attention mechanism trained on a large corpus of 1.1 billion molecules (see Figure 1).
Results show, for the first time, that pre-trained transformer encoders of molecular SMILES perform competitively with
existing supervised or unsupervised LM and GNN baselines on predicting a wide variety of molecular properties, including
quantum-mechanical properties.

Our main contributions are:

* We train a large-scale and efficient Molecular Language model transFormer (MOLFORMER) on over a billion molecules,
with relatively limited hardware resources (up to 16 V100 GPUs). We owe our scalability and speedups to efficient linear
time attention, adaptive bucketing of batches, and open-source parallelization provided in PyTorch Lightning and NCCL.
With the combination of bucketing and linear attention we are able to achieve a batch size of 1600 molecules per GPU.
Using 16 GPUs we need 208 hours to complete 4 epochs of pre-training for MOLFORMER-XL. To complete training in
the same amount of time without bucketing and linear attention we would be limited to less than 50 molecules per GPU
and require over 1000 GPUs for the task.

* We explore the difference between absolute and relative position embeddings in representing molecular SMILES. We
also provide a new, efficient, and accurate linear attention approximation of the recently proposed relative position

RoFormer?°.

* We perform extensive experimentation and ablation studies on several classification and regression tasks from 10
benchmark datasets, covering quantum mechanical, physical, biophysical, and physiological property prediction of small
molecule chemicals from MoleculeNet>’.

L]

Our results provide encouraging evidence that MOLFORMER representations can accurately capture sufficient chemical
and structural information to predict a diverse range of chemical properties. Furthermore, the performance of MOL-
FORMER is either better or on par with state-of-the-art GNNs that learn from precise graph topology information and
beyond (e.g., bond distances).
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* We provide further analyses to demonstrate that MOLFORMER can capture substructures, as well as spatial interatomic
distances within a molecule from SMILES annotations only.

Related Work

Large Scale Training of Language Model The recent advancement of transformer-based masked language models (MLMs
and prefix language models (PLMs)*" have shown remarkable performance on various natural language understanding tasks.
Self-supervised pre-trained representation learning of sequences through MLMs randomly masks input tokens during training
and predicts these masked tokens, whereas PLMs require adding task-specific text tags to the input sequences. These language
models show substantial performance improvements on downstream tasks via increasing transformer models size and pre-
training using large-scale data corpora. Recent efforts have addressed the resulting cost and memory challenges encountered
due to scaling up models and data. One such effort is the linear-time attention transformers introduced in!=3* which address
the quadratic memory challenges within the attention mechanism and allowing for more efficiency in training MLMs.

)28,29

Molecular Representation Learning To represent molecules in vector space, traditional chemical fingerprints such as ECFP!,
have been used. Deep neural nets were further trained on chemical fingerprints for supervised learning. Recurrent Neural
Network (RNN) based models have been used for molecular representation learning using SMILES and other linear molecular
annotations as inputs®>. At the same time, graph convolutional networks have been used to learn the neural fingerprints of
molecules'"3¢. Previous work!” implemented a single common framework to learn from graphs, referred to as a message
passing framework, which computes node embeddings by aggregating neighborhood information during the message passing
phase and computes a feature vector of the graph during the readout phase. Many attempts to extend GNNs have been made,
which include variations of the original message passing concept to learn non-local effects; for instance, in®’ an attention
mechanism was introduced. One challenge faced by GNNS is achieving higher expressivity that can distinguish between two
given graphs to that of the hierarchy of the Weisfeiler-Lehman (WL) graph isomorphism, while maintaining scalability. It has
been shown that typical message passing models have limited expressiveness and are not better than the first WL test (1-WL)38.
Powerful deep models that represent higher order interactions between graph nodes have been suggested®®-3°, but with a large
increase in computational cost.

Molecular graphs can be further augmented with the 3D coordinates of atoms. Such augmentation is considered as privileged
information due to the cost associated with deriving the 3D molecular geometry. To better model the spatial interactions among
atoms the message passing framework was extended in!’ to include pairwise interatomic distances as edge features when
geometric information was available. More recently, variations of the message passing networks (MPNN) were proposed to
better model the spatial interactions within molecules and increase the models expressive power, e.g., by using continuous
filter convolutional layers*’ or by using directional message passing*! but at the cost of increased computational complexity.
However, those models are not generalizable to settings where 3D structural information is not readily available and/or is
expensive to compute (e.g. for larger molecules). Since the goal of this work is to learn a generalizable molecular representation
from a large amount of unlabeled data without relying on expensive 3D information, we mainly focus on comparing the
proposed MOLFORMER with existing supervised and un/self-supervised baselines that utilize different input representation
(SMILES, graphs, fingerprints) and can be generalizable to a wide variety of tasks, from quantum mechanical to physiological.

Pre-trained Molecular Language and Graph Models The recent success of language representation models in downstream
NLP tasks has inspired extending this paradigm to other domains. By combining the power of pre-training on large unlabeled
corpus and contextual language models (LMs) using advanced neural nets, such as transformers, a domain-specific “language’
embedding is obtained as the exclusive input for several downstream tasks.

Examples include understanding the language of life through advanced LMs trained on protein sequences. Here features
extracted by LMs directly from single protein sequences reach state-of-the-art performance in downstream prediction tasks,
even when those were used without evolutionary information*>~**. Similar large-scale unsupervised pre-training on SMILES
sequences have been explored for molecular property prediction”**>7; however, those models did not attempt to predict a
diverse range of molecular properties while exploiting the available chemical sequences at scale. Unsupervised/self-supervised
representation learning has been tested on molecular graphs as well>*%4% A more recent line of work has leveraged the
power of contrastive self-supervised pre-training using 2D graph topology and 3D conformational geometry *°, which showed
performance improvement on molecular regression and classification tasks compared to prior pre-training baselines. To our
knowledge, the present study is the first one that explores the representational power of pre-trained chemical language models on
predicting a broad range of downstream molecular properties from quantum chemical to physiological. In particular, predicting
quantum-chemical properties from SMILES strings alone is non-trivial, as those properties are largely dependent on the 3D
molecular geometry, which is considered privileged information and not available in general.

s
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MoLFormer Framework

The goal of MOLFORMER is to learn a universal molecular representation from large scale chemical SMILES data and then
evaluate the representation on various downstream molecular property prediction tasks, as shown in Figure 1. To do so,
MOLFORMER model is developed using the masked language model framework, which randomly masks a certain percentage
of tokens within a SMILES sequence during training and then predicts those tokens. The masked language modeling thus
exploits self-supervision and enables contextual learning. Below we discuss details of the MOLFORMER model.

Model Details

As we aim to train a large scale masked language model of chemical SMILES efficiently and effectively, while utilizing
relatively limited hardware resources, we leveraged transformer-based neural nets?. Transformers process inputs through
a series of blocks alternating between self-attention and feed-forward connections. Transformers encode the position in the
sequence via a positional embedding, termed the absolute positional embedding. The input feature at a position m is therefore
concatenated with its corresponding absolute position embedding. Self-attention enables the network to construct complex
representations that incorporate context from across the sequence. Attention mechanisms transform the features in the sequence
into queries (q), keys (k), and value (v) representations. These representations produce the output of the attention at position m
as follows:

N
= k
Attention,n(Q,KV) _ Zn;l exp({qm, Z>)Vn.
Zn:l exp(<(’Im; n>)

A well known computational bottlenecks of the vanilla transformer?? architecture is that the attention mechanism suffers
from a quadratic computational cost with respect to the sequence length. Linear complexity attention models®'-3! have tackled
this issue utilizing kernel approximations and random feature approximations variants. This led us to design MOLFORMER that
utilizes an encoder based on a transformer with linear attention®!. MOLFORMER with linear attention consists of 12 layers, 12
attention heads per layer, and has a hidden state size of 768. A Generalized Feature map>' for the linear attention was chosen
(see SI Section A.1.1 for details).

As mentioned above, in a transformer architecture the dependency between tokens at different position of a (chemical)
sequence is modeled under the supervision of position encoding. The seminal work of? investigated absolute position
embeddings to encode the position of a token in the sequence. More recent work>>~* showed that use of relative position
embeddings between tokens results in improved performance. Rotary position embeddings were introduced in RoFormer® as a
means to enhance the relative encoding via position dependent rotations R,, of the query and the keys at a position m. These
rotations can be efficiently implemented as pointwise multiplications and do not result in a dramatic computational increase.

In order to leverage Rotary embeddings with linear transformers, the use of the following approximation was proposed in’®:

N
Attention,, (Q,K,V) = Lo $I"¢(q"l)7R”¢(k’1)>vn

n=1(0(qm), 9 (kn))

where O, K,V are the query, key, and value respectively, and ¢ a random feature map.

After preliminary experimentation with this linear Roformer, we found it performed worse than its absolute position
counterpart. We propose the following modification to Roformer that we found to train more gracefully (the training loss
falls faster and lower) than the original Roformer, as well as observing better performance than the model using absolute
embeddings:

)

Zf‘l\,:] <(p(RmCIm)7 (P(Rnkn)>vn
ZnN:I <(P(qum), (P(Rnkn» .

Attention,,(Q,K,V) =

When compared with?® we rotate the original keys and queries instead of the transformed ones with the feature map ¢. We saw
increased stability and faster convergence in training loss behavior when pre-training using rotary embeddings in contrast to
absolute embeddings as observed in Figure 2.

Datasets and Tokenization

We constructed several datasets for pre-training by combining the PubChem>> and ZINC>® datasets with varying proportion
from each. The PubChem dataset consists of 111 million molecules, while the much larger ZINC dataset contains over 1
billion molecules. To construct a vocabulary, we utilize the tokenizer from>’. All molecules from both PubChem and ZINC are
converted to a canonical format utilizing RDKit>® then tokenized. All unique characters are extracted from the resulting output
gives us a vocabulary of 2357 characters plus 5 special characters, resulting in a total of 2362 vocabulary characters which
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are used for all pre-trained models considered in this paper, irrespective of pre-training dataset size. The post tokenization
sequence length of the molecules range from 1 to just over 2000 characters. We decide to restrict the sequence length range
from 1 character to 202 characters, special characters inclusive, to reduce computation time. Since over 99.4 percent of all
molecules from our dataset contain less than 202 characters we hypothesize that the removal of molecules with more than 202
characters would be of minimal negative impact on pre-training.
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Figure 2. Training (Left) and validation (Right) losses of our Linear attention MOLFORMER with rofary (relative) and
absolute position embeddings on PubChem. We see that both rotary and absolute MOLFORMER have graceful training curves.
Our Rotary Linear attention MOLFORMER leads to lower training and validation losses than MOLFORMER with absolute
position embeddings.

Large Scale Training and Parallelization

For pre-training we use the masked language model method defined in®, 80% of the time a character will be replaced with the
mask token, 10% of the time the character will be replaced with a random character and 10% of the time the character will
be unchanged. Training was performed for 4 epochs through the entire PubChem+ZINC dataset with a fixed learning rate of
1.6e~* and a batch size of 1600 molecules per GPU on a total of 16 GPUs over 2 servers connected via Infiniband fabric. It
should be noted that as the number of GPUs utilized increased we found an increase in learning rate was necessary up to a
factor of 8.

In order to scale our training to large datasets (1 Billion+ data points), we relied on adaptive bucketing of mini-batches by
sequence length, as well as parallelization via distributed training (see Supplementary Information (SI) A for details). Using
Linear attention and bucketing allowed us to reduce the number of GPUs needed from roughly 1000 for quadratic attention
with no bucketing to 16.

Results and Discussion

To demonstrate the effectiveness of the pre-trained MOLFORMER as a universal and task-agnostic molecular representation, we
benchmarked its adaptation performance on numerous challenging classification and regression tasks from MoleculeNet?’.
(Figure 1). Details of the benchmark datasets can be found in SI Section C.

Derivation of MOLFORMER Embeddings

We encode a chemical SMILES by extracting the mean of all embeddings of the last hidden state from the encoder model. The
resulting embedding is used for all downstream tasks. The downstream tasks themselves can be divided into two categories,
The first category being called Frozen and the second being called Fine-tuned. The Frozen setting is defined by training a
fully connected model for each task, while keeping the encoder embeddings fixed. The second setting, Fine-tuned, involves
fine-tuning the weights of the encoder model jointly with the fully connected model for each downstream task. The ideal
configuration and hyperparameters for the frozen strategy are discovered through a grid search as described in SI Table 8.
For the fine-tuned strategy, we use a 2-layer fully connected network with a hidden dimension of 768 (matching the encoder
embedding) with Dropout (set to 0.1) and GELU layers in-between, on top of a final single output dimension for regression
tasks.
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Performance of MOLFORMER Embeddings on Downstream Tasks

We evaluate the performance of MOLFORMER embeddings and compare them with existing baselines on six classification
and five regression tasks from the MoleculeNet benchmark?’, as discussed below. We refer to MOLFORMER which has
been pre-trained on the entire training set comprised of =~ 1.1 B molecules (all molecules from both PubChem and Zinc) as
MOLFORMER-XL. Unless stated otherwise, the MOLFORMER-XL is trained with linear attention using rotary positional
embeddings and the performance reported is of the model fine-tuned on the downstream task. To predict various properties on
the downstream tasks we fined-tuned the model as described in the previous section. We use the training, validation and testing
data split as defined by the MoleculeNet benchmark for all tasks (see SI C).

Dataset BBBP Tox21 ClinTox HIV BACE SIDER
Tasks 1 12 2 1 1 27
RF 714 769  71.3 78.1 867 684
SVM 729 818 669 792 862 6382
MGCN>® 850 70.7 634 73.8 734 55.2
D-MPNN®0 71.2 689 905 75.0 85.3 63.2
Hu, et al.’! 70.8 787 789 802 859 652
N-Gram*® 912 769 855 830 876 632
MolCLR? 73.6  79.8 932 80.6 89.0  68.0
GraphMVP-C*° 724 744 775 77.0 81.2 63.9
ChemBerta?* 64.3 - 90.6 62.2 -

MOLFORMER-XL 93.7 84.7 94.8 82.2 8821 69.0

Table 1. Comparison of fine-tuned MOLFORMER with existing supervised and pre-trained/self-supervised baselines on
multiple classification benchmarks. All models were evaluated by AUC-ROC on scaffold splits. Baseline performances are
adopted from references>* 20,

Classification Tasks We choose six classification tasks from the MoleculeNet benchmark with nine total baselines, four
supervised and five self-supervised, for comparison against MOLFORMER-XL. The supervised baselines consist of shallow
machine learning models trained on molecular fingerprints (RF and SVM in Table 1) or graph neural nets. Among the
pre-trained/self-supervised baselines, Hu, et al.! pre-trains a Graph Isomorphism Network (GIN, a GNN that uses an
MLP and weighted sum of node features in the aggregation) on molecular graphs that includes edge features involved in
aggregation. N-gram graph*® uses a simple unsupervised representation for molecules by first embedding the nodes in a
graph and then constructing a compact representation of the graph by assembling the vertex embeddings in short walks in the
graph. MolCLR? is a self-supervised learning framework based on GIN, which uses contrastive loss®>%3. GraphMVP-C is the
Graph Multi-View Pre-training (GraphMVP) framework proposed by °, where self-supervised learning (SSL) is performed by
leveraging the correspondence and consistency between 2D topological structures and 3D geometric views. ChemBerta®* is a
pre-trained molecular language model trained on a smaller chemical dataset. Table 1 documents the performance comparison of
MOLFORMER with these baselines on six classification benchmarks using the MoleculeNet scaffold data splits. MOLFORMER-
XL outperforms all baselines in four (BBBP, Tox21, ClinTox, and SIDER) out of six benchmarks and comes a close second in
the remaining two (HIV and BACE).

Regression Tasks Next, we evaluate MOLFORMER-XL on more challenging regression tasks from MoleculeNet. We
report our performance on five regression benchmarks, namely QM9, QM8, ESOL, FreeSolv, and Lipophilicity, in Table 2. In
particular, QM9 and QMBS involve predicting several quantum chemical measures, which is considered challenging without
having access to privileged 3D geometric information. Again we use the train, validation and test split as suggested in>’ for these
tasks. The baselines considered are a molecular graph convolutional network (GC, a GNN that utilizes a mean-pooling over
the node and its neighbors before the linear transformation)®*, the attentive-FP (A-FP) model’”, and an MPNN variant'” that
learns edge features such as pairwise interatomic distances. Results show that MOLFORMER-XL upon task-specific fine-tuning
outperforms the existing supervised GNN baselines, specifically GC, A-FP, and MPNN (augmented with bond distances
for QM8 and QMD9), on all five tasks. These results, combined with MOLFORMER-XL performance on the classification
benchmarks confirm its generalizability.

A Closer Look at QM9  We further report MOLFORMER-XL performance on all twelve property prediction tasks individually
within QM9 (see SI Table 9), and compare that against several previously discussed baseline models as well as four additional
baselines. The additional baselines included are as follows: (i) a more expressive GNN, specifically 123-GNN38, (ii) two neural
nets that leverage 3D geometry — a multitask neural net encoding the Coulomb Matrix (CM)® and its GNN variant as in the deep
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Task GC A-FP  MPNN MOLFORMER-XL

QM9 (avg MAE) 43536 2.6355 3.1898 1.5894
QM8 (avg MAE) 0.0148 0.0282 0.0143 0.0102
ESOL (RMSE) 0.97 0.503 0.58 0.2787
FreeSolv (RMSE) 1.40 0.736 1.15 0.2308
Lipophilicity (RMSE)  0.655  0.578  0.719 0.5289

Table 2. Performance of fine-tuned MOLFORMER and other supervised GNN baselines on QM9, QM8, ESOL, FreeSolv, and
Lipophilicity regression benchmarks. Baseline performances are taken from references®’-37.

tensor neural net (DTNN), and (iii) Chemberta?*. The results are reported in SI Table 14, which show that MOLFORMER-
XL achieves comparable or better performance to that of the majority of the competitors. Specifically, MOLFORMER-XL
outperforms all baselines in term of average MAE and average standard MAE. ChemBERTa shows the highest average MAE
among all. The more expressive 123-GNN performs better on most measures compared to MOLFORMER-XL; however, such
powerful networks are known to be difficult to scale (see®’ for example). As a comparison, the linear attention employed in
MOLFORMER-XL ensures a linear time complexity.

The motivation for the increased focus on individual QM9 tasks in this section is to put into question the consensus
in the community that the SMILES representation does not explicitly encode topological or geometric information, which
is needed for accurately capturing quantum-mechanical properties. If this consensus is in fact correct then a model, such
as MOLFORMER-XL, will perform poorly on QM9 tasks when trained on only SMILES representation. As stated above
MOLFORMER-XL, with task-specific fine-tuning trained on SMILES strings from a large molecular corpus achieves comparable
or better performance to that of the majority of the competitors. The performance MOLFORMER-XL achieves on the QM9
tasks casts doubt on this consensus.

Ablation Studies

In this section we discuss several different ablations of MOLFORMER-XL in an attempt to provide insights into its impressive
performance. The ablations we performed can be broadly divided in the following three categories (1) the effect of size and the
nature of the pre-training data, and (2) the results with (frozen) and with (fine-funed) model fine-tuning on the downstream data,
(3) the effect of absolute and rotary positional embeddings.

Data Size First we investigate how pre-training dataset size affects the performance of MOLFORMER-XL on several
downstream tasks from the MoleculeNet benchmark. To accomplish this we chose 3 different weighted combinations of the
PubChem and Zinc datasets, specifically a set consisting of 10% of Zinc and 10% PubChem, another with 100% of PubChem
mixed with 10% of Zinc, and then one with 100% Zinc molecules and 0% PubChem. All models are pre-trained with rotary
embeddings and linear attention and then compared to MOLFORMER-XL. Identical learning rates, data splits, optimization,
etc. are used for pre-training and fine-tuning. Tables 3 and 4 summarize these results. While MOLFORMER-XL performs
better on average, we report two interesting observations. The first is that the model that is pre-trained on the second biggest
data set, 100% Zinc, consistently performs worse than all other pre-trained models. The other point of interest is that when
MOLFORMER-XL falls behind, it is only by a very small margin (See performance on ESOL, QMS, FreeSolv benchmarks in
Table 3).

Task 10% ZINC + 10% PubChem  100% PubChem + 10% ZINC ~ 100% ZINC MOLFORMER-XL
QM9 (avg MAE) 1.7754 1.9093 1.9403 1.5894
QMS (avg MAE) 0.0108 0.0102 0.0124 0.0102
ESOL (RMSE) 0.3295 0.2775 0.3023 0.2787
FreeSolv (RMSE) 0.2221 0.2050 0.2981 0.2308
Lipophilicity (RMSE) 0.5472 0.5331 0.5400 0.5289

Table 3. Performance comparison of fine-tuned MOLFORMER-XL with fine-tuned MOLFORMER models pre-trained on
smaller datasets on QM9, QMS8, ESOL, FreeSolv and Lipophilicity regression benchmarks.

Fine-tuned versus Frozen Table 5 further summarizes the two remaining ablation experiments using the QM9 benchmark.
For simplicity we observe that the the fine-funed ablation experiments achieves such a convincing win over the frozen
experiments on all pre-training dataset sizes that we opted to only investigate fine-tuning for all other benchmarks.
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Dataset BBBP HIV BACE
10% ZINC + 10% PubChem  91.5 81.3 86.6
100% ZINC + 10% PubChem 92.2 79.2 863
100% ZINC 89.9 78.4 87.7
MOLFORMER-XL 93.7 82.2 88.2

Table 4. Comparison of MOLFORMER-XL with fine-tuned MOLFORMER models pre-trained on smaller datasets on BBBP,
HIV, and BACE classification benchmarks.

Pre-training Data — QMO Only PubChem Only PubChem+ZINC

Dataset Size — 111 x 103 111 x 109 > 1.1x10°

Measure | Frozen Fine-tuned Fine-tuned Frozen Fine-tuned Fine-tuned Frozen Fine-tuned Fine-tuned
x Rotary ~ x Rotary Rotary | x Rotary = x Rotary Rotary | x Rotary  x Rotary Rotary

Avg MAE 8.3808 2.4621 2.6604 8.2600 2.9680 3.3990 2.5497 1.8620 1.5894

Avg std MAE 0.2390 0.0843 0.0937 0.2447 0.0801 0.1355 0.0978 0.0611 0.0567

Table 5. Comparison of different MOLFORMER variants on QM9 test set, in terms of average MAE and average standard
MAE. Variants considered are MOLFORMER pre-trained using QM9 only, PubChem only, and PubChem+ZINC dataset. The
variants with and without fine-tuning on downstream task are compared, as well as models with, (v )Rotary, and without
,(x)Rotary, rotary embeddings. Our best candidate variant (for Table 14) is chosen based on the average MAE (Mean Absolute
Error) score, lower is better.

Position embeddings The positional embeddings ablation results are collected in Table 5. Different pre-training datasets
sizes are also investigated and are broken up into MOLFORMER (1) pre-trained on only the QM9 training set (111k molecules)
— referred to as MOLFORMER-qm9 (2) only PubChem (111M molecules) — referred to as MOLFORMER-PubChem (3)
PubChem+ZINC (1.1 Billion+ Molecules), i.e. MOLFORMER-XL. Results presented in Table 5 show that MOLFORMER with
Rotary embeddings and fine-tuning are behind the Absolute positional embedding model for the smaller datasets, but then wins
as the dataset size passes 1 Billion molecules. The underlying reason for this observation will be investigated in future work.
With that said we can see that as the pre-training grows from PubChem only to the more extensive and diverse PubChem+Zinc
corpus the representational power of the model increases, as showcased by the stronger performance on the QM9 benchmark.

Robustness Across Data Folds We report performance comparison at the individual property prediction task within QM9
in SI Table 15. In order to ensure the robustness of these results across data splits we also provide, in the SI, the performance of
MOLFORMER-XL on QM9 tasks using 5-cross validation folds (SI Table 16).

Insights into MOLFORMER

We performed the following set of experiments in order to evaluate if the MOLFORMER embeddings capture molecular
properties as well as structure. First, we investigate a t-SNE® projection of MOLFORMER-XL embeddings sampled from two
classes of the BBBP dataset as shown in Figure 3. These two classes contain molecules that penetrate (penetrating) the blood
brain barrier and molecules that do not penetrate (non-penetrating) the blood brain barrier. It can be seen in Figure 3, that even
without task-specific fine-tuning, MOLFORMER-XL is able to discriminate between the two classes, suggesting that molecular
property information has been captured in this universal representation. Next, we analyze the 2D graph and 3D geometric
information content in MOLFORMER-XL embeddings.

Molecular Similarity Recovery

Next, we analysed the correlation between pairwise similarities estimated using the Tanimoto distance, a popular measure
of pairwise distance between chemicals, on the molecular fingerprints and those estimated using the Euclidean distance on
the MOLFORMER-XL embeddings. We further looked into the correlation between the number of atoms in the maximum
common subgraph of a pair of molecules with their corresponding euclidean distance in the embedding space for a set of
random molecules picked from PubChem. The results are summarized in Table 6 and show that MOLFORMER-XL embeddings
are better correlated with known molecule similarity measures when compared to ChemBERTa. These results are suggestive of
MOLFORMER embeddings being informative of chemical structure similarity.

Attention Analyses
Finally, we inspect the average pooled attention matrices of MOLFORMER-XL to explore the chemical information embedded
in them. For this purpose, we utilize the cosine similarities between attention values and the spatial distances between atoms
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Figure 3. t-SNE projection of frozen MOLFORMER embeddings (no fine-tuning) of the BBBP dataset.

Correlation ChemBERTa MOLFORMER-XL
Fingerprint 0.48 0.64
MCS -0.44 -0.60

Table 6. Correlation with structural similarity metrics on 10000 pairs of molecules from the PubChem dataset. Reported
correlations are between (1) the pairwise similarities estimated using molecular Fingerprints and those using MOLFORMER-XL
(or ChemBERTa) embeddings and (2) the number of atoms in the maximum common subgraph (MCS) of two molecules and
their corresponding Euclidean distance in the embedding space.

Distance-Category Attention 1 3 5 7 9 11
Short Full (v Rotary) 0.615 0.604 0.603 0.615 0.601 0.598
Linear (v Rotary) 0.596 0.597 0.602 0.597 0.600 0.594
Medium Full (v Rotary) 0.716 0.724 0.724 0.716 0.727 0.727
Linear (v Rotary) 0.729 0.728 0.724 0.727 0.726 0.730
Long Full (v Rotary) 0.204 0.207 0.208 0.205 0.208 0.210

Linear (v Rotary) 0.211 0.210 0.210 0.211 0.209 0.210

Table 7. Comparison of MOLFORMER models with respect to cosine similarity between the interatomic spatial distance map
and the attention map, across three different distance categories for 7806 molecules from QM9 test set. Short, Medium, and
Long distance categories are defined with interatomic distances in the range of <2, 2-4, and 4-10 A, respectively.

within a molecule from the QM9 test set. Spatial distances are obtained from the corresponding energy-minimized geometries
provided within QM9 benchmark®. MOLFORMER-XL is compared with a MOLFORMER variant trained with full attention
and rotary embeddings on the entire PubChem+Zinc dataset. Note that the MOLFORMER models here are not fine-tuned for the
QMO dataset. The frozen MOLFORMER with full attention shows a much higher average MAE (> 12) on QM9 downstream
tasks, performance is particularly worse on internal energies (U and Up), enthalpy (H), and free energy (G). We present attention
results separately for three different categories of interatomic spatial distances: short (< 2 A; that are mostly reflective of typical
covalent bonds in the molecule, C-C single bond distance being 1.5 A), medium (2-4 A) and long (> 4A), and summarize
them in Table 7. Interestingly, attentions in MOLFORMER with linear or full attention (and rotary positional embeddings)
show strong similarity with interatomic distances in both the short and medium categories, while revealing a weak (around 0.2)
similarity with longer interatomic distances. This is an interesting observation, indicating that MOLFORMER is able to capture
spatial relations between atomic tokens that are not necessarily neighbors in the SMILES sequence. The observed attentions in
MOLFORMER-XL are slightly more in line with medium and long range distances, when compared to MOLFORMER with full
attention. This observation suggests MOLFORMER-XL, with linear-attention, does in fact capture spatial relations between
atoms more effectively.
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Figure 4. Visualization of the learned attention map (using either full or linear attention) under rotary embedding and
corresponding molecular structure (bond connectivity and 3D distance) for two random molecules:

*CC1(C)C(C) (O)C1(C)O’ (top) and *CC (C)C(C) (C) O’ (bottom). The attention map (only tokens that map to
constituent atoms are shown for clarity), comprised of the average-pooled heads of an intermediate attention layer, exhibits
awareness of both covalent bond connectivity and interatomic long-range spatial relationship. The linear attention variant

captures (encircled in green) the medium 3D range distance better in comparison to its counterpart.
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Figure 4 further elaborates this point showing the average learned attention coefficients in an intermediate attention layer
of MOLFORMER-XL with rotary positional embeddings. Attentions between different pairs of atomic tokens are compared
to the corresponding covalent bond connectivity and 3D distances between atom pairs (complete attention matrices for the
same molecules across all layers are shown in Figures 8 and 9 in SI). We chose two molecules from the QM9 test set whose
attention values show a high cosine similarity with the medium range spatial distances for this visualization. Visual inspection
indicates that an aggregation of heads on the intermediate rotary attention layer corresponds well to the covalent bonding
pattern, while also capturing the signature of the spatial relations between non-bonded atoms within a molecule. These attention
analysis results suggest that MOLFORMER-XL is able to recover molecular structural information from corresponding SMILES
sequence to a significant extent. This capability likely stems from pre-training on a large corpus of chemical SMILES which
also allows MOLFORMER-XL to learn fundamental properties of chemicals, including structural information and various
downstream properties, ranging from quantum chemical to physiological. A similar observation has been reported in recent
work on protein sequence modeling*>*3. To our knowledge, this is the first confirmation that structural and diverse property
information emerges in the representation learned by a chemical language model pre-trained on large-scale data.

Conclusion

In this work, we have explored the power of unsupervised large-scale pre-trained molecular language models at various
molecular property prediction tasks. Unlike graphs, molecular languages such as SMILES do not explicitly encode molecular
topology. However, with well-designed self-supervised training on a large-scale corpus and with an expressive architecture,
such as a contextualized transformer-based language model with a linear attention mechanism, and a parallelized training
protocol, our MOLFORMER can efficiently learn implicit rich structure-property relationship information.

Specifically, MOLFORMER outperforms existing graph-based baselines on a wide variety of molecular regression and
classification benchmarks. To our knowledge, this is the first work that validates the power of large-scale self-supervised
pre-trained molecular language models on predicting molecular properties across the entire range from quantum chemical to
physiological. Further, by analysing the learned attentions, we show that MOLFORMER trained on SMILES sequences indeed
is aware of interatomic relations within a molecule, even beyond the 2D topology. Finally, on the large-scale learning end, we
showcased with MOLFORMER an efficient and environment-friendly use of computational resources, reducing the number of
GPUs needed to perform the training by a factor of 60 (1000 vs. 16).

MOLFORMER has immediate potential for faster in silico screening of molecules across diverse targets, which is important
for material design and drug discovery applications with positive societal impact. However, it should be noted that misuse of
such technology without a proper experimental and scientific validation in a wet lab can have harmful implications. Further, it
has been shown that accurate property prediction models (for example., for predicting toxicity) along with generative models
can be exploited for designing highly toxic molecules’’. This highlights the need for a responsible framework around the use of
these emerging powerful technologies. In addition, the present work calls for further exploration of the representational power
of MOLFORMER in the context of its ability to learn structural molecular information directly from chemical language and can
be extended beyond the small organic molecules studied in this work. Future work will also aim to improve MOLFORMER by
employing larger models and larger training data, using improved and/or domain-specific self-supervised tasks, and using other
string-based representations like SELFIES®.
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