
Spatial reference and alternative proteome analysis
of glioblastoma reveals molecular signatures and
associates survival with speci�c markers
Marie Duhamel  (  marie.duhamel@univ-lille.fr )

Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse In�ammatoire et Spectrométrie
de Masse (PRISM), F-59000 Lille, France https://orcid.org/0000-0002-4006-5605
Lauranne Drelich 

Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse In�ammatoire et Spectrométrie
de Masse (PRISM), F-59000 Lille, France
Maxence Wisztorski 

Universite Lille, U1192 Inserm https://orcid.org/0000-0003-1320-075X
Soulaimane Aboulouard 

University of Lille https://orcid.org/0000-0002-2045-4785
Jean-pascal Gimeno 

Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse In�ammatoire et Spectrométrie
de Masse (PRISM), F-59000 Lille
Nina Ogrinc 

Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse In�ammatoire Spectrométrie de Masse -
PRISM https://orcid.org/0000-0002-0773-0095
Patrick Devos 

Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques
médicales, F-59000 Lille https://orcid.org/0000-0001-7803-9552
Tristan Cardon 

Universite Lille, U1192 Inserm https://orcid.org/0000-0003-1751-0528
Michael Weller 

University Hospital Zurich https://orcid.org/0000-0002-1748-174X
Fabienne ESCANDE 

CHRU de Lille
Fahed Zairi 

CHU Lille, Service de neurochirurgie, F-59000 Lille
Claude-Alain Maurage 

Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille
Emilie Le Rhun 

https://doi.org/10.21203/rs.3.rs-1572039/v1
mailto:marie.duhamel@univ-lille.fr
https://orcid.org/0000-0002-4006-5605
https://orcid.org/0000-0003-1320-075X
https://orcid.org/0000-0002-2045-4785
https://orcid.org/0000-0002-0773-0095
https://orcid.org/0000-0001-7803-9552
https://orcid.org/0000-0003-1751-0528
https://orcid.org/0000-0002-1748-174X


Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse In�ammatoire et Spectrométrie
de Masse (PRISM), F-59000 Lille
Isabelle Fournier 

Unversité de Lille, INserm, CHU Lille https://orcid.org/0000-0003-1096-5044
Michel salzet 

Unversité de Lille, INserm, CHU Lille https://orcid.org/0000-0003-4318-0817

Article

Keywords: glioblastoma, mass spectrometry imaging, spatially-resolved mass spectrometry, 57
prognosis, SpiderMass technology, signaling pathways, alternative proteins

Posted Date: April 26th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1572039/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Nature Communications on November 4th,
2022. See the published version at https://doi.org/10.1038/s41467-022-34208-6.

https://orcid.org/0000-0003-1096-5044
https://orcid.org/0000-0003-4318-0817
https://doi.org/10.21203/rs.3.rs-1572039/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-022-34208-6


1 

 

 

Spatial reference and alternative proteome analysis of glioblastoma reveals molecular 1 

signatures and associates survival with specific markers 2 

Marie Duhamel1 §, Lauranne Drelich1 §, Maxence Wisztorski 1§, Soulaimane Aboulouard1, 3 

Jean-Pascal Gimeno1, Nina Ogrinc1, Patrick Devos2, Tristan Cardon1, Michael Weller5, 4 

Fabienne Escande3, Fahed Zairi4, Claude-Alain Maurage3, Emilie Le Rhun1,4,5* , 5 

Isabelle Fournier1*and Michel Salzet1 * 6 

 7 

1Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et 8 

Spectrométrie de Masse (PRISM), F-59000 Lille, France 9 

2 Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des 10 

pratiques médicales, F-59000 Lille, France 11 

3 CHU Lille, Service de biochimie et biologie moléculaire, CHU Lille, F-59000 Lille France 12 

4 CHU Lille, Service de neurochirurgie, F-59000 Lille, France 13 

5Department of Neurology & Clinical Neuroscience Center, University Hospital and University 14 

of Zurich, Zurich, Switzerland 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

§These authors share first authorship 23 

 24 

 25 

 26 

 27 

Corresponding authors: 28 

* To whom correspondence should be addressed. Michel Salzet, Isabelle Fournier, Emilie Le 29 

Rhun, Phone: +33 320 43 41 94; Fax: +33 320 43 40 54; Email: michel.salzet@univ-lille.fr , 30 

isabelle.fournier@univ-lille.fr, emilie.lerhun@usz.ch  31 

 32 

 33 

mailto:michel.salzet@univ-lille.fr
mailto:isabelle.fournier@univ-lille.fr


2 

 

 

SUMMARY 34 

Molecular heterogeneity is a key feature of glioblastoma pathology impeding patient’s 35 

stratification and leading to high discrepancies between patients mean survivals. We 36 

performed a spatial proteomics analysis on a cohort of 96 glioblastoma patients with survival 37 

varying from few months to more than 4 years. 46 tumors were analyzed by spatially-resolved 38 

high resolution mass spectrometry proteomics. Integrative analysis of protein expression and 39 

clinical information allowed us to identify three molecular regions associated with immune, 40 

neurogenesis and tumorigenesis signatures. Several of these molecular signatures can be 41 

enriched within the same tumor sample leading to high intra-tumoral heterogeneity. 42 

Nevertheless, a set of proteins was found statistically significant based on patient’s survival 43 

times, 10 of which stem from alternative AltORF or non-coding RNA. From these proteins, 5 44 

were selected as survival markers. Classification of patients based on the expression of these 45 

5 proteins leads to a clear difference in survival. The expression of these 5 proteins was 46 

validated by immunofluorescence on an external cohort of 50 glioblastoma patients, with a 47 

similar correlation with their survival.  48 

Taken together, our work has enabled the characterization of new molecular regions within 49 

glioblastoma tissues based on protein expression which can help to guide glioblastoma 50 

prognosis and to improve the current glioblastoma classification. 51 

 52 

 53 

 54 

 55 

Key Words: glioblastoma, mass spectrometry imaging, spatially-resolved mass spectrometry, 56 

prognosis, SpiderMass technology, signaling pathways, alternative proteins 57 

 58 

 59 

  60 



3 

 

 

Significance:  61 

Glioblastoma are very heterogeneous tumors with survival times usually inferior to 20 months. 62 

We conducted a spatial proteomics analysis of glioblastoma to stratify glioblastoma based on 63 

their molecular signatures. Three molecular signatures were identified across tissues i.e. 64 

neurogenesis, immune and RNA processing and metabolism signatures. We showed that 65 

several of these signatures can be enriched within the same tumor sample, preventing to 66 

classify glioblastoma based on them and demonstrating high intra-tumoral heterogeneity. We 67 

correlated these results with the TCGA data. Despite a high heterogeneity, we nevertheless 68 

identified 5 specific prognostic proteins with differential expression according to the survival 69 

length of patients which were validated on an external glioblastoma cohort. These markers can 70 

help to stratify glioblastoma patients into homogeneous subgroups. 71 

 72 

Highlights 73 

 A novel stratification of glioblastoma based on mass spectrometry proteomics has 74 

been established. 75 

 Three tumor regions with different molecular features were identified. 76 

 A single tumor can be represented by more than one molecular region. 77 

 5 prognosis markers associated with either long or short survival were validated on 78 

an external cohort of glioblastoma patients. 79 

 This new classification may improve prognosis. 80 

 81 

  82 
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Abbreviations  83 

A: astrocytoma  84 

ACN: acetonitrile 85 

ATRX: alpha-thalassemia/mental retardation syndrome X-linked 86 

CDKN2A: cyclin-dependent kinase inhibitor 2A  87 

CGH: comparative genomic hybridization  88 

DNA: deoxyribonucleic acid 89 

EGFR: epidermal growth factor receptor 90 

F: female 91 

FDR: false discovery rate 92 

FFPE: formalin-fixed paraffin-embedded 93 

gCIMP: CpG island methylator phenotype 94 

HCD: Higher energy Collision Dissociation 95 

HES: Hematoxylin Eosin Safran 96 

IDH: Isocitrate dehydrogenase 97 

LC: Liquid Chromatography 98 

H3F3A: H3 Histone, Family 3A 99 

LESA: Liquid Extraction Surface Analysis  100 

LFQ: Label-Free Quantification 101 

M: male 102 

MALDI: Matrix-Assisted Laser Desorption/Ionization 103 

MALDI MSI:  MALDI Mass Spectrometry Imaging 104 

TOF: Time-Of-Flight  105 

MeOH: Methanol 106 

MGMT: O6-methylguanine-DNA methyltransferase   107 

MRI: Magnetic Resonance Imaging 108 
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MSI: Mass Spectrometry Imaging  109 

O: oligodendroglioma  110 

PSM: peptide spectrum matches 111 

PTEN: phosphatase and tensin homolog deleted on chromosome 10 112 

ROI: Region of interest 113 

RNA: Ribonucleic acid 114 

SNEA: Subnetwork Enrichment Analysis 115 

TERT: telomerase reverse transcriptase  116 

TFA: Trifluoroacetic acid 117 

TP53: tumor protein p53 118 

WHO: World Health Organization  119 
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Introduction 140 

Glioblastoma represents the main malignant primary brain tumor (Ostrom et al., 2021). 141 

The prognosis is poor with a median survival estimated at 16 months in clinical studies (Chinot 142 

et al., 2014; Gilbert et al., 2014; Stupp et al., 2009; Stupp et al., 2017; Weathers and Gilbert, 143 

2014; Weller et al., 2021) and around 12 months in contemporary population-based 144 

studies(Gramatzki et al., 2018). Approximately 5% of patients survive more than 5 years 145 

(Ostrom et al., 2021). Favorable therapy-independent prognostic factors include younger age 146 

and higher neurological performance status at diagnosis. Furthermore, low postoperative 147 

residual tumor volume has been associated with improved outcome. In a cohort of 232 patients 148 

with centrally confirmed glioblastoma who survived at least 5 years, the median age at 149 

diagnosis was 52 years (range 21-77 years) and most patients had a gross total resection 150 

initially (Weller et al., 2019).  151 

Morphological criteria for the diagnosis of glioblastoma according to the World Health 152 

Organization (WHO) central nervous system tumor classification of 2021 (Louis et al., 2021). 153 

include mitotic activity, anaplastic nuclear features, microvascular proliferation and necrosis. 154 

Morphological variants include giant cell glioblastoma, gliosarcoma and epithelioid 155 

glioblastoma. Isocitrate dehydrogenase (IDH) 1 or 2 mutations now exclude the diagnosis of 156 

glioblastoma. Tumors with morphological features of glioblastoma which exhibit IDH mutations 157 

are now referred to as Astrocytoma, IDH-mutant, WHO grade 4 (Brat et al., 2020). Conversely, 158 

IDH wildtype tumors that do not fulfill morphological WHO grade 4 criteria are still diagnosed 159 

as glioblastoma if they exhibit at least one of the following alterations: EGFR amplification, a 160 

+7/-10 genotype or TERT promoter mutation (Brat et al., 2020). Standard treatment of 161 

glioblastoma includes maximum safe resection followed by radiotherapy with concomitant and 162 

maintenance temozolomide (Weller et al., 2021). 163 

Efforts to further subclassify glioblastoma have been restricted to the genomic, 164 

transcriptomic and epigenetic levels. In 2008, the Cancer Genome Atlas (TCGA) group 165 

delineated three main signaling pathways affected by genetic alterations in glioblastoma, 166 

receptor tyrosine kinase/RAS/PI3K, p53 and RB (Brennan et al., 2013). Genome methylation 167 

profiling in adult patients with IDH wildtype glioblastoma allowed the definition of three 168 

epigenetic subtypes, (i) receptor tyrosine kinase (RTK) I often with PDGFR amplification, (ii) 169 

RTK II or classical often with EGFR amplification, CDKN2A/B deletion, and PTEN mutation, 170 

and (iii) mesenchymal (Sturm et al., 2012). Any clinical relevance of the methylation classes in 171 

glioblastoma remains controversial. The DNA methylation-based classification of CNS tumors 172 

has meanwhile evolved to a comprehensive machine-learning approach (Capper et al., 2018)  173 

that has shaped the new WHO classification (Louis et al. 2021), resulting also in the delineation 174 

of further rare methylation classes of glioblastoma. Prior to the introduction of methylation 175 
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profiling, a classification based on transcriptional profiling  revealed four subtypes of 176 

glioblastoma: proneural, neural, classic and mesenchymal (Verhaak et al., 2010a). The neural 177 

subtype is no longer maintained since it may reflect contamination by normal brain tissue, but 178 

it has become apparent that transcriptomic profiles are less homogeneous and stable than 179 

genome or methylome classifiers. Despite these efforts, these approached have found limited 180 

clinical application and only a few biomarkers are being used in clinic. Proteomic approaches 181 

have been less frequently explored, although they can identify and quantify the final product 182 

of altered genomics and transcriptomics and may better characterize the activation of specific 183 

pathways (Deighton et al., 2010; Dilillo et al., 2017,Goplen, 2010 #14255; Kalinina et al., 2011). 184 

Proteomic analyses of gliomas have been performed to identify proteomic differences between 185 

grades and genomic alterations (Djuric et al., 2019). More recently, proteogenomic approaches 186 

have been used to stratify glioblastoma patients demonstrating a stronger association of 187 

protein expression with patient survival compared to RNA transcripts (Yanovich-Arad et al., 188 

2020). Another study has performed a multi-omics strategy to investigate glioblastoma biology 189 

(Wang et al., 2021). However, glioblastoma are highly heterogeneous tumors and a spatially-190 

resolved proteomics approach may bring new insights in glioblastoma biology to improve their 191 

stratification. The determination of specific proteomic signatures could help to improve the 192 

distinction between the different glioblastoma subtypes and to guidec management.  193 

In the current study, we present a spatially-resolved proteomic approach to 194 

characterize glioblastoma. We analyzed a cohort of 96 glioblastoma patients of varying 195 

survival. A spatially resolved proteomic approach guided by mass spectrometry imaging 196 

enabled us to stratify patients into three molecular groups. Our strategy provides new insights 197 

into intertumoral and intratumoral heterogeneities by considering the glioblastoma 198 

microenvironment which is of prime importance in tumor development. Based on our proteomic 199 

study, 5 prognostic protein markers were identified. The expression of these 5 proteins are 200 

indicators of short and long survival and can therefore help to stratify patients. We validated 201 

our results on an external cohort of 50 glioblastoma patients by immunofluorescence. 202 

Altogether, these results highlight the potential of spatially resolved proteomics to decipher 203 

glioblastoma molecular heterogeneity and to identify markers associated with survival. 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 
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Materials & Methods 212 

 213 

Patient samples and consent 214 

Tumors from 96 patients were included in the study. 46 patients with newly diagnosed 215 

glioblastoma were prospectively enrolled between September 2014 and November 2018 at 216 

Lille University Hospital, France. Patients were adult, had no medical history of other cancers 217 

or previous cancer treatment, no known genetic disease potentially leading to cancer and no 218 

neurodegenerative disease. Tumors samples were processed within 2 hours after sample 219 

extraction in the surgery room to limit the risk of degradation of proteins. Approval was obtained 220 

from the research ethics committee (ID-RCB 2014-A00185-42) before initiation of the study. 221 

The study adhered to the principles of the Declaration of Helsinki and the Guidelines for Good 222 

Clinical Practice and is registered at NCT02473484. Informed consent was obtained from 223 

patients. For the validation cohort used for IF analysis, 50 formalin-fixed paraffin-embedded 224 

(FFPE) glioblastoma tissues were obtained from the Pathology department of Lille Hospital, 225 

France. IDH mutant tumors were excluded from the study. 226 

 227 

Deoxyribonucleic acid (DNA) extraction and quantification 228 

Molecular analyses were performed on DNA extracted FFPE tissues. The following tests were 229 

performed: Comparative genomic hybridization (CGH) array and assessment of  O6-230 

methylguanine-DNA methyltransferase (MGMT) promoter methylation status. All tissues used 231 

for DNA extraction were histologically evaluated to determine the tumor cell content. Analyses 232 

were performed on all tissue samples. Samples with less than 40% of tumor cells content were 233 

considered as not interpretable when no molecular abnormalities were found. DNA extraction 234 

from FFPE was performed using the kit QIAamp DNA FFPE Tissue (Qiagen). CGH profiles 235 

were determined using a SurePrint G3 Human CGH Microarray Kit, 8x60K (Aligent) and the 236 

CytoGenomics v2.7 software. The limit of resolution was 1 Mb. Presence of 1p/19q 237 

codeletion, gain of chromosome 7, loss of chromosome 10, EGFR amplification and 238 

homozygous deletion of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene was 239 

systematically evaluated. The MGMT promoter methylation status (CpGs 74-78) was 240 

determined after bisulfite treatment by pyrosequencing on a PyroMark Q96 with kit MGMT 241 

PyroMark (Qiagen). The presence of a methylation was score positive when a minimum of 8% 242 

of methylation was observed. 243 

 244 

MALDI mass spectrometry imaging (MALDI MSI) 245 

A Leica CM1510S cryostat (Leica Microsystems, Nanterre, France) was used to cut twelve 246 

micrometer sections in order to perform the MALDI MSI analysis (Fournier et al., 2003; Lemaire 247 
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et al., 2007; Lemaire et al., 2006a; Lemaire et al., 2006b; Wisztorski et al., 2016). These tissue 248 

sections were deposited on ITO-coated glass slides (LaserBio Labs, Valbonne, France) and 249 

vacuum-dried during 15 min. Tissue sections were then soaked in different solutions to remove 250 

abundant lipids: (1) 1 min in 70% ethanol, (2) 1 min in 100% ethanol, (3) 1 min in acetone and 251 

(4) 30 s in chloroform with concomitant drying between washings. An electrospray nebulizer 252 

connected to a syringe pump (flow rate 180 nL/min) was used to uniformly spray a trypsin 253 

solution (60 μg/mL in NH4HCO3 50 mM) on the tissue surface for 15 min. ImagePrep (Bruker 254 

Daltonics, Bremen, Germany) was used as an incubation chamber by microspraying water 255 

heated to 37 °C for 2 h (60 cycles with 2 s spraying, 180 s incubation and 60 s drying using 256 

the nitrogen flow). For optimal digestion, a constant humidity atmosphere was maintained 257 

inside the spray chamber by filling a small container with 95°C water. After digestion, 258 

HCCA/ANI (Lemaire et al., 2006) a solid ionic matrix was deposited using ImagePrep. Briefly, 259 

36 μL of aniline were added to 5 mL of a solution of 10 mg/mL HCCA dissolved in ACN/0.1% 260 

TFA aqueous (7:3, v/v). A real-time control of the deposition is performed by monitoring 261 

scattered light to obtain a uniform layer of matrix. MALDI MSI experiments were done on an 262 

Ultraflex II MALDI-TOF/TOF instrument (Bruker) with a smartbeam II solid state laser. Mass 263 

spectra were acquired in positive reflector mode between 800–4000 m/z range. Recorded 264 

spectra were averaged from 400 laser shots per pixel acquired at 200Hz laser repletion rate 265 

and. with a 70 μm spatial resolution raster. 266 

 267 

MALDI MSI data processing and analysis 268 

The MALDI-MSI data were analyzed using SCiLS Lab software (SCiLS Lab 2019, SCiLS 269 

GmbH). Common processing methods for MALDI MSI were applied with a baseline removal 270 

using a convolution method and data were normalized using Total Ion Count (TIC) method 271 

(Klein et al., 2014; Trede et al., 2012). Then, the resulting pre-processing data were clustered 272 

to obtain a spatial segmentation using the bisecting k means algorithm (Alexandrov et al., 273 

2010). Different spatial segmentations were performed. First, an individual segmentation was 274 

applied to each tissue separately. Then, the data from all tissues were clustered together to 275 

obtain a global segmentation. Briefly, the spatial segmentation consists of grouping all spectra 276 

according to their similarity using a clustering algorithm and all pixels of a same cluster are 277 

colour coded. To limit the pixel-to-pixel variability, edge-preserving image denoising was 278 

applied. Note that a color is arbitrary assigned to a cluster and that several disconnected 279 

regions can have the same color, i.e. the same molecular content. The results of segmentation 280 

are represented on a dendrogram resulting from a hierarchical clustering. The branches of the 281 

dendrogram were defined based on a distance calculation between each cluster. The selection 282 

of different branches of the dendrogram will give a segmentation map where regions of distinct 283 
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molecular composition were differentially color-coded. The individual segmentation provides 284 

information concerning the heterogeneity of the tissue section and the global segmentation is 285 

used to group patients with a similar molecular signature. For comparison, global segmentation 286 

was also performed using the Ward clustering method with IMAGEREVEAL MS Ver.1.1 287 

(Shimadzu). The global spatial segmentation allowed to determine regions of interest (ROIs) 288 

which were then subjected to on-tissue microdigestion followed by microextraction for protein 289 

identifications. 290 

 291 

SpiderMass analyses 292 

The global design of the instrument setup has been described (Saudemont et al., 2018). 293 

Briefly, the system is composed of three parts including a laser system for micro-sampling of 294 

tissues set remotely, a transfer line allowing for transfer of the micro-sampled material to the 295 

third part, which is the mass spectrometer itself (Fatou et al., 2016). The first part is composed 296 

of a tunable wavelength OPO which is tunable from 2.8 µm to 3.1 µm (Radiant version 1.0.1, 297 

OPOTEK Inc., Carlsbad, CA, USA) pumped by a pulsed Nd:YAG laser (pulse duration: 5 ns, 298 

λ=1064 nm, Quantel, Les Ulis, France). A biocompatible laser fiber (450 µm inner diameter; 299 

length of 1 m; Infrared Fiber Systems, Silver Spring, CO, USA) is connected to the laser system 300 

output and a handpiece including a 4 cm focusing lens is attached to the end of the laser fiber. 301 

The handpiece with a 4 cm focusing lens allows the user to hold the system and screen the 302 

surface of raw tissues at a resolution of 400 µm. In these experiments the irradiation time was 303 

fixed to 10 sec at 4 mJ/pulse laser energy corresponding to a laser fluence of ~3 J/cm2. The 304 

laser energy was measured at the focal point of the focusing lens using a power meter 305 

(ThorLabs, Maisons-Laffitte, France). The second part of the system corresponds to a 3-meter 306 

length transfer line made from a Tygon ND 100-65 tubing (2.4 mm inner diameter, 4 mm outer 307 

diameter, Akron, Ohio, USA). The transfer line is attached on one side onto the laser hand 308 

piece at the end of the laser fiber and on its other side directly connected to the mass 309 

spectrometer (Xevo, Waters, Manchester, United Kingdom) from which the conventional 310 

electrospray source was removed and replaced by an atmospheric pressure interface (Fatou 311 

et al., 2016). Each acquisition was accompanied by a 150 µL/min isopropanol infusion. 312 

Spectral acquisition was performed both in positive and negative ion resolution mode with a 313 

scan time of 1 sec. Prior to SpiderMass analysis, the samples were taken out of the -20°C 314 

freezer and thawed to RT for 30 s. The spectral acquisition sequence was composed of 2 or 3 315 

acquisitions using 1-sec irradiation periods. The ROI were selected using the morphological 316 

controls and acquired peptide MALDI-MSI data prior to each SpiderMass acquisition to ensure 317 

that each acquisition was performed on the same histological area (Ogrinc et al., 2019).  318 

 319 
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Classification model construction 320 

For data analysis, all raw data files produced with the SpiderMass instrument were imported 321 

into the Abstract Model Builder (AMX v.0.9.2092.0) software. After importation, spectra were 322 

first pre-processed. The pre-processing steps include background subtraction, total ion count 323 

normalization, lockmass correction and re-binning to a 0.1 or 0.2 Da window. All processed 324 

MS spectra obtained from the 30 histologically validated samples were then used to build a 325 

principal component analysis and linear discriminant analysis (PCA-LDA) classification model 326 

(Ogrinc et al., 2019). The first step consisted of PCA to reduce data multidimensionality by 327 

generating features that explain most of the variance observed. These features were then 328 

subjected to supervised analysis using LDA by setting the classes that the model will be based 329 

upon. LDA attempts to classify the sample spectra and assess the model by cross validation. 330 

Cross-validation was carried out by either using the “20% out” or the “leave one patient out” 331 

methods. For the first method, 20% of MS spectra are randomly taken from the total spectra 332 

and the model is reconstructed from the remaining 80%. The remaining 20% of spectra are 333 

used to interrogate the reconstructed model. The permutation is automatically reiterated for 5 334 

cycles before reporting the cross-validation results. For the second method, the spectra are 335 

grouped by patient and left out one by one; at each step the model without the patient is 336 

interrogated against this model. 337 

 338 

Spatially-resolved proteomics 339 

On-tissue digestion 340 

A total of 122 ROIs were selected from MALDI-MSI. Spatially resolved microproteomics was 341 

performed on the predefined ROIs according to the previously published protocol (Quanico et 342 

al., 2013). Briefly, tissue sections of 20 μm thickness were cut and subjected to different 343 

washes to remove lipids. Then, on-tissue digestion is performed using a LysC-trypsin solution 344 

(40 μg/mL in Tris-HCl 50 mM, pH 8.0). This solution was deposited using a piezoelectric 345 

microspotter (CHIP-1000, Shimadzu, CO, Kyoto, Japan) on each ROIs with a total area of 1 346 

mm² (4×4 spots of 200 µm. Enzyme droplet was maintained for a total of 2 h digestion. After 347 

enzyme deposition 0.1% TFA was spotted for 25 cycles with 100 pL on each spot/cycle. 348 

 349 

Microextraction by liquid microjunction 350 

After tissue microdigestion, the triptic peptides were extracted using an automated platform, 351 

the TriVersa Nanomate platform (Advion Biosciences Inc., Ithaca, NY, USA) with Liquid 352 

Extraction Surface Analysis (LESA) option (Quanico et al., 2013). Briefly, a volume of solvent 353 

was aspirated onto a tip and dispensed onto the digested region. The droplet formed was 354 

maintained between the tip and the tissue and then aspirated after 15 s. The recovery solution 355 
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is finally pooled in a low binding tube. Three extractions steps were performed per region using 356 

different solutions: (1) 0.1% TFA, (2) ACN/0.1% TFA (8:2, v/v), and (3) MeOH: 0.1% TFA (7:3, 357 

v/v). Two extraction cycles per point were performed to increase the amount of material 358 

collected. 359 

 360 

NanoLC-MS & MS/MS analysis 361 

Prior to MS analysis, the reconstituted samples were desalted using C-18 Ziptip (Millipore, 362 

Saint-Quentin-en-Yvelines, France), eluted with 80% ACN and vacuum-dried. The dried 363 

samples were resuspended in 0.1% FA aqueous/ACN (98:2, v/v). Peptides separation was 364 

performed by reverse phase chromatography, using a NanoAcquity UPLC system (Waters) 365 

coupled to a Q-Exactive Orbitrap mass spectrometer (Thermo Scientific) via a nano 366 

electrospray source. A pre-concentration column (nanoAcquity Symmetry C18, 5 µm, 180 µm 367 

x 20 mm) and an analytical column (nanoAcquity BEH C18, 1.7 µm, 75 µm x 250 mm) were 368 

used. A 2 h linear gradient of acetonitrile in 0.1% formic acid (5%-35%) was applied, at the 369 

flow rate of 300 nl/min. For MS and MS/MS analysis, a data dependent mode was defined to 370 

analyze the 10 most intense ions of MS analysis (Top 10). The MS analysis was performed 371 

with an m/z mass range between 300 to 1600, a resolution of 70,000 FWHM, an AGC of 3e6 372 

ions and a maximum injection time of 120 ms. The MS/MS analysis was performed with an 373 

m/z mass range between 200 to 2000, an AGC of 5e4 ions, a maximum injection time of 60 374 

ms and the resolution was set at 17,500 FWHM. To avoid any batch effect during the analysis, 375 

the extractions were chosen at random to create analysis sequences.  376 

 377 

Data analysis 378 

All MS data were searched with MaxQuant software (Cox and Mann, 2008; Tyanova et al., 379 

2015) (Version 1.5.3.30) using Andromeda search engine (Cox et al., 2011) against the 380 

complete proteome for Homo sapiens (UniProt, release July 2018, 20 412 entries). Trypsin 381 

was selected as enzyme and two missed cleavages were allowed, with N-terminal acetylation 382 

and methionine oxidation as variable modifications. The mass accuracies were set to 6 ppm 383 

and 20 ppm respectively for MS and MS/MS spectra. False discovery rate (FDR) at the peptide 384 

spectrum matches (PSM) and protein levels was estimated using a decoy version of the 385 

previously defined databases (reverse construction) and set to 1%. A minimum of 2 peptides 386 

with at least one unique is necessary to complete the identification of a protein. The MaxLFQ 387 

algorithm (Cox et al., 2014) was used to performed label-free quantification of the proteins. 388 

The resulting file was analyzed using Perseus software (version 1.6.0.7). First, hits from the 389 

reverse database, proteins with only modified peptides and potential contaminants were 390 

removed. Statistical analyses were performed using ANOVA with a truncation value based on 391 
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“Benjamini Hocheberg FDR” of 5%. Three categorical annotation groups were used for the 392 

ANOVA, i.e. (1) the color group based on the three colors from Scils global segmentation of 393 

the 46 samples (Red; Yellow and Blue), (2) the patient groups which are determined by the 394 

main color present in each tumor sample (Groups A, B, C) and (3) the patients` survival time 395 

(patients with an OS > to the third quartile, patients with an OS between the first and the third 396 

quartile and patients with an OS < to the first quartile). Proteins significantly different were 397 

selected and normalized by a Z-score with matrix access by rows. For representation, a 398 

hierarchical clustering was performed using the Euclidean parameter for the distance 399 

calculation, and the average option for linkage in the rows and columns of the trees with a 400 

maximum of 300 clusters.  401 

 402 

System biology analyses 403 

An annotation analysis of gene ontology terms for the identified proteins were performed using 404 

PANTHER Classification System (version 14.1, http://www.pantherdb.org), FunRich (Version 405 

3.1.3) (Pathan et al., 2017) and the STRING database (version 11.0, www.string-db.org) 406 

(Szklarczyk et al., 2019). Potential interaction network was then loaded into Cytoscape 3.7.2 407 

with relative expression data using Idmapper (Otasek et al., 2019). The Reactome FI plugging 408 

was used to select a subnetwork of gene ontology terms and NCI database-associated 409 

disease-specific proteins. The relationships between the differentially expressed proteins 410 

among all conditions were also depicted based on the Ariadne ResNet database (Yuryev et 411 

al., 2009) using Elseviers’ Pathway Studio (version 11.0, Elsevier). The subnetwork 412 

Enrichment Analysis (SNEA) algorithm was used to detect the statistically significant altered 413 

biological pathways in which the identified proteins are involved.  414 

 415 

Human Pathology Atlas 416 

The glioma data contained in the Human pathology atlas (Uhlen et al., 2017a) were used. 417 

Based on TCGA transcriptomics and antibody-based protein data from 153 patients, this 418 

database identified 268 potentially prognostic genes (201 unfavorable and 67 favorable 419 

prognoses). These data were compared to the proteins identified in our study. 420 

Alternative protein identification 421 

RAW data obtained by nanoLC-MS/MS analysis were analyzed using Proteome Discoverer 422 

V2.3 (Thermo Scientific) LFQ quantification with the following parameters: trypsin as enzyme, 423 

2 missed cleavages, methionine oxidation as variable modification and carbamidomethylation 424 

of cysteines as static modification, Precursor Mass Tolerance: 10 ppm and fragment mass 425 

tolerance: 0.6 Da. The validation was performed using Percolator with a FDR set to 0.001%. 426 

http://www.pantherdb.org/
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A consensus workflow was then applied for the statistical arrangement, using the high 427 

confidence protein identification. The protein database was uploaded from Openprot 428 

(https://openprot.org/) and included RefProt, novel isoforms and AltProts predicted from both 429 

Ensembl and RefSeq annotations (GRCh38.83, GRCh38.p7) (Brunet et al., 2021; Delcourt et 430 

al., 2018; Vanderperre et al., 2013) for a total of 658263 entries. The identified abundance was 431 

extracted to PD2.3 and loaded in Perseus to performed statistical analysis and graphical 432 

representation. 433 

Statistical analyses 434 

Descriptive analyses were performed on clinical data. Patients were divided into 3 groups 435 

according to the quartiles of the overall survival (<Q1, Q1-Q3, > Q3). The Cox model was used 436 

to determine which proteins were most associated with overall survival. Stepwise analysis and 437 

bootstrap methods (500 samples) were used to guarantee the robustness of the results. The 438 

proteins selected after this step were used to carry out a hierarchical classification (Euclidean 439 

distance and Ward's method) on the 46 patients to determine if there were any subgroups 440 

(clusters). Finally, the clinical variables were analyzed according to the different clusters in 441 

order to provide a clinical description of the clusters obtained. Statistical analyses were 442 

performed using the SAS Software, V9.4. 443 

Confirmatory immunohistochemistry analyses  444 

Survival group validation was performed using antibodies directed against ALCAM, RPS14, 445 

ANXA11, PPP1R12A. The tissues were incubated with a primary antibody at 4°C overnight, 446 

followed by application of a secondary antibody (alexa fluor conjugated antibody, 1/1 000 447 

dilution) for 1 hour at RT. For the validation cohort, dewaxing and antigen retrieval with citrate 448 

buffer were first performed before the incubation with the antibodies. We used the following 449 

primary antibodies: ALCAM (R&D Systems; 1/40 dilution), RPS14 (Invitrogen, 1/100 dilution), 450 

ANXA11 (OriGene, 1/100 dilution), PPP1R12A (Invitrogen, 1/250 dilution). All slides were 451 

imaged on the Zeiss LSM700 confocal microscope. Three to four pictures were taken for each 452 

tumor section. Processing of the images and fluorescence intensity quantification was 453 

performed using ImageJ software.  454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 
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Results 462 

Clinical characteristics  463 

Fifty glioblastoma samples from a prospective cohort were collected (Supp. Figure 464 

1A). Four tumors with an IDH1 mutation were excluded from the study (Suppl. Figure 1A, 465 

tumor samples with a star). Among the remaining 46 patients (Table 1), thirty-one (67%) were 466 

male, the median age at diagnosis was 60 (interquartile range (IQR), 51-66), the median 467 

Karnofsky performance status at diagnosis was 90 (80-90). Twenty-six (57%) patients had a 468 

gross total resection. A methylation of the MGMT promoter was noted in 15 tumors (33%), an 469 

EGFR amplification was noted in 24 cases (52%) and a homozygous CDKN2A deletion in 34 470 

cases (74%). A standard treatment was initiated in 42 patients (91%). At the time of the 471 

analysis, 38 patients (83%) had progressed. After a median follow-up of 19.4 months (IQR 472 

13.5-32), 43 patients (93%) had died. The median overall survival was 19.4 months. The 473 

pathologist (CAM) defined regions of interest for each tumor sample: tumor, necrosis, and 474 

endothelial proliferation, after hematoxylin eosin safran (HES) staining (Supp. Figure 1B). 475 

MALDI MSI allows patient grouping based on molecular features 476 

Considering the heterogeneity of glioblastoma, we conducted spatially resolved 477 

proteomic studies guided by mass spectrometry imaging (MSI) (Figure 1A). A comparison 478 

between the pathologist`s annotations and the MSI molecular images showed discrepancies 479 

for many samples (Figure 1B, Supp. Data 1). A global clustering was then performed by 480 

subjecting spectra from all tissue samples to spatial segmentation (Figure 1C). Three main 481 

regions were identified i.e. red (region A), yellow (region B) and blue (region C) areas according 482 

to the segmentation map (Figure 1C). Each colored region shared common molecular 483 

characteristics, meaning that the spectra in each of these areas were similar. Some specific 484 

ions can be attributed to each region: m/z 967,621 and 1492,916 were specifically present in 485 

the region A, m/z 1914,591, 2375,074 and 2376,274 were specific to the region B and m/z 486 

1473,312, 2045,815, 2046,615 and 2237,849 were specific to the region C. Images of some 487 

group-specific ions are shown in Figure S1C and D. The Ward clustering method using 488 

IMAGEREVEAL MS Ver.1.1 software confirmed the segmentation of the 46 tumors into 3 489 

groups with similar specific ions (Supp. Figure 1D and E).  490 

In order to validate the classification obtained by MALDI MSI, we analysed 30 samples 491 

by SpiderMass technology (Ogrinc et al., 2019; Saudemont et al., 2018). Following the 492 

acquisition of the MS spectra in positive ion mode, a PCA analysis of the generated spectra 493 

acquired from 30 tumor tissues was performed. The features of the PCA were subjected to a 494 

supervised analysis using linear discriminant analysis (LDA) (Balog et al., 2013; Schafer et al., 495 
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2009) which yielded 3 groups (Figure 1Da). According to Figure 1Da, LDA 1 discriminated 496 

region A from region C and the LDA 2 separated region B from regions A and C. The LDA 497 

analysis of the SpiderMass data therefore allowed the samples to be grouped in the same way 498 

as the MALDI-MSI classification. Some examples of discriminant ions (m/z) between the three 499 

regions, corresponding to lipids, are presented as their normalized intensities in Figure 1Db. 500 

The most discriminating peaks for group A in LD2+ correspond to m/z 746.75, and 810.65; for 501 

group B in LD2- correspond to m/z 718.55, 724.65, 744.55, 751.55, 778.55, 862.65 and 502 

890.65; for group C in LD1- correspond to m/z 725.4, 754.6, 788.65, and 936.85. To 503 

consolidate the classification, validation was performed using either 20% randomly patients 504 

taken out or the one-patient-out method (Inset table in Figure 1D). Excellent cross validation 505 

results were obtained using 20% randomly patient taken out method with 100% and 91.85% 506 

correct classification rates with and without outliers respectively and good classification using 507 

the one-patient-out method with 92.92% and 77.78% including or not outliers respectively 508 

(Inset table in Figure 1D). These results of outliers and misclassifications (mainly group B) 509 

reflect the fact that each group is not represented by only one colored region. 510 

Identification of specific signaling pathway signatures for each group 511 

In order to understand the molecular differences between the three regions, spatially-512 

resolved tissue proteomic was undertaken on the 46 tissue samples (Wisztorski et al., 2016). 513 

On each tissue, 2 to 5 specific micro extraction points were selected according to the molecular 514 

regions identified by spatial segmentation of MALDI MSI data (Supp. Data 1) in order to 515 

analyse the tumor heterogeneity and micro-environment presenting with specific protein 516 

signatures in each group. This resulted in a total of 135 micro-extraction points. Each extraction 517 

point was associated with one of the three regions identified by MALDI-MSI (red-A, yellow-B 518 

and blue-C). In all tumor samples, 28 extractions were performed in the red region (A), 20 in 519 

the yellow region (B) and 87 in the blue region (C) (Supp. Table 1, Supp. Figure 1B). From 520 

these shotgun proteomic experiments, a total of 4936 proteins were identified (Supp. Data 2).  521 

First, we measured the correlation between all the extraction points from the 46 522 

glioblastoma samples by a Pearson correlation analysis. This analysis allows the grouping of 523 

the samples according to their similarities without bias. Hierarchical clustering of all the 524 

samples based on the correlation coefficients between them reveals a grouping of the samples 525 

according to the MSI identified colored regions (Figure 2A). The first cluster regroups mainly 526 

samples belonging to the red region. The second cluster contains only samples belonging to 527 

the yellow region while the third cluster is more represented by samples extracted from the 528 

blue region. With this analysis, we confirmed the heterogeneity of glioblastoma tissues and 529 

validated again the MALDI-MSI segmentation. 530 
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To better understand the differences between each identified group, ANOVA tests with 531 

a Benjamini Hochberg FDR of 0.05 was performed. A total of 1183 proteins showed a 532 

significant difference in expression between the three groups (Figure 2B, Supp. Data 3). Two 533 

main branches were identified in the heatmap. The first branch was composed of 100% of 534 

samples extracted from the yellow region (region B). The second branch separates group A 535 

(red region) from group C (blue region). This branch is then separated into two sub-branches 536 

with the first one corresponding to region A and regrouping 79.2% of the samples extracted 537 

from the red region and 20.8% of the samples extracted from the blue region. The second sub-538 

branch corresponds to the largest cluster, group C and contains 82.8% of the samples 539 

extracted from the blue region, 9% of the samples extracted from the red region and 8% of the 540 

samples extracted from the yellow region. We confirmed that each sample from the same 541 

colored region has the same proteomic profile (Supp. Data 3). Three specific clusters of over-542 

expressed proteins for each region were identified using the heatmap (Figure 2B) i.e. cluster 543 

1 corresponds to proteins overexpressed in group B; cluster 2, to proteins overexpressed in 544 

group A and cluster 3, to proteins overexpressed in group C. The lists of overexpressed 545 

proteins per group are presented in Supplementary Data 3.  546 

In group A (mainly represented in cluster 2), the proteins are associated with neuro-547 

developmental genes, that are characteristic of neuronal/glial lineages or progenitor cells. Most 548 

proteins were related to neurogenesis and axon guidance (dihydropyrimidinase-related protein 549 

1 (CRMP1), misshapen-like kinase 1 (MINK1), neuromodulin (GAP43), dihydropyrimidinase-550 

related protein 5 (DPYSL5), dihydropyrimidinase-related protein 4 (DPYSL4), microtubule-551 

associated protein tau (MAPT), kinesin-like protein KIF2A (KIF2A), neurofilament heavy 552 

polypeptide (NEFH), unconventional myosin-XVIIIa (MYO18A), MAGUK p55 subfamily 553 

member 2 (MPP2), alpha-internexin (INA), CLIP-associating protein 2 (CLASP2) (Supp. Data 554 

4). Using the functional enrichments analysis tool of String database, the most representative 555 

Reactome pathway was devoted to axon guidance. Nine of the 16 proteins identified in this 556 

pathway are involved in neuron development projection, morphogenesis, and guidance (Supp. 557 

Figure 2Aa). System biology analyses using SNEA and Cytoscape confirmed that the proteins 558 

in group A (Cluster 2) are involved in neurite outgrowth, synaptogenesis, synaptic vesicle 559 

transport and neurotransmission (Figures 2C). Interestingly, among the identified proteins 560 

some are known to be involved in tumorigenesis like mitogen-activated protein kinase 3 561 

(MAPK3), protein kinase C alpha type (PRKCA) and some were already identified in 562 

glioblastoma e.g. CRMP1, DPYSL2 (i.e. CRMP2), (Jovčevska et al., 2017) DPYSL5 (i.e. 563 

CRMP5) (Moutal et al., 2015), GAP43 (Gutmann et al., 2002; Huang et al., 2003; Voigt et al., 564 

2017), as well as Tau protein encoded by MAPT in low-grade glioma (Zaman et al., 2019).  565 
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Proteins overexpressed in group B (mainly represented in cluster 1) were linked to 566 

microglial activation and more generally immune system activation. Indeed, among the 567 

proteins identified, 10 proteins are linked to the immune response such as complement C1q 568 

subcomponent subunit C and B (C1QC and C1QB), complement factor H (CFH), haptoglobin 569 

(HP), kininogen 1 (KNG1), histidine-rich glycoprotein (HRG), transthyretin (TTR), grancalcin 570 

(GCA), proteins S100-A9 (S100A9) & S100-A12 (S100A12), erythrocyte band 7 integral 571 

membrane protein (STOM) and galectin-3-binding protein (LGALS3). Immunoglobulin heavy 572 

and light chains (IGHG2; IGKC; IGHG1; IGLC6; IGHM and IGHA1) and macrophage markers, 573 

macrophage-capping protein (CAPG) were also detected (Supp. Data 4). Moreover, some 574 

proteins are related to iron transporters like ceruloplasmin (CP), serotransferrin (TF), 575 

hemopexin (HPX) and haptoglobin, and other proteins are associated to coagulation e.g. 576 

transthyretin, kininogen-1 (KNG1), plasminogen (PLG). Most of these proteins are known to 577 

be present in human plasma (Uhlen et al., 2017b). These results are in accordance with 578 

histological annotations reflecting that most of the extraction points belonging to region B 579 

present intense proliferation of capillary endothelial cells with inflammation and hemorrhage 580 

(Supp. Figure 1B). The cytoscape and SNEA analysis (Figure 2D) confirmed that most of the 581 

proteins are involved in the complements and coagulation cascades, inflammation, ischemia, 582 

vascularization, wood healing, and cancer. The same pathways were found in Reactome 583 

(Supp. Figure 2Ab). Some of these proteins have already been identified in the TCGA glioma 584 

database (see below) and are mostly associated with unfavorable prognosis, e.g, Grancalcin 585 

and CAPG (Supp. Figure 2B). These results are in accordance with histological annotations 586 

reflecting that most of the extraction points of the region B are in areas of intense proliferation 587 

of capillary endothelial cells with inflammation and hemorrhage (Supp. Figure 1B). 588 

The overexpressed proteins in the group C (mainly represented in cluster 3) are mainly 589 

involved in tumor growth (Hepatoma-derived growth factor (HDGF), Developmentally 590 

regulated GTP-binding protein 2 (DRG2)), but also in virus infection (Eukaryotic translation 591 

initiation factor 3 subunit L (EIF3L), Double-stranded RNA-binding protein Staufen homolog 1 592 

(STAU1) and Interferon-induced double-stranded RNA-activated protein kinase (EIF2AK2)) 593 

(Supp. Data 4). KEGGS analyses confirmed a network of proteins involved in Epstein Barr 594 

virus infection (Supp. Figure 2Ac). Cytoscape pathway analyses established that this group 595 

is linked to viral infection and antiviral immune response (Figure 2D). System biology analyses 596 

confirmed the involvement of proteins in virus infection (transfection, reproduction) and 597 

transcriptomic modification at the RNA level (RNA splicing, metabolism, replication) (Figure 598 

2D). Some other markers of the group C are known to be bad prognosis indicators such as 599 

EIF2AK2 and ZC3HAV1. 600 
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Identification of alternative proteins 601 

Using the OpenProt alternative proteins database (Brunet et al., 2021), 257 AltProts were 602 

identified in our glioblastoma cohort and 170 were quantified. After ANOVA tests with a p-value 603 

of 0.05, 58 were differentially expressed between the three regions (Figure 2F). In region A, 604 

four AltProts are over-expressed coming from ncRNA, IP_2390879 issued from 605 

LOC107985743, IP_244732 from KIFC3, involved in cell adhesion, IP_672223 from GBP1P1 606 

and IP_710015 from LRRC37A9P (Supp. Table 2). In region B, we found a cluster of nine 607 

over-expressed AltProts. Five are transcribed from ncRNA, two are located at the 5’UTR of 608 

mRNA, one at the 3’UTR and one results from a frame shift in the CDS (Supp. Table 2). In 609 

region C, 45 AltProts are over-expressed: 24 from ncRNA, six from the 5’UTR, 10 from the 610 

3’UTR and five result from the frame shift in the CDS (Supp. Table 2). Taken together, we 611 

identified several AltProts issued from ncRNA (~57%) which is in line with our previous work 612 

on a glioma cell line (NCH82) (Cardon et al., 2020b and (Cardon et al., 2021)).  613 

Correlation between TCGA and proteomic data 614 

We then compared our almost 5000 identified proteins to the TCGA database, on which 615 

682 genes show an elevated expression in glioma; 282 of these 682 genes were found in our 616 

samples (Supp. Table 3). Of these 682 genes, 268 genes are suggested as prognostic 617 

indicators based on transcriptomic data from 153 patients; 201 genes are associated with an 618 

unfavourable prognosis and 67 genes are associated with a favourable prognosis. In our 619 

proteomic data, we found 12 proteins associated with an unfavourable prognosis: 7 proteins 620 

are over-expressed in region A (CEND1, DMTN, PAK1, MAP2K1, THY1, VSNL1 and 621 

FN3KRP), 2 proteins are over-expressed in region B (AEBP1 and PDIA4) and 3 proteins are 622 

over-expressed in region C (POR, ERLIN2 and DBNL) (Table 2). We also found 9 proteins 623 

associated with a favourable prognosis: 7 proteins are over-expressed in region A (GLUD1, 624 

GDI2, SARS, SEPT2, PHGDH, KPNA3 and ARHGEF7), and 2 proteins are overexpressed in 625 

region C (PABPC1 and RBBP4) (Table 3).  626 

Integrating proteomics and survival data  627 

Overall survival was associated with MGMT status (Supp. Figure 3Ac) and KPS 628 

(Supp. Figure 3Ab) but not with the extent of resection (Supp. Figure 3Ad). In order to find 629 

new prognostic proteins from our proteomic data, we performed an ANOVA test on the entire 630 

proteomic dataset (n=46 patients) according to OS. The cohort was divided arbitrarily into 3 631 

groups: 11 patients (25%) with OS > to the third quartile, 23 patients (50%) with an OS between 632 

the first and the third quartiles and 12 patients (25%) with an OS < to the first quartile were 633 

included in this analysis. 114 reference proteins and 10 AltProt showed significance between 634 
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these 3 groups of patients defined by their OS (Supp. Data 5). Then, using a Cox model, 28 635 

proteins were significant with a p value<0.01 (Table 4). After a step-by-step analysis and a 636 

bootstrap procedure, 5 proteins remained highly significantly correlated with survival: ALCAM, 637 

RPS14, ANXA11, PPP1R12A and the AltProt IP_652563 (Figure 3A). Based on the 638 

expression of these 5 proteins, 2 clusters of patients were identified (respectively cluster 1 and 639 

cluster 2) (Figure 3B). The OS of the patients from the 2 clusters differed significantly (Figure 640 

3C). The expression of the 28 proteins was compared between patients of clusters 1 and 2 641 

(Figure 3D and 3E). 14 proteins are overexpressed in cluster 2 and associated with a poor 642 

prognosis (ANXA6, RPL11, HMGA1, IGHM, EIF3C, TUBA1A, GPHN, ANXA11, AP1G1, 643 

CDC42, PDCD6, IGHV3, IP_652563 and ALCAM). 14 proteins are overexpressed in cluster 1 644 

and associated with a better prognosis (FXR1, RPS20, CALM3, S100B, CPNE6, RPS14, 645 

PPP1R12A, MTDH, WIBG, ACIN1, LASP1, THRAP3, PML, CDC5L).  646 

Among the 5 proteins highly correlated with the survival based on the bootstrap 647 

procedure, IP_652563 is an AltProt issued from an ncRNA. This ncRNA is transcribed from 648 

the ENSG00000206028 gene which is expressed in glioma cell lines (Expression Atlas). This 649 

AltProt is a poor prognosis indicator whose expression is high in tumors of cluster 2. ALCAM 650 

and ANXA11 are the two other bad prognosis markers overexpressed in cluster 2. PPP1R12A 651 

and RPS14 are good prognosis markers overexpressed in cluster 1 (Figure 3A). We confirmed 652 

the overexpression of these 5 markers in either cluster 1 or 2 based on the LFQ proteomic 653 

values (Figure 3F). We further validated the expression of 4 of the 5 prognosis markers 654 

(ALCAM, RPS14, ANXA11 and PPP1R12A) by immunohistochemistry in the two clusters of 655 

patients. Representative images are presented in Figure 4A. For the AltProt, we could not 656 

perform this validation due to lack of antibodies. We confirmed in patients from cluster 2 a 657 

higher expression of ANXA11, which correlates well with the proteomic data (Figure 4B). 658 

ALCAM was found to be higher expressed by proteomics in cluster 2. Although not significant, 659 

a slight increase of fluorescence was observed in tumors of cluster 2 as well. The expression 660 

of ALCAM is associated with blood vessels as shown in Figure 4A and is known to participate 661 

in immune cell infiltration. Even though no difference in fluorescence was measured, blood 662 

vessels appeared to show different morphologies between patients of cluster 1 and 2 as shown 663 

in Figure 4A. RPS14 and PPP1R12A are expressed at higher levels in the tumors of cluster 1 664 

(longer OS), which was also found by proteomics (Figure 4B). In order to confirm the power 665 

of these 5 markers to predict survival in glioblastoma, we validated their expression by 666 

immunohistochemistry on an independent cohort of 50 patients (Figure 4C). Patients were 667 

grouped according to their survival time: 13 patients had a low survival (less than 1 year), 25 668 

patients had an intermediate survival (between 1 year and 2 years) and 12 patients had a high 669 

survival (more than 2 years). RPS14 and PPP1R12A were expressed at higher levels in the 670 
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tumors of patients with longer survival compared to tumors of patients with a low and 671 

intermediate survivals. ANXA11 was expressed at higher levels in tumors of patients with a 672 

low and intermediate survivals compared to patients with longer survival. No statistical 673 

differences of expression were observed for ALCAM expression, as observed for the first 674 

cohort of patients. These results confirm the validity of the identified prognostic markers, except 675 

for ALCAM. 676 

Discussion 677 

In this work, we investigated the biology and heterogeneity of glioblastoma by a 678 

proteomic approach at a low spatial resolution to capture the tumor microenvironment. A non-679 

targeted MALDI-MSI analysis followed by spatial segmentation using different algorithms 680 

allowed to highlight molecular heterogeneity among these tumors. We validated these 681 

observations with SpiderMass technology with a 93% good classification. Three sub regions 682 

were identified (A- Red, B-Yellow, and C-Blue regions). To decode the biological pathways 683 

involved in these three regions, we performed a spatially resolved proteomic analysis that 684 

confirmed the data. Molecular signatures of different tumor subtypes were identified among 685 

the groups. From these data, we derived three molecular signatures. Region A is enriched in 686 

genes related to neurotransmission and synaptogenesis. Proteins overexpressed in region B 687 

are associated with immune infiltration while in region C, we mainly identified proteins involved 688 

in RNA processing and metabolism.  689 

Region A is associated with neuro-developmental genes, characteristic of 690 

neuronal/glial lineages or neural progenitor cells (NPC) (Figure 2B). These included nervous 691 

system development markers (like CRMP family, GAP43, MAPT), oligodendrocyte 692 

development and differentiation markers (like ABI1, ASPA, CNP, CNTNAP1), stem and 693 

progenitor cell signatures (like TRIM2). The NPC-like state is correlated with markers for 694 

immature neurons (beta-3-tubulin), markers for mature neurons (NeuN) and markers indicative 695 

for synapses (synaptophysin, SV2A) (Beier et al., 2018). In our data, we found Stathmin 1, 696 

NEFH, NEFM and NEFL (Neftel et al., 2019) which are also markers of the NPC-like state of 697 

the GSC. Region B is enriched in proteins linked to immune status with macrophages 698 

infiltration, (Figure 2C) such as complement factors, immunoglobulin heavy and light chains 699 

(IGHG2; IGKC; IGHM; IGHG1; IGLC6 and IGHA1), macrophage markers (CAPG) and 700 

coagulation cascade proteins (HP, KNG1, HRG, TTR, GCA, S100A9, STOM). In a study of 701 

(Cheng et al., 2016), eight immune related genes (FOXO3, IL6, IL10, ZBTB16, CCL18, AIMP1, 702 

FCGR2B, and MMP9) were identified and used as unfavorable prognostic markers in 703 

glioblastoma. High-risk patients exhibited an enhanced intensity of local immune response 704 

compared to low-risk ones. From the 8 signature genes, AIMP2 was identified in region B, too. 705 
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GSC markers but with a “stem-to-invasion” path were also identified in region B. CD44, NES 706 

and VIM, enriched in region B, are markers of the mesenchymal like state.  707 

The presence of class I self-antigen HLA proteins (HLA-A3 and HLA-B07) in group B 708 

is interesting since a positive correlation between HLA expression and some cancers has been 709 

demonstrated, such as cervical or nasopharyngeal carcinomas (Machulla et al., 2001). In a 710 

previous study based on HLA antigen frequencies in patients with glioma, patients positive for 711 

HLA-A*25 had a 3.0-fold increased risk of glioma (p = 0.04) and patients positive for HLA-B*27, 712 

a 2.7-fold risk (p = 0.03), compared with the control population. In contrast, the relationship 713 

between HLA-B*07 expression and higher risk to develop a glioma is very rare (Tang et al., 714 

2005), as well as for HLA-A*3 (Zhang et al., 2007). Taken together, these data  confirmed that 715 

there is interpatient molecular heterogeneity that may be related to tumor phenotype and 716 

cellular plasticity (Neftel et al., 2019) but not directly with transcriptional classification of 717 

glioblastoma (proneural, neural, classic and mesenchymal) (Verhaak et al., 2010b). Finally, 718 

systemic biology analyses revealed that group C is linked to an anti-viral immune response 719 

and viral infection, in addition to RNA processing. Recent studies have reported a link between 720 

glioblastoma and perinatal viral exposure (Akhtar et al., 2018; Dickinson et al., 2002; Limam 721 

et al., 2019; Strojnik et al., 2017). Further Epstein-Barr virus has been implicated in 722 

glioblastoma etiology (Zavala-Vega et al., 2019). Moreover, some studies have also reported 723 

that cytomegalovirus (CMV) promotes murine glioblastoma growth via pericyte recruitment and 724 

angiogenesis (Krenzlin et al., 2019). In human, CMV nucleic acids and proteins have been 725 

observed within glioblastoma tumor tissue (Rahman et al., 2019), although the link between 726 

glioblastoma and CMV remains very controversial (Baumgarten et al., 2014). 727 

The comparison with the TCGA specific glioma gene signature showed that 21 of them 728 

were associated with survival among the 3 groups identified in our study. Most of the proteins 729 

were identified in group A and are related to nervous system development, neuron 730 

differentiation axon guidance, 3 proteins were identified in group B and are linked to cytokine 731 

secretion and 5 both in groups A & C related to Notch signalling. Notch signaling is an 732 

evolutionarily conserved pathway that regulates important biological processes, such as cell 733 

proliferation, apoptosis, migration, self-renewal, and differentiation. Growing evidence reveals 734 

that Notch signaling is highly active in glioma stem cells, in which it suppresses differentiation 735 

and maintains stem-like properties, contributing to glioblastoma tumorigenesis and 736 

conventional-treatment resistance (Bazzoni and Bentivegna, 2019) 737 

Taken together, we have revealed three main molecular regions in glioblastomas. Each 738 

region has a distinct molecular pattern, reflecting a specific molecular phenotype of the tumors. 739 

These different groups may be explained by an early differentiation due to the presence, in 740 
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primary tumours, of subpopulation of cells with a distinct functional profile as well as the 741 

existence of cells with a high invasive potency. A recent study (Pang et al., 2019) proposed 742 

that glioblastoma stem cells (GSCs) acquire a high invasive activity through a mechanism 743 

called the 'stem-to-invasion path' and that long noncoding RNAs are one of the key factors. It 744 

has been demonstrated that these non-coding genomic regions can result in the synthesis of 745 

proteins, so called alternative proteins, forming an unexplored ghost proteome with unknown 746 

function in cancer (Delcourt et al., 2018). 170 alternative proteins (AltProts) were found 747 

significantly variable in the three groups identified above. Although the function of these 748 

AltProts remains poorly understood, they can have a role in regulation of transcription and can 749 

also be present in extracellular vesicles (Murgoci et al., 2020). Finally, more than 50% of the 750 

AltProts identified in the present study come from the translation of ncRNAs transcribed from 751 

pseudogenes. Seven AltProts have been identified in common with our previous study on the 752 

NCH82 glioma cell line, (IP_2323408 and IP_261897 described as an ncRNA and IP_755940, 753 

IP_593099, IP_774693, IP_572422 and IP_671464 from non-coding regions of mRNA. These 754 

last five AtlProts are pseudogenes for: HNRNPA1P30, TUBB2BP1, TUBAP2, TUBBP1, and 755 

TPI1P1 respectively. These pseudogenes, for which no protein has been observed yet, 756 

express their transcripts in glioma cell lines (Expression Atlas) (Petryszak et al., 2016). 757 

Interestingly, the last one IP_079312, from the mRNA encoding EDARADD was correlated 758 

with a low survival rate in ovarian cancer patients (Cardon et al., 2020b). Recently it has been 759 

demonstrated that pseudogenes can also be used as signatures for glioma prognosis. 6 760 

pseudogenes (SP3P, ANXA2P3, PTTG3P, LPAL2, CLCA3P, and TDH) were reported to be 761 

associated with overall survival in glioma (Gao et al., 2015). Nine other pseudogenes (TP73-762 

AS1, AC078883.3, RP11-944L7.4, HAR1B, RP4-635E18.7, HOTAIR, SAPCD1-AS1, 763 

AC104653.1, and RP5-1172N10.2.) constitute a set of prognosis markers to predict survival of 764 

patients with glioma (Lei et al., 2018). All these results provide novel insights into the biological 765 

role of pseudogenes in cancer and especially in glioma. Additionally, the novel identified 766 

AltProts translated from ncRNAs add additional information to the already known pseudogenes 767 

in glioma. 768 

In another study, in which we studied interaction partners of AltProts in NCH82 cells 769 

(Cardon et al., 2020a), we identified five significantly different AltProts. One of them has been 770 

identified as overexpressed in region B: IP_156671 which originates from the 3’UTR of the 771 

transcript coding for SLC13A1. The four others are overexpressed in group C: IP_261897 772 

coming from an ncRNA, IP_063564, IP_256988 both issued from the 3’UTR region of the 773 

CLDN19 and TBX21 genes respectively and IP_073718 originating from a shift in the reading 774 

frame of the CCDC181 gene. 775 
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Finally, the present study allowed us to highlight the presence of 5 new prognostic 776 

proteins for glioblastoma: PPP1R12A and RPS14 are favourable prognostic markers while 777 

ALCAM, ANXA11, and AltProt IP_652563 are unfavourable prognostic markers. The 778 

expression of these markers was validated on an external cohort of patients. These proteins 779 

were already identified as prognostic markers in lung and renal cancers (Human Protein Atlas). 780 

In conclusion, we present here a spatial proteomic characterization in clinical samples 781 

of glioblastoma. The proteomic signatures we identified demonstrate the intratumoral 782 

molecular heterogeneity of glioblastoma tumors. While in previous studies, these signatures 783 

have been shown to be associated with survival (Yanovich-Arad et al., 2021), we showed that 784 

several of these signatures can be detected in a single tumor preventing their use as prognostic 785 

indicators. Despite this high heterogeneity, we have shown that some common markers could 786 

be identified for tumors of patients with inferior survival and inversely for tumors of patients 787 

with a longer survival, with a validation on an external cohort of patients. In addition, our dataset 788 

can serve as a starting point to guide the development of new personalized therapeutic 789 

strategies and better treatment decisions. 790 
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Supplementary Figures 813 

Supp. Figure 1. A. Scanned pictures after hematoxylin-eosin staining of the 46 glioblastoma 814 

and B. anathomo-pathologist annotations. C. MALDI MSI images of characteristic m/z ions for 815 

each region. D. Ward clustering method gives 3 main branches with same characteristic ions. 816 

E. Principal component analysis (PCA) of each individual spectra reveals separation between 817 

the three regions. 818 

 819 

Supp. Figure 2. A. a) Analysis of proteins overexpressed in group A shows an involvement in 820 

axon guidance. b) Proteins overexpressed in group B and mainly involved in complements, 821 

coagulation cascade and inflammation c) Analysis of overexpressed proteins in group C shows 822 

a network of proteins involved in Epstein barr infection. B. Correlation between CAPG 823 

expression (a) and Grancalcin (b) and glioma patient survival according to the TGCA data. 824 

Patients were divided based on level of expression into “low” or “high”.  825 

Supp Figure 3. Global survival curve of all patients according to the Karnofsky indice (b), 826 

MGMT statut (c) and resection quality (d) 0-1 = Total resection, subtotal 2-3 = partial resection 827 

biopsies  828 
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Tables 1055 

Table 1. Clinical characteristics 1056 

  
Total population (n=46) 
 

Sex 
       female, n (%)  
       male, n (%) 

  
15 (33)   
31 (67) 

Age at diagnosis (years) 
       median (IQR) 

 
60 (51-66) 

Karnofsky performance status at diagnosis 
        median (IQ) 
        0-80, n (%) 
        90-100, n (%) 

  
90 (80-90) 
14 (30) 
32 (70) 

Main location of the tumor 
frontal, n (%) 
occipital, n (%) 
parietal, n (%) 
temporal, n (%) 

  
11 (24) 
3 (6) 
12 (26) 
20 (43) 

Extent of surgical resection 
          Gross total, n (%) 
          partial, n (%) 
          biopsy, n (%) 

 
26 (57) 
19 (41) 
1 (2) 

MGMT promoter methylation status 
           not methylated, n (%) 
           methylated, n (%) 

  
31 (67) 
15 (33) 

EGFR amplification  
no, n (%) 
yes, n (%) 

  
22 (48) 
24 (52) 

Chromosome 7 gain combined with chromosome 10 
loss (+7/-10) 

no, n (%) 
yes, n (%) 

  
 
12 (26) 
34 (74) 

EGFR amplification combined with 7 gain / 10 loss 
EGFR amplification or gain 7 / lost 10  
EGFR amplification without gain 7 / lost 10 
EGFR amplification and gain 7 / lost 10 
gain 7 / lost 10 without EGFR amplification 

 
41 (89) 
7 (15) 
17 (37) 
17 (37) 

Homozygous CDKN2A deletion 
           no, n (%) 

yes, n (%) 

 
18 (39) 
28 (61) 

Median follow-up (months) 
       median (IQR) 19.4 (13.5-32.0) 

Initial treatment 
RT/TMZ followed by 6 cycles of TMZ, n (%) 
RT/TMZ followed bythen more than 6 cycles of 

months TMZ, n (%) 
RT/TMZ followed by less than 6 cycles of TMZ, n (%) 
other treatment*, n (%) 
clinical study, n (%) 
no treatment, n (%) 

 
18 (39) 
4 (9) 
 
20 (43) 
2 (4)  
1 (2) 
1 (2) 

Progression 
yes, n (%) 
no, n (%) 
unknown, n (%) 

  
38 (83) 
3 (6) 
5 (11) 
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Progression-free survival (months) 
median (IQR) 

 
10.6 (7.1-16.3) 

Treatment at first progression (n=38) 
       yes, n (%) 

no, n (%) 

 
33* (87) 
5 (13) 

Death 
yes, n (%) 
no, n (%) 

  
43 (93) 
3 (7) 

Survival from surgery (months) 
       median (IQR) 

 
19.4 (13.5-32.0) 

  

Survival 
       upper IQR, n (%) 
       intermediate IQR, n (%) 
       lower IQR, n (%) 

 

12 (26) 
23 (50) 
11 (24) 

 1057 

* One patient: RT only, one patient: 6 cycles TMZ then SRT 1058 

 1059 

Abbreviations:  1060 

EGFR, epidermal growth factor receptor 1061 

IQR: interquartile range 1062 

MGMT: O6-methylguanine DNA methyltransferase 1063 

RT: radiotherapy 1064 

SRT: stereotactic radiotherapy 1065 

TMZ: temozolomide 1066 

Table 2: Proteins associated with unfavorable prognostic in glioma and identified in 1067 

regions A, B and C 1068 

 1069 

Uniprot Gene description Gene Region 

Q8N111 Cell cycle exit and neuronal differentiation 1 CEND1 A 

Q08495 Dematin actin binding protein DMTN A 

Q13153 P21 (RAC1) activated kinase 1 PAK1 A 

Q02750 Mitogen-activated protein kinase kinase 1 MAP2K1 A 

P04216 Thy-1 cell surface antigen THY1 A 

Q9HA64 Ketosamine-3-kinase FN3KRP A 

P62760 Visinin like 1 VSNL1 A 

Q8IUX7 AE binding protein 1 AEBP1 B 

P13667 Protein disulfide isomerase family A member 4 PDIA4 B 

P16435 Cytochrome p450 oxidoreductase POR C 

Q9UJU6 Drebrin-like protein DBNL C 

O94905 Erlin-2 ERLIN2 C 

 1070 
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Table 3: Proteins associated with favorable prognostic in glioma and identified in 1071 

regions A, B and C 1072 

Uniprot Gene description Gene Group 

P00367 Glutamate dehydrogenase 1 GLUD1 A 

Q14155 Rho guanine nucleotide exchange factor 7 ARHGEF7 A 

P50395 GDP dissociation inhibitor 2 GDI2 A 

P49591 Seryl-tRNA synthetase SARS A 

Q15019 Septin-2 SEPT2 A 

O43175 D-3-phosphoglycerate dehydrogenase PHGDH A 

O00505 Importin subunit alpha-4 KPNA3 A 

P11940 Poly(A) binding protein cytoplasmic 1 PABPC1 C 

  1073 

 1074 

 1075 

 1076 

  1077 
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Table 4. Proteins associated with survival after Cox model p = 0.01  1078 

Parameter Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

95% Hazard Ratio 

Confidence Limits 

IP_652563* 0.28507 0.07527 14.3427 0.0002 1.33 1.147 1.541 

FXR1 -1.25301 0.36448 11.8185 0.0006 0.286 0.14 0.584 

RPS20 -0.7618 0.23552 10.4623 0.0012 0.467 0.294 0.741 

ANXA6 0.51404 0.15933 10.4094 0.0013 1.672 1.224 2.285 

ALCAM* 0.56831 0.17706 10.3015 0.0013 1.765 1.248 2.498 

RPL11 -0.78558 0.25342 9.6093 0.0019 0.456 0.277 0.749 

CALM3 0.25136 0.08171 9.4639 0.0021 1.286 1.096 1.509 

HMGA1 -0.34607 0.11316 9.352 0.0022 0.707 0.567 0.883 

S100B 0.24907 0.0818 9.2715 0.0023 1.283 1.093 1.506 

IGHM 0.32975 0.10848 9.2399 0.0024 1.391 1.124 1.72 

EIF3C -1.04772 0.34798 9.0653 0.0026 0.351 0.177 0.694 

CPNE6 0.33732 0.11439 8.6952 0.0032 1.401 1.12 1.753 

TUBA1A 0.44037 0.15337 8.244 0.0041 1.553 1.15 2.098 

RPS14* -0.64519 0.22592 8.1556 0.0043 0.525 0.337 0.817 

GPHN 0.44548 0.15631 8.1221 0.0044 1.561 1.149 2.121 

ANXA11* 0.27504 0.09713 8.0179 0.0046 1.317 1.088 1.593 

PPP1R12A* -1.23054 0.43941 7.8424 0.0051 0.292 0.123 0.691 

AP1G1 0.83198 0.29958 7.7128 0.0055 2.298 1.277 4.134 

MTDH -0.63924 0.2339 7.4688 0.0063 0.528 0.334 0.835 

WIBG -0.58575 0.21444 7.4613 0.0063 0.557 0.366 0.848 

ACIN1 -0.58334 0.21379 7.4451 0.0064 0.558 0.367 0.848 

LASP1 -0.7371 0.27361 7.2578 0.0071 0.478 0.28 0.818 

THRAP3 -0.49936 0.18628 7.1865 0.0073 0.607 0.421 0.874 

CDC42 0.51331 0.1933 7.0515 0.0079 1.671 1.144 2.44 

PDCD6 0.3683 0.13911 7.0097 0.0081 1.445 1.1 1.898 

PML -0.37898 0.14353 6.9716 0.0083 0.685 0.517 0.907 

IGHV3_20 0.24137 0.09238 6.8269 0.009 1.273 1.062 1.526 

CDC5L -0.52553 0.20365 6.6596 0.0099 0.591 0.397 0.881 

 1079 

 1080 

* proteins that remained significantly correlated to survival after step by step and bootstrap 1081 

analyses. 1082 

 1083 

 1084 

 1085 

 1086 

  1087 
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Figure 1: Histological, MALDI MSI and SpiderMass data 1088 

A. General workflow of the MALDI-MS imaging combined with microproteomics used for 1089 

glioblastoma inter- and intra-tumor heterogeneities characterization.  1090 

B. Representative annotated histopathology images of three glioblastoma samples and their 1091 

corresponding segmentation map obtained from MALDI-MSI data. Colors represent 1092 

molecularly different regions. Note that for 2 different tissues, similar colors are not 1093 

equivalent to similar molecular groups. The segmentation map shows different clusters for 1094 

each case and non-observable with HES coloration. 1095 

C. Global segmentation maps of all tissues together after MALDI-MSI analysis. Colors 1096 

represent molecularly different regions as shown in the corresponding dendrogram. The 1097 

segmentation map gives 3 main clusters. The 4 tumors which are not segmented 1098 

correspond to the IDH mutant tumors, which were excluded from the analysis. 1099 

D. The built PCA-LDA classification model based on 3 glioma groups; Group A (red), Group B 1100 

(yellow), Group C (blue). a) LDA representation of the 3-class PCA-LDA (right). The table 1101 

(right) represents the “20% out” and “leave-one-patient-out” cross-validation results of the 1102 

built classification model. b) LD2 loading spectra (top) indicate the discrimination between 1103 

Group A (red) and Group B (yellow). The 10 most discriminatory lipid peaks are indicated 1104 

by the blue dash line.  LD1 loading spectra (bottom) indicate the discrimination between 1105 

Group A (red) and Group C (blue). The 10 most discriminatory lipid peaks are indicated by 1106 

the blue dash line. 1107 

 1108 
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Figure 2. Shotgun microproteomics analysis 1112 

A. Matrix correlation map between all microextraction points from the 46 tumors. Correlation 1113 

coefficients are calculated between each sample and are represented on a heatmap. 1114 

B. Heatmap of proteins with different regulation profiles as determined after label free 1115 

quantification in the three groups highlighting the presence of 3 clusters. Shotgun 1116 

proteomics was performed after on-tissue trypsin digestion followed by microextraction at 1117 

the spots determined from MALDI MSI data.  1118 

C. Pathway analysis of proteins overexpressed in group A reveals that a large majority of 1119 

protein is involved in (a) neurogenesis, brain development, synaptogenesis and 1120 

cytoskeleton organization.  1121 

D. Pathway analysis of proteins overexpressed in group B reveals that majority of proteins are 1122 

involved in injuries, inflammation and more generally immune system response and 1123 

vascularization. 1124 

E. Pathway analysis of proteins overexpressed in group C shows implication in  cell 1125 

proliferation, neoplastic processes, RNA metabolism and processing and viral reproduction. 1126 

F. Heatmap of alternative proteins with different regulation profiles as determined after label 1127 

free quantification in the three regions highlighting the presence of 3 clusters. 1128 
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Figure 3. Proteomic and survival analysis  1158 

A,B. Analysis of maximum likelihood estimates of the 5 proteins significantly correlated with 1159 

survival (ANXA11, RPS14, ALCAM, PPP1R12A and AltProt IP_652563) identified after a 1160 

step by step analysis and bootstrap procedure and B. patient clustering based on these 1161 

proteins  1162 

C. Overall survival of the 46 patients according to the expression of the 5 prognostic markers. 1163 

Two clusters of patients were identified with a clear difference in their survival. Cluster 1 1164 

has longer survival than cluster 2. 1165 

D. Heatmap of the 28 proteins significant in the Cox model (p=0.01) between the 2 groups of 1166 

patients defined by their OS (left). 1167 

E. Boxplots of the 28 prognosis proteins significant after applying the Cox model. Their LFQ 1168 

values were compared between patients of cluster 1 (long survival) and cluster 2 (short 1169 

survival). 1170 

F. Boxplots of the 5 prognostic markers identified after a step by step analysis and bootstrap 1171 

procedure. Their LFQ values were compared between patients of cluster 1 (long survival) 1172 

and cluster 2 (short survival). 1173 
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Figure 4. Validation immunohistochemistry of the panel of survival markers identified. 1176 

A. Representative fluorescence images of the 4 proteins in the two OS clusters of patients. 1177 

ANXA11 and ALCAM are associated to a bad prognosis while PPP1R12A and RPS14 are 1178 

related to a good prognosis. Images were acquired with a confocal microscope at 40x 1179 

magnification.  1180 

B. Quantification of fluorescence intensities of the 4 proteins in the two OS clusters. Images 1181 

taken from 14 tumors of cluster 1 and 9 tumors of cluster 2 were quantified. For each tumor, 1182 

3 to 4 images were acquired and quantified. Significant differences were identified using 1183 

unpaired t test with **** p<0.0001; *** p<0.001; ** p<0,01 and * p<0.05. 1184 

C. Quantification of fluorescence intensities of the 4 proteins in an external cohort of 1185 

glioblastoma patients (50 patients). Patients were classified according to their survival times 1186 

(low, intermediate and high). The fluorescence intensities of images taken from 50 tumors 1187 

were quantified. For each tumor, 3 to 4 images were acquired and quantified. Significant 1188 

differences were identified using unpaired t test with **** p<0.0001; *** p<0.001; ** p<0,01 1189 

and * p<0.05. 1190 

 1191 



44 

 

 

 1192 

 1193 

 1194 

 1195 

 1196 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Supp.Data5OSversuscluster.xlsx

Supp.Data4Subnetworkperregion.xlsx

Supp.Data3clusterGROUPRougeAJauneBBleuC.xlsx

Supp.FiguresandTables.pdf

Supp.Data2Totalmatrix.xlsx

Supp.data1SegmentationindividualIDHwt.pdf

https://assets.researchsquare.com/files/rs-1572039/v1/2e5c6c967fa0b23bf33963a1.xlsx
https://assets.researchsquare.com/files/rs-1572039/v1/2d7b71ab38371f74fb4fc620.xlsx
https://assets.researchsquare.com/files/rs-1572039/v1/cf82d2afb2e16a7ede4c9334.xlsx
https://assets.researchsquare.com/files/rs-1572039/v1/8e106082b544f994fb8a5ffa.pdf
https://assets.researchsquare.com/files/rs-1572039/v1/d6bc6ce18c1d192510c6e3d9.xlsx
https://assets.researchsquare.com/files/rs-1572039/v1/dcbb46f35643e476a31e4841.pdf

