

Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma

Wen Zhou (wenzhou@csu.edu.cn)

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Chunmei Kuang

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Meijuan Xia

Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College

Gang An

Institute of Hematology and Blood Disease Hospital, CAMS & PUMC

Cuicui Liu

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College

Jingyu Zhang

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Zhenhao Liu

Xiangya Hospital, Central South University https://orcid.org/0000-0003-4465-5925

Cong Hu

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Bin Meng

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Pei Su

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College

Jiliang Xia

University of South China

Jiaojiao Guo

Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.

Yinghong Zhu

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Xuan Wu

Cancer Research Institute, School of Basic Medical Sciences, Central South University

Yi Shen

Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University

Xiangling Feng

Xiangya School of Public Health, Central South University

Yanjuan He

Department of Hematology, Xiangya Hospital, Central South University

Jian Li

Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College https://orcid.org/0000-0002-4549-0694

Lugui Qiu

Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College https://orcid.org/0000-0002-8752-0644

Jiaxi Zhou

Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Article

Keywords: Multiple Myeloma, Thrombocytopenia, Serine, SVIL

Posted Date: May 2nd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1572144/v1

License: © ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma

Chunmei Kuang^{1,2#}, Meijuan Xia^{3#}, Gang An³, CuiCui Liu³, Jingyu Zhang^{1,2}, Zhenhao

5 6 7	Liu ^{1,2} , Cong Hu ^{1,2} , Bin Meng ^{1,2} , Pei Su ³ , Jiliang Xia ^{1,2} , Jiaojiao Guo ^{1,2} , Yinghong Zhu ^{1,2} , Xuan Wu ^{1,2} , Yi Shen ⁴ , Xiangling Feng ⁵ , Yanjuan He ¹ , Jian Li ⁶ , Lugui Qiu ³ , Jiaxi Zhou ^{3*} , Wen Zhou ^{1,2*}			
8	¹ State Key Laboratory of Experimental Hematology, Key Laboratory of Carcinogenesis and Cancer			
9	Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family			
10	Planning Commission, Department of Hematology, Xiangya Hospital, Central South University,			
11	Changsha, Hunan, China			
12	² Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha,			
13	Hunan, China			
14	³ State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood			
15	Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China			
16	⁴ Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha,			
17	Hunan, China			
18	⁵ Xiangya School of Public Health, Central South University, Changsha, Hunan, China			
19	⁶ Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical			
20	Sciences and Peking Union Medical College, Beijing, China			
21	#These authors contributed equally to this study; *Correspondence: wenzhou@csu.edu.cn,			
22	zhoujx@ihcams.ac.cn.			
23				
24	Running title: Serine Impaired thrombopoiesis in MM			
25				
26	Key points: 1. Thrombocytopenia predicts the worst survival in the MM patients;			
27	2. Elevation of serine in BMME contributes to thrombocytopenia;			
28	3.Inhibiting serine utilization and intake restores thrombocytopenia.			
29				
30	Text word count: 9836; number of figures: 7; number of references: 46; number of			
31	Supplementary figures: 6; number of Supplementary Material and Methods: 1; number of			

32 Supplementary tables: 8

33 Abstract

Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). 34 However, little is known about its development and significance during MM. Here, we show 35 36 that thrombocytopenia is linked to poor prognosis in the MM patients. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment (BMME), 37 38 serves as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis and 39 eventually causes the thrombocytopenia. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation in the BM 40 41 and the induction of apoptosis of platelets in the peripheral blood (PB). At the molecular level, the extrinsic serine molecules are transported into MKs through the channel protein SLC38A1 42 and downregulates the actin-binding protein Supervillin (SVIL) via S-adenosyl-methionine 43 (SAM)-mediated tri-methylation of H3K9, ultimately leading to the impairment of 44 megakaryopoiesis as well as thrombopoiesis. Inhibition of serine utilization or the treatment 45 with thrombopoietin (TPO) enhances megakaryopoiesis and thrombopoiesis and suppresses 46 47 MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia in MM, unveil novel molecular mechanisms governing MM progression, 48 and provide potential new therapeutic strategies for treating MM patients by targeting 49 50 thrombocytopenia.

- 52 Key words: Multiple Myeloma; Thrombocytopenia; Serine; SVIL
- 53
- 54

55 Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy with high incidence and mortality rates ¹. Clonal proliferation of malignant plasma cells within the BMME results in a host of clinical manifestations including hypercalcemia, renal failure, lytic bone lesions, and anemia, infection and bleeding induced by cytopenia ². Thrombocytopenia has also been observed in patients with MM, although it is a relatively less common complication ³⁻⁶. The incidence of thrombocytopenia and its significance in the development of MM are still poorly defined.

63 In the bone marrow (BM), the cells of the megakaryocytic lineage are originated from hematopoietic stem/progenitor cells (HSPCs) and undergo differentiation, ultimately leading to 64 the formation of platelets ⁷. It has been reported that thrombocytopeniais caused by diminished 65 66 HSPCs in the BM, defective megakaryocyte differentiation, unfavorable BMME, and/or immune-mediated platelet apoptosis ⁸⁻¹¹. Recently, we demonstrated that the intestinal bacteria 67 promote MM progression by elevating the level of BM glutamine and phosphoglycerate 68 69 dehydrogenase (PHGDH), the first rate-limiting enzyme of the serine synthesis pathway (SSP) 70 and that glutamine enhances cell proliferation and BTZ resistance of MM by increasing GSH synthesis in MM cells ^{12,13}. Thus, the alterations of metabolite levels in the BMME can 71 72 accelerate MM. It has also been shown that metabolites such as cholesterol and serotonin are 73 involved in megakaryopoiesis and thrombopoiesis during HSPC differentiation, suggesting that the intake of metabolites might play a role in MK differentiation ^{14,15}. However, whether MK 74 75 differentiation and platelet production from HSPCs are impaired in MM and what metabolites 76 are involved in these processes remain to be defined.

77	In the present study, we determined the clinical impact of thrombocytopenia in patients with
78	MM at diagnosis. We also examined the differential metabolites in the BMME of MM patients
79	with thrombocytopenia and the effects of metabolites on megakaryopoiesis and thrombopoiesis.
80	We further investigated the role and the molecular mechanism by which thrombocytopenia is
81	induced by metabolites. Finally, we explored the therapeutic potential of intervening metabolite
82	intake in preventing thrombocytopenia.
83	

- Results 84

Thrombocytopenia is linked to poor prognosis in MM patients 85

86	To investigate the platelet counts and their potential correlation with disease progression in
87	newly diagnosed MM (NDMM) patients, we studied 1,468 patients and classified them into
88	three groups based on the platelet counts in the peripheral blood (PB) at the time of diagnosis.
89	The criterion of thrombocytopenia was defined as an absolute platelet count $\leq 100 \times 10^9$ /L in PB
90	according to previous studies ¹⁶ , while elevated platelet counts were defined as those higher
91	than the upper limit of the normal count. Three groups were stratified as follows: normal platelet
92	counts (100-300×10 ⁹ /L), high platelet (>300×10 ⁹ /L) and low platelet counts ($\leq 100 \times 10^{9}/L$).
93	Among those patients, 1,041 (70.9%) had normal platelet counts, while 311 (21.2%) and 116
94	patients (7.9%) had low and high platelet counts, respectively (Fig. 1a).
95	We next compared the clinicopathologic parameters among the three groups, including
96	gender, age, ISS (International Staging System) stage, DS (Durie -Salmon) stage, percentages
97	of plasma cells, renal dysfunction, serum lactate dehydrogenase (LDH), serum calcium and IgH
98	translocations, to explore whether platelet counts correlated with disease progression and may

serve as a prognostic marker in MM patients. We found that platelet counts had no correlation 99 with gender, age, renal dysfunction, serum LDH, serum calcium and IgH translocations (Table 100 101 1). Intriguingly, we observed strong correlation between the platelet numbers and ISS stage, as evidenced by the significant difference in platelet counts in patients among three different 102 stages. Specifically, the patients in stage I had the highest number of platelets, while the patients 103 in stage III showed the lowest platelet count (Fig. 1b). Moreover, this correlation may be 104 explained by the increased proportion of MM patients with thrombocytopenia at the stage III 105 106 of ISS (Supplementary Fig. 1a). In addition, we found that the platelet counts were also 107 associated with DS stage (p = 0.002), the percentage of plasma cells in BM (p < 0.001), the level of hemoglobin (Hb) (p < 0.001), 1q21 gain (p = 0.004) and TP53 deletion (p = 0.037) 108 (Table 1). 109

110 To further assess whether platelet counts were associated with OS and PFS, we conducted Kaplan-Meier analysis of the MM patients. Although the risk stratification of MM is widely 111 available in the clinics ¹⁷, we found that both OS and PFS were significantly worsened once the 112 113 platelet counts were lower than 100×10^{9} /L. In contrast, no difference for OS and PFS was 114 observed between patients with platelet count higher than 300x10⁹/L and those within 100-115 300x10⁹/L (Supplementary Fig. 1b). We next performed multivariable Cox regression analysis to investigate the prognostic value of platelet counts in MM patients. We found that platelet 116 117 counts, and 1q21 gain and TP53 deletion are independent prognostic factors for MM patients (Supplementary Table S1). We further combined the analysis of platelet count with the ISS 118 119 stages. Not surprisingly, platelet counts showed minimal correlation with OS or PFS in patients at stage I. However, both OS and PFS were significantly shorter when the platelet count was 120

121	lower than 100×10^{9} /L in patients of stage II and III (Supplementary Fig. 1c). To analyze the
122	patients with lower platelet counts, we divided them into two groups with platelet counts 50-
123	100×10^{9} /L and $< 50 \times 10^{9}$ /L, respectively. Strikingly, we found that patients with $< 50 \times 10^{9}$ /L
124	platelet counts exhibited extremely inferior OS and PFS when compared with those with normal
125	platelet counts. The most significant difference was observed in stage III MM patients (Fig. 1c,
126	d). Thus, consistent with previous observations, the lower platelet count (or thrombocytopenia)
127	is tightly linked to the progression and the outcome of MM. We also demonstrated that the
128	lowest platelet count (< $50 \times 10^{9}/L$) predicts the poorest OS and PFS. Thus, low platelet counts
129	may be used as a marker for unfavorable outcomes for MM patients.
130	It is well known that MKs are originated from HSPCs and MKs extend long branching
131	processes into sinusoidal blood vessels to release platelets within the BM. It is therefore
132	possible that MKs may be also impaired during MM progression and cause the reduction in

platelet counts. We thus examined the number of MKs in MM patients of different stages or with various platelet counts, leading us to discover a gradual decrease of MK numbers in MM patients compared with the healthy donors (Supplementary Table S2). Specifically, the patients at stage II and III showed significantly lower amounts of MKs (Fig. 1e). Furthermore, fewer MKs were found in the patients with lower count of platelets, and the number of MKs and platelets correlated positively (n = 121, r = 0.2868, p = 0.0014) (Fig. 1f, g). Thus, megakaryopoiesis is also impaired in MM patients.

We further examined the dynamic changes of platelet counts during MM progression *in vivo*by taking advantage of a previously described MM mouse model ^{13,18}. We measured complete
blood counts every week after the injection of 5TGM1-luc cells. MM progression in the mice

was monitored weekly via the determination of tumor burden, including bioluminescent imaging, and the concentration of serum IgG2b (Fig. 1h). As expected, increased tumor infiltration and gradual elevation of serum IgG2b level were observed during the progression of MM (Supplementary Fig. 1d and Fig. 1i). Interestingly, the gradual decrease of platelets was seen in parallel with the elevation of serum IgG2b level (Fig. 1i). Moreover, platelet counts correlated strongly with IgG2b (r = 0.52, p < 0.001) (Fig. 1j).

We next measured the distributions of MKs in the BM by conducting immunostaining of 149 CD41, a widely used MK surface marker. Indeed, much fewer CD41⁺ MKs were observed in 150 151 5TGM1 mice than in the control mice (Fig. 1k). The number of MKs in BM was reduced during disease progression, while a striking decrease was observed when the level of IgG2b was above 152 6mg/mL (Supplementary Fig. 1e). In addition, the number of MKs was significantly lower 153 154 in 5TGM1 mice with normal platelet counts than those with low platelet counts (Supplementary Fig. 1f, g). We also measured the number of the progenitor cells along the megakaryocytic 155 lineages, including LSK, CMP and MEP, and observed a decrease in these MK progenitors, 156 157 especially in mice with IgG2b above 6 mg/mL (Supplementary Fig. 1h). Together, analyses of 158 MM patients and experiments with the MM mouse model suggest that megakaryopoiesis and thrombopoiesisis severely impaired and leads to thrombocytopenia during MM progression. 159

160

161 Serine is upregulated in the BM and linked to thrombocytopenia in MM

The production of platelets by BM MKs which are originated from HSPCs is tightly depends on their interactions with the BM niche. We therefore asked whether the defects in megakaryopoiesis and thrombopoiesis that occur in the BM of MM patients were caused by

165	soluble factors in the niche. To test this, we took advantage of a previously established in vitro
166	culture system to model human megakaryopoiesis and thrombopoiesis ¹⁹ . We assessed MK
167	differentiation and platelet production of HSPCs (CD34 ⁺ cells) incubated with either the BM
168	plasma associated with normal platelet counts or with low platelet counts (Fig. 2a). Interestingly,
169	we found that the fraction of CD41a ⁺ CD42b ⁺ cells was significantly reduced with the treatment
170	of BM plasma of the low platelet counts ($p < 0.05$) (Fig. 2b). The formation of proplatelets and
171	CD41a ⁺ CD42b ⁺ platelet-like particles (PLPs) was also significantly impaired with the
172	treatment of BM plasma of low platelet counts ($p < 0.001$) (Fig. 2c, d).
173	Recently, we have validated that gut microbiome and PHGDH promotes MM progression
174	via de novo synthesis of glutamine and serine, respectively ¹³ . To identify the potential
175	metabolic factor(s) that mediate the inhibitory effects of myeloma cells, we first conducted
176	untargeted metabolomics analysis of the BM plasma collected from the MM patients using
177	chromatography-mass spectrometry. We detected approximately 200 metabolites that cover a
178	wide range of the metabolic pathways. Among those, 16 metabolites, including both amino
179	acids and lipids, exhibited significant differences between patients with normal platelet counts
180	(platelet count 120-300) and low platelet counts (Fig. 2e). Interestingly, 5 amino acids (glycine,
181	L-serine, L-aspartic acid, L-glutamic acid and ornithine) were found to accumulate more in
182	patients with lower platelet counts (Fig. 2f). To gain further insights into the changes of
183	metabolites, we determined the levels of amino acids by using Liquid Chromotography Mass
184	Spectrometry and found that the levels of glycine, L-serine, L-glutamic acid, and ornithine were
185	much higher in the BM of patients with low platelet counts (Fig. 2g, h). We also measured the
186	level of the 4 amino acids in the plasma of the BM in 5TGM1 and control mice, allowing us to

discover that the levels of glycine, L-serine and ornithine were higher in 5TGM1 mice. In
contrast, L-glutamic acid exhibited no significant difference between the two groups
(Supplementary Fig. 2a).

We next asked whether the 4 amino acids impacted megakaryopoiesis and thrombopoiesis 190 in vitro. We treated CD34⁺ cells with these amino acids individually using the MK 191 differentiation system as described earlier in this study. While glycine and L-glutamic acid 192 exerted minimal effects on megakaryopoiesis and/or partial effects on thrombopoiesis, serine 193 and ornithine potently suppressed megakaryopoiesis and thrombopoiesis, with serine exhibiting 194 195 the most significant effect (Supplementary Fig. 2b-d). Together, experiments with metabolic profiling and functional validation allowed us to reveal serine as a potential key factor in the 196 BM microenvironment to control megakaryopoiesis and thrombopoiesis. 197

198

199 Serine inhibits megakaryopoiesis and thrombopoiesis both in vitro and in vivo

We next determined whether serine functioned to suppress megakaryopoiesis and thrombopoiesis. First, we added increasing concentrations of serine to the MK differentiation system *in vitro*, which led to elevating levels of intracellular serine in the cells, suggesting that the intake of extracellular serine of MKs was dose-dependent (Supplementary Fig. 3a). We then discovered that at the serine dose of 2 mM, MK differentiation and platelet generation were inhibited, while minimal effects were seen when serine was under 0.5 mM. At 8 mM of serine, the inhibition was highly potent (Fig. 3a-c).

We also assessed the kinetic pattern of serine levels (in week 0, 3 and 6) in the PB serum of
5TGM1 mice *in vivo*. Consistent with the reduced platelet counts in 5TGM1 mice in week 6,

the level of serine was higher in PB serum of the 5TGM1 mice than the control mice, while
little difference was observed in 5TGM1 and control mice in week 3 (Supplementary Fig. 3b).
Furthermore, the concentration of serine in the serum correlated inversely with platelet counts
(Supplementary Fig. 3c).
After assessing the function of serine using the *in vitro* assay, we further elucidated its effects *in vivo*. We developed MM in mice by injecting 5TGM1 cells and then fed them with diets with

215 or without serine (Fig. 3d). The two diets caused significant differences in the level of serine in vivo. After the depletion of serine from the diet, the level of serine in PB serum clearly 216 217 decreased (Supplementary Fig. 3d). We further measured the dynamic changes of tumor cells 218 in vivo to monitor the tumor burden. We found that the number of infiltrated tumor cells was smaller in mice with serine-deficient diet than the control mice (p < 0.05) (Fig. 3e, f). We then 219 220 compared the level of IgG2b in mice with or without the serine diet. While minor difference in IgG2b level was observed after 3 weeks of diet, the difference became quite significant after 5 221 weeks of intake (Fig. 3g). Consistent with the results from the *in vitro* experiments, the platelet 222 223 count in the mice fed with serine-deficient diet was sustained at a higher level, and the 224 deprivation of serine intake indeed prevented the decrease of platelets during MM progression (p < 0.05) (Fig. 3h). Finally, we found that the deprivation of serine from the diet significantly 225 extended the survival time (p < 0.05) (Fig. 3i). Thus, the limitation of serine intake suffices to 226 227 delay MM progression in vivo.

It was previously reported that an increased apoptotic rate of platelets is another cause of thrombocytopenia ^{20,21}. These findings prompted us to determine whether the rate of platelet apoptosis was elevated in MM patients. We incubated platelets with the PB serum from either healthy donors or MM and found that the rate of apoptosis was significantly higher in platelets incubated with the serum from MM (p < 0.05) (Fig. 3j). These findings suggest the existence of pro-apoptotic factors in the serum of MM patients. In separate experiments, we also confirmed the increase of serine levels in the serum of MM patients using targeted metabolic analysis (p < 0.05) (Fig. 3k). Furthermore, the addition of serine enhanced platelet apoptosis, as indicated by the flow cytometry analysis (Supplementary Fig. 3e, f).

At the molecular level, we found that serine increased caspase3 cleavage and enhanced the expression of p53 and BAD, while reducing the BCL-xL level in platelets isolated from healthy donors and control mice (Fig. 31). Moreover, MM patients with high levels of serine and thrombocytopenia were associated with ISS stage, % plasma cells in the BM, the levels of Hb and calcium (Supplementary Table S3). Thus, high levels of serine induce apoptosis of platelets in MM.

243

244 Serine intake is mediated by SLC38A1

245 To explore the potential downstream target genes of serine, we performed RNA-sequencing 246 analysis of CD34⁺ cells treated with vehicle or serine and found that a total of 3,247 genes were upregulated while 2,002 were downregulated in cells treated with serine (Supplementary Table 247 S4). Among those, SLC38A1, MTHFD1L, GCSH and PHGDH were upregulated (Fig. 4a), 248 suggesting that exogenous serine might induces alterations in serine transport, conversion of 249 serine to glycine, folate cycle, and serine synthesis (Fig. 4b). Furthermore, SLC38A1 250 upregulation was confirmed with RT-PCR analysis (Fig. 4c). To explore whether the intake of 251 exogenous serine is mediated by the amino transporter, we depleted SLC38A1 by using 252

253	shRNAs in CD34 ⁺ cells via lentiviral infection, leading to the reduction of serine levels in the
254	conditioned medium (CM) from cells with SLC38A1 knockdown (Supplementary Fig. 4a; Fig.
255	4d, e). Furthermore, knockdown of SLC38A1 enhanced megakaryocytic differentiation (Fig.
256	4f) and PLP generation (Fig. 4g, h). Thus, SLC38A1 serves as a critical transporter mediating
257	the inhibitory effects of serine on megakaryopoiesis and thrombopoiesis. Restriction of serine
258	intake may therefore serve as a potential effective strategy for improving thrombocytopenia.

260 Serine downregulates Supervillin via S-adenosyl-methionine-mediated tri-methylation of 261 H3K9

To further dissect the molecular mechanism by which serine regulates megakaryopoiesis and 262 thrombopoiesis, we determined the fate of the carbons in serine. We cultured CD34⁺ cells or 263 264 MKs in media containing ¹³C₃-serine (Supplementary Fig. 5a) and found that serine-derived carbons were incorporated into glycine, methionine, glucose and nucleotides in cells 265 undergoing MK differentiation (Fig. 5a and Supplementary Table S5). Because the abundance 266 267 of labeled methionine was greater than other metabolites, we next measured the level of methionine upon serine treatment, leading us to find that methionine was significantly 268 upregulated in cells treated with serine (p < 0.05) (Fig. 5b). Interestingly, the addition of 269 excessive methionine also decreased megakaryocytic differentiation and PLP generation (Fig. 270 5c-e). Thus, serine is likely incorporated into the methionine cycle through the folate one-271 carbon metabolism (Fig. 5f). 272

273 Next, we analyzed the contribution of serine-dependent one-carbon metabolism to the274 methionine cycle and the methylation reactions in differentiated cells. We first assessed the

expression of methyltransferases and found that SETDB2 and NSD1 were significantly upregulated upon serine stimulation (Supplementary Fig. 5b). Because SETDB2 is an H3K9 methyltransferase that catalyzes H3K9-me3 to repress gene expression ²², we then examined the level of H3K9-me3 after serine and methionine stimulation. As expected, the level of SETDB2 and H3K9-me3 was elevated in cells treated with serine and methionine (Fig. 5g and Supplementary Fig. 5c).

To identify the potential methylated substrates regulated by serine, we performed assay for 281 282 transposase-accessible chromatin using sequencing (ATAC-seq) in cells treated with vehicle or 283 serine, respectively (Supplementary Table S6), allowing us to discover distinct pattern and numbers of peaks between control and serine-treated cells (Supplementary Fig. 5d). By 284 integrating ATAC-seq and RNA-seq analyses, we identified 15 downregulated genes (Fig. 5h 285 286 and Supplementary Fig. 5e), five of which were further confirmed (Supplementary Fig. 5f), including Supervillin (SVIL), SHANK3 and FRYL (Fig. 5h). To assess whether serine inhibits 287 these genes through DNA methylation, we first examined the methylation status of the promoter 288 289 by using Methylation-Specific PCR (MS-PCR). However, there was no significant difference in DNA methylation upon serine stimulation (Supplementary Fig. 5g). Because H3K9-me3 is 290 291 a repressive mark that has been implicated in heterochromatin formation, we assessed the binding of H3K9-me3 to the promoter of SVIL, SHANK3 and FRYL and observed enhanced 292 binding of H3K9-me3 to the promoter of SVIL and SHANK3 upon serine stimulation, while 293 the binding to SVIL promoter is stronger than SHANK3 (Fig. 5i). At the functional level, 294 depletion of SVIL and SHANK3 inhibited megakaryopoiesis and thrombopoiesis 295 (Supplementary Fig. 5h-i), while overexpression of SVIL rescued the inhibitory effect of 296

297	serine-mediated thrombocytopenia (Fig. 5j). In contrast, RUNX1, a well-established regulator
298	of megakaryocyte specification, maturation, and thrombopoiesis, was downregulated in the
299	RNA-seq but not in the ATAC-seq analysis (Supplementary Fig. 5k, l). Because SETDB2 is
300	responsible for catalyzation of H3K9-me3, we then assessed the binding of H3K9-me3 to the
301	promoter of SVIL after knockdown of SETDB2 (Supplementary Fig. 5m). As expected,
302	depletion of SETDB2 rescued the enhanced binding of H3K9-me3 to the promotor of SVIL
303	mediated by serine (Supplementary Fig. 5n). Together, these results suggest that serine inhibits
304	megakaryopoiesis and thrombopoiesisvia via SVIL downregulation, which is mediated by S-
305	adenosyl-methionine (SAM)-mediated tri-methylation of H3K9.
306	
307	Serine accumulated in the BM microenvironment is released from myeloma cell
308	How is serine accumulated in the BM microenvironment? We previously demonstrated that
308 309	How is serine accumulated in the BM microenvironment? We previously demonstrated that PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to
309	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to
309 310	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B
309 310 311	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B lymphocytes and erythroid cells isolated from the BM of tumor-bearing 5TGM1 mice (Fig. 6a).
309 310 311 312	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B lymphocytes and erythroid cells isolated from the BM of tumor-bearing 5TGM1 mice (Fig. 6a). Strikingly, we detected much higher levels of PHGDH and PSPH mRNA in plasma cells than
 309 310 311 312 313 	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B lymphocytes and erythroid cells isolated from the BM of tumor-bearing 5TGM1 mice (Fig. 6a). Strikingly, we detected much higher levels of PHGDH and PSPH mRNA in plasma cells than in other niche cells (Fig. 6b), suggesting that the PHGDH was upregulated in MM cells and
 309 310 311 312 313 314 	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B lymphocytes and erythroid cells isolated from the BM of tumor-bearing 5TGM1 mice (Fig. 6a). Strikingly, we detected much higher levels of PHGDH and PSPH mRNA in plasma cells than in other niche cells (Fig. 6b), suggesting that the PHGDH was upregulated in MM cells and may enhance the secretion of serine to the BM. In keeping with the notion, the fraction of
 309 310 311 312 313 314 315 	PHGDH and PSPH catalyze the conversion of 3- phosphoglycerate to serine, leading us to assess PHGDH and PSPH mRNA levels in plasma cells, HSPCs, T lymphocytes, B lymphocytes and erythroid cells isolated from the BM of tumor-bearing 5TGM1 mice (Fig. 6a). Strikingly, we detected much higher levels of PHGDH and PSPH mRNA in plasma cells than in other niche cells (Fig. 6b), suggesting that the PHGDH was upregulated in MM cells and may enhance the secretion of serine to the BM. In keeping with the notion, the fraction of plasma cells positively correlated with the serine level in the serum of 5TGM1 mice

To test this hypothesis, we first determined the effects of applying the CM from MM cell 319 320 culture megakaryocyte differentiation. Interestingly, experiments with on the 321 immunofluorescence assay showed that the derivation of CD41a⁺CD42b⁺ MKs was suppressed after the incubation with the CM from three different MM cell lines including ARP1, RPMI-322 323 8226 and OPM2 (Fig. 6c). The results from the flow cytometry assay further confirmed the inhibition of megakaryocytic differentiation by the CM from MM cells (Fig. 6d). We also found 324 that the CM severely prevented the production of proplatelets and CD41a⁺CD42b⁺ PLP 325 326 particles (Fig. 6e, f). Furthermore, the megakaryocytic differentiation of C-kit⁺ cells from mice 327 was also suppressed by the CM produced from 5TGM1 cells (Supplementary Fig. 6b, c). Thus, the myeloma cells exert the inhibitory effects on megakaryopoiesis and thrombopoiesis, likely 328 via the secretion of extrinsic factor(s). 329

330 We next directly assessed whether serine was indeed secreted from MM cells. We measured ¹³C-labeled serine by exploring ¹³C₂-glycine metabolic flux of ARP1 cells and found that ¹³C-331 labeled serine was gradually elevated in the CM of ARP1 cells (Fig. 6g). We then evaluate the 332 333 effects of manipulating PHGDH expression on serine production, megakaryopoiesis and thrombopoiesis by generating APR1 myeloma cells with PHGDH ectopic expression or 334 knockdown. As expected, overexpression of PHGDH increased the level of serine in the CM 335 (Supplementary Fig. 6d), while the CM collected from PHGDH-overexpressing APR1 cells 336 337 inhibited megakaryocytic differentiation and PLP generation (p < 0.05) (Fig. 6h-j). In contrast, knockdown of PHGDH decreased the level of serine in the CM (Supplementary Fig. 6e) and 338 facilitated megakaryocytic differentiation and PLP derivation (Fig. 6k-m). To further 339 investigate whether serine from MM cells affected the expression of serine metabolism-related 340

genes, we assessed the expression of those genes by RNA-seq analysis. Consistent with the
mRNA expression profiling of serine treatment, SLC38A1, GCSH and PHGDH were
upregulated in cells treated with CM of ARP1 cells (Supplementary Fig. 6f).

Megakaryopoiesis and thrombopoiesis takes place largely in the BMME with myeloma cells 344 345 and thus might be affected by the potential extrinsic factors produced by MM cells. To explore this, we determined the transition of serine to methionine in MKs upon the treatment of CM 346 produced from MM cells (Fig. 6n). Intriguingly, enhanced labeling of methionine was observed 347 in cells treated with the CM of MM cells (Fig. 60). Consistently, trimethylation of H3K9 was 348 349 also upregulated in cells with the CM treatment (Fig. 6p). These results highlighted the functions of PHGDH in mediating the production of serine and its inhibitory effects on 350 megakaryocytic differentiation and PLP generation. 351

352

353 TPO administration lessens thrombocytopenia and suppresses MM progression

354 After discovering the decrease of platelets induced by excessive serine in the BM 355 microenvironment of MM, we asked whether thrombocytopenia could be improved by the administration of TPO, a critical regulator of megakaryopoiesis and thrombopoiesis ²³. To this 356 end, we next examined the effect of exogenous supply of TPO in vivo on thrombocytopenia 357 caused by excessive serine (Fig. 7a). The serine concentration in the serum was elevated in 358 359 mice fed with high-serine diet compared with control diet, but was reduced in mice with TPO intervention (Fig. 7b). The numbers of MKs and platelets in mice were also restored to higher 360 361 levels with TPO intervention (Fig. 7c, d). In addition, quantitative imaging analysis revealed enhanced infiltration of tumor cells and tumor burden after feeding with high-serine diet, which 362

363	was reduced after the administration of TPO (Fig. 7e, f). Furthermore, the administration of
364	TPO significantly improved the survival of MM mice (Fig. 7g). Together, these results suggest
365	that TPO administration suppresses MM progression and improves the survival of MM mice,
366	at least partially by facilitating megakaryopoiesis and thrombopoiesis.
367	
368	Discussion
369	In the present study, we showed that thrombocytopenia correlates with poor prognosis of
370	NDMM patients, especially for those at ISS stage III that are also accompanied with progressive
371	loss of mature MKs. Further un-targeted and targeted metabolic assay showed that the serine
372	level is highly elevated in MM patients with thrombocytopenia. The excessive production of
373	serine is originated from MM cells, while the impact of serine on thrombocytopenia is mainly
374	mediated through the suppression of MK differentiation in the BM and the induction of
375	apoptosis of platelets in the PB. Extrinsic serine intake by SLC38A1 inhibits SVIL expression
376	via SAM, leading to the repression of megakaryopoiesis (Fig. 7h). Finally, inhibition of serine
377	utilization and the pharmacological treatment with TPO restore megakaryopoiesis and the
378	production of platelets, suggesting a promising strategy to improve the therapeutic outcomes of
379	MM.

Earlier studies demonstrated that MM patients have lower platelet levels, which correlate with poor prognosis, although the criteria of thrombocytopenia are defined differently in these studies ^{4,5,24,25}.However, whether thrombocytopenia can be integrated into the prognostic classification systems of MM and the correlation between thrombocytopenia and clinical pathology are still unclear. Here we systematically analyzed the role of thrombocytopenia in

385	the pathogenesis of MM from the following aspects. First, we discovered that lower platelet
386	numbers are associated with more severe disease outcomes. Approximately, 21.2% of the MM
387	patients have low platelet number ($\leq 100 \times 10^{9}/L$) accounted. Furthermore, the patients with low
388	platelet counts (7% of total MM patients) suffer from severe life-threatening bleeding, such as
389	gastrointestinal hemorrhage and intracranial hemorrhage (Supplementary Table S8). The data
390	of 1,468 patients from three centers in China showed that thrombocytopenia is much more
391	severe than previously reported 3,26 and clearly merits further attention in the future. The
392	advanced disease stage and the genetic variations are postulated to be responsible for the
393	increased proportion of thrombocytopenia of MM in China. Moreover, we found that the
394	patients with thrombocytopenia correlate with anemia and genetic heterogeneity, including
395	1q21 gain and TP53 deletion, but it is unclear whether the genetic heterogeneity affects
200	the subsector and substant muscleid an available set of a first of her the
396	thrombocytopenia and whether myeloid progenitor cells are also affected by the
396 397	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third,
397	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third,
397 398	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells
397 398 399	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells in BM are still poorly defined. Previously, we found that the metabolic imbalance of amino
397 398 399 400	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells in BM are still poorly defined. Previously, we found that the metabolic imbalance of amino acids in BM promotes the proliferation of MM cells ¹³ . We also revealed the existence of
397 398 399 400 401	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells in BM are still poorly defined. Previously, we found that the metabolic imbalance of amino acids in BM promotes the proliferation of MM cells ¹³ . We also revealed the existence of heterogeneous subpopulations of MKs with distinct functions in the human embryos and BM
397 398 399 400 401 402	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells in BM are still poorly defined. Previously, we found that the metabolic imbalance of amino acids in BM promotes the proliferation of MM cells ¹³ . We also revealed the existence of heterogeneous subpopulations of MKs with distinct functions in the human embryos and BM by using single-cell RNA-seq ^{27,28} . Taken together, our earlier findings suggested that the
 397 398 399 400 401 401 402 403 	microenvironment of myeloma when the progenitor cells differentiate into erythrocytes. Third, the nutritional conditions and metabolic factors necessary for the survival of residual MK cells in BM are still poorly defined. Previously, we found that the metabolic imbalance of amino acids in BM promotes the proliferation of MM cells ¹³ . We also revealed the existence of heterogeneous subpopulations of MKs with distinct functions in the human embryos and BM by using single-cell RNA-seq ^{27,28} . Taken together, our earlier findings suggested that the heterogeneity of MKs may also exist under the pathological conditions of MM. On the one

subpopulations of MKs respond to the microenvironment and then exert their different
regulation functions need further investigation. In the present study, we showed that the patients
with high serine concentrations in the BM are linked to thrombocytopenia, suggesting that
serine might serve as a survival factor for the residual MKs.

411 MM is characterized by the infiltration of malignant plasma cells into the BM microenvironment where MM cells interact with other cell types to promote MM cell growth 412 and drug resistance ^{29,30}. Here, we revealed the decrease of MKs and MEPs in MM. Several 413 earlier studies reported that CD41⁺CD42d⁺ MKs and CD34⁺ stem/progenitor cells are severally 414 415 impaired due to their interactions with tumor cells, stromal cells or soluble cytokines, leading to the impairment of MK differentiation ^{31,32}. In this study, we observed increased level of serine 416 in the BM plasma of MM patients with thrombocytopenia. Interestingly, our recent work had 417 418 shown that PHGDH, the rate-limiting enzyme in serine biosynthesis, promotes proliferation and resistance of MM cells to BTZ by elevating GSH ¹². In the present study, we further 419 demonstrated that PHGDH expression in MM cells is higher than in other cell types and that 420 421 MM cells are the main source of serine where serine is released to the BMME. Extrinsic serine 422 acts on MKs in the BM and induces apoptosis of platelets in the PB to induce thrombocytopenia 423 in the MM patients. These findings revealed a pathological microenvironment in MM that influences megakaryopoiesis as well as thrombopoiesis and provide potential new targets for 424 425 therapeutic interventions.

426 Serine is involved in many critical metabolic processes, including protein biosynthesis, 427 glutathione synthesis, and one-carbon unit metabolism ^{33,34}. Serine participates in the S-428 adenosylmethionine cycle through one carbon unit metabolism and provides active methyl

groups for the methylation of proteins and DNA in cells ³⁵. We found that serine participates in 429 the methionine cycle after entering the cell, promotes the trimethylation of lysine of histone 430 431 H3, leads to transcriptional inhibition, and silences the expression of target genes. Therefore, inhibiting the catabolism of one-carbon unit of serine may have potential therapeutic 432 433 significance for preventing thrombocytopenia caused by excessive serine. The differentiation of HSPCs into megakaryocytes is mainly regulated by the TPO signaling pathway and 434 transcription factors includingRUNX1, FLI1, GATA1 and MEIS1, which play important roles 435 in megakaryocyte differentiation ³⁶⁻³⁸. In our current study, we found that serine can not only 436 437 regulate the expression of RUNX1, but also down-regulate SVIL. SVIL is an actin-binding protein associated with cytokinesis ³⁹. Numerous actin-binding proteins such as non muscle 438 myosin IIA (NMIIA), α -actinin1, and cofilin1 play crucial roles in proplatelet generation ⁴⁰⁻⁴². 439 440 However, the role of SVIL in megakaryocyte differentiation has not been reported previously. We found that both SVIL and RUNX1 can promote megakaryocyte differentiation and platelet 441 production. However, in contrast to RUNX1, SVIL is regulated by histone trimethylation 442 443 mediated by serine release. Whether inhibition of serine metabolism or histone trimethylation 444 can alleviate thrombocytopenia in MM remains to be studied.

The results from our study also pave the way for potential new interventions that target MM from the perspective of abnormal amino-acid metabolism and regulation to effectively improve the survival of patients with MM. Specifically, our present study explored the therapeutic potential in three aspects: the identity of the amino acid (serine), the metabolic enzymes mediating the intake and utilization of serine, and the application of TPO that functions through its receptor MPL (myeloproliferative virus ligand). TPO is widely expressed on the surface of HSPCs and MKs and stimulates the production and differentiation
of megakaryocytes and consequently the expansion of PLTs. Thus, maintaining the normal
platelet levels in the MM patients during the treatment may be an effective strategy in the
treatment of MM in an individualized manner.

Together, we showed that the degree of thrombocytopenia may assist in the risk stratification of MM and provide new insights into the treatment of newly diagnosed MM patients. The high level of serine may be indicative of myeloma-related thrombocytopenia and may open new avenues for potential new dietary and therapeutic interventions such as serine-restrictive diets and TPO application for MM patients.

460

461 Materials and Methods

462 Patient samples

For the analysis of the correlation of platelet counts and MM progression, a total of 1,468 463 patients with NDMM were enrolled into the multicenter retrospective study. 1,009 patients 464 465 diagnosed with MM from the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences (Tianjin) between 1995 and 2014, 384 from Peking Union 466 Medical College (Beijing) between 2006 and 2017, and 75 from the first and the third Xiangya 467 Hospital, Central South University (Changsha) between 2014 and 2019. For the analysis of the 468 correlation of platelet counts and MKs, the records of BM smears from 24 cases of healthy 469 donors and 98 cases of MM patients were obtained from the Institute of Hematology and Blood 470 471 Diseases Hospital (Tianjin). 30 BM plasma samples for un-targeted metabonomics analysis were collected from the first and the third affiliated Xiangya Hospital, Central South University 472

473 (Changsha). 114 BM plasma samples for targeted metabonomics analysis were from the474 Institute of Hematology and Blood Diseases Hospital (Tianjin).

475

476 5TGM1 mice model

477 C57Bl/KaLwRijHsd mice of 6 weeks old were purchased from Harlan Laboratories Inc. (Harlan Netherlands BV, The Netherlands). 8-weeks-old mice were inoculated intravenously 478 (IV) with phosphate-buffered saline vehicle (ctrl mice) or 1×10⁶ luciferase labeled 5TGM1 479 cells (5TGM1 mice) and clinical end point was achieved when mice exhibited signs of hindlimb 480 481 weakness. For the analysis of dynamic changes of MKs, MEPs, CMPs and LSK cells, healthy and myeloma-bearing mice were sacrificed in week 4 and 6 post-inoculation. The progression 482 of the tumors was assessed by using serum analysis of the myeloma-specific IgG2b and 483 484 bioluminescence imaging (BLI). Briefly, mice were injected intraperitoneally with 15 mg/mL luciferin in PBS at a dose of 150 mg luciferin per kilogram mouse and imaged in weeks 2, 4, 6 485 or 8 via BLI, followed by an incubation period of 5 minutes. The fluorescence intensity of BLI 486 487 output was acquired by subtracting the background and analyzed using Living Image Software 488 (PerkinElmer, USA). In the serine intervention study, mice were fed with the control diet and serine-free diet for 1 week before inoculated with 5TGM1cells to develop MM. In the rhTPO 489 intervention study, rhTPO (Peprotech, USA) was injected subcutaneously (SC) from week 2.5 490 post tumor inoculation for 4 consecutive days (1 µg/mouse/d)⁴³. Tumor burden was monitored 491 every 2 weeks until the sacrifice of mice. 492

493

494 MK differentiation

495	Megakaryocytic differentiation was performed as previously described (21). CD34 ⁺ cells
496	were cultured in StemSpan TM SFEM (StemCell Technologies, Canada) supplemented with 1%
497	P/S (Gibco, USA) and cytokines hTPO (50 ng/ml, Peprotech), hIL-3 (20 ng/ml, Peprotech),
498	hSCF (20ng/ml, Peprotech). After 6 days of expansion, cells were transferred to StemSpan TM
499	SFEM supplemented with hTPO (50 ng/mL) and hIL-11 (20 ng/mL) for megakaryocytic
500	differentiation. For cells treated with CM, fresh medium was mixed at a 1:1 ratio with the CM
501	for MK differentiation. For cells treated with amino acids, amino acids were added directly to
502	each well at day 6 of MK differentiation. For MK differentiation of C-kit ⁺ cells from the control
503	mice, cells were cultured in the presence of 50 ng/mL murine TPO (mTPO, Peprotech) and 20
504	ng/mL murine SCF to obtain murine MKs.

506 Metabolomics analysis

Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) system 507 (Pegasus HT, Leco Corp., St. Joseph, USA) was used to quantify the detected metabolites 508 (Metabo-Profile Biotechnology Co. Ltd, China)⁴⁴. The experimental method was as previously 509 described ¹³. Briefly, bucket tables were imported into SIMCA-P 14.0 software (Umetrics AB). 510 Orthogonal partial least squares discriminant analysis (OPLS-DA) was conducted to produce 511 512 models of "best fit" between the groups of samples. The variable importance in projection (VIP) 513 >1 and fold change (FC) > 1.2 were considered as differential metabolites. Liquid chromatography tandem-mass spectrometry (LC-MS) was used for quantitative analysis of 514 amino acids in the BM plasma from MM patients with normal platelet counts or 515 thrombocytopenia. 516

517 ¹³C₃-serine and ¹³C₂-glycine labeling experiments

CD34⁺ cells were plated in 10-cm dishes in StemSpanTM SFEM medium. After 6 days of 518 expansion and 3 or 6 days after megakaryocytic differentiation, cells were counted and then 519 cultured in fresh medium supplemented with 100 ng/mL¹³C₃-serine (Yifei Biological 520 521 Technology Co., Ltd, China) for 4h before metabolite extraction ⁴⁵. The time of addition of 522 tracer media was designated as time 0. To mimic the tumor microenvironment of MM, CD34+ cells were cultured with the CM of ARP1 and RPMI-8226 cells on day 6 and subsequently 523 transferred to the CM supplemented with 100 ng/mL ¹³C₃-serine on day 9 and day 12 of 524 525 megakaryocyte differentiation. Cells were washed three times with cold PBS after 4 h of tracing, and the dry pellets were stored at -80 °C. For analysis the release of serine from MM cells, 526 ARP1 cells cultured in fresh medium supplemented with 10 ng/mL ¹³C₂-glycine for 2h, 4h, 6h 527 528 and 8h before supernatant collection. All samples were used for UPLC-QTOFMS analysis (Metabo-Profile Biotechnology Co. Ltd, China). 529

530

531 ATAC-seq (assay for transposase-accessible chromatin using sequencing)

532 ATAC-seq analysis was performed in differentiated cells treated with or without serine at

- 533 day 12 of megakaryocytic differentiation (Novogene Biotechnology Co. Ltd, China). ATAC-
- seq reads were mapped to the hg38 reference genome using bowtie ⁴⁶. A p-value less than 0.01
- was used to define differentially accessible peaks between control and experimental group. Peaks
- 536 were displayed using the Integrative Genomics Viewer.
- 537

538 RNA-seq analysis

RNA-seq analysis was performed in differentiated cells with various treatments at day 12 of 539 megakaryocytic differentiation, including cells treated with ARP1 CM or with serine. Total 540 541 RNA was isolated using Trizol reagent following manufacturer's protocol. The mRNA is fragmented into short fragments and cDNA is synthesized using the mRNA fragments as 542 543 templates. The short fragments were then purified and connected with adapters, and the 544 transcriptome data of those cells were profiled by using a BGISEQ-500 (Beijing Genomics Institute at Wuhan, China). After quality control (QC) analysis was conducted, the read counts 545 546 were generated by aligning the human genome assembly. FPKM (Reads Per Kilobase of exon 547 model per Million mapped reads) values were generated using the edgeR package. Differentially expressed genes were identified if they had a p value < 0.05 and FC >548 1.2 between two groups. 549

550

551 Statistical analysis

Relations between platelet counts and discrete variables were tested by using the chi-square or Fisher's exact test. Kaplan-Meier survival curves were evaluated by using a two-sided logrank test. Data were analyzed using a student unpaired t test for the comparison of two groups, paired t test for the comparison of paired samples, and one-way analysis of variance (ANOVA) for the comparison of more than two groups. Data are presented as mean \pm standard error of the mean (SEM) as indicated. p < 0.05 was considered significant.

558

559 Study approval

All animal experiments were conducted in accordance with a protocol approved by the

561	Institutional Animal Care and Use Committee of Central South University (approval number:		
562	D2021016). All human BM samples were obtained with written informed consent from patients		
563	or their guardians prior to participation in the study. The experimental protocol was approved		
564	by the Institutional Review Board of all participating hospitals.		
565	Additional details are described in Supplemental Materials and Methods (Supplementary		
566	data).		
567			
568	Declarations		
569	Data availability		
570	The datasets for RNA sequence analysis and other datasets analyzed during the present study		
571	are available from the corresponding author upon reasonable requests.		
572			
573	Acknowledgements		
574	We thank Prof. Yuhuan Zheng (West China Center of Medical Sciences, Sichuan, China) for		
575	providing luciferase-labeled 5TGM1 cell line. We thank Wenying Yu and Weichao Fu for		
576	technical assistance with flow cytometry. We thank Ting Chen, and Wanzhu Yang for technical		
577	supports with confocal microscope. We also thank professor Rushi Liu and Kaiqun Ren from		
578	Hunan Normal University School of Medicine for their assistance with bioluminescence		
579	imaging. Thanks to the Animal Center of Hunan Normal University School of Medicine for		

580 providing the experimental platform. This work was supported by the Ministry of Science and

581 Technology of China (2018YFA0107800); National Natural Science Foundation of China

582 (82130006, 82125003, 81974010); Natural Science Foundation of Hunan Province

583 (2021JJ3089, 2020WK2006), Strategic Priority Research Program of Central South University

- 584 (ZLXD2017004), CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-073),
- 585 SKLEH-Pilot Research Grant (ZK21-05), China Postdoctoral Science Foundation
- 586 (2021M703631), Postdoctoral Science Foundation of Central South University (22021101228).
- 587

588 Author contributions

- 589 Contribution: W.Z and J.Z conceived of and designed the experiments; C.K, M.X, J.Z, C.H,
- 590 B.M, J.X, X.W, J.G and Y.Z performed the experiments; C.K, M.X, C.L, J.Z, C.H, B.M, Z.L,
- 591 X.W and X.F analyzed the data; G.A, P.S, L.Q, J.L, Y.S, and Y.H provided critical materials;
- 592 W.Z, J.Z and C.K wrote the manuscript and all authors edited the manuscript.
- 593

594 Competing interests

- 595 The authors declare no competing financial interests.
- 596

597 Correspondence: Wen Zhou, Cancer Research Institute, Central South University, Changsha,

598 China, 410078, e-mail: wenzhou@csu.edu.cn; Jiaxi Zhou, State Key Laboratory of

599 Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese

600 Academy of Medical Sciences & Peking Union Medical College, Tianjin China, 300020,e-

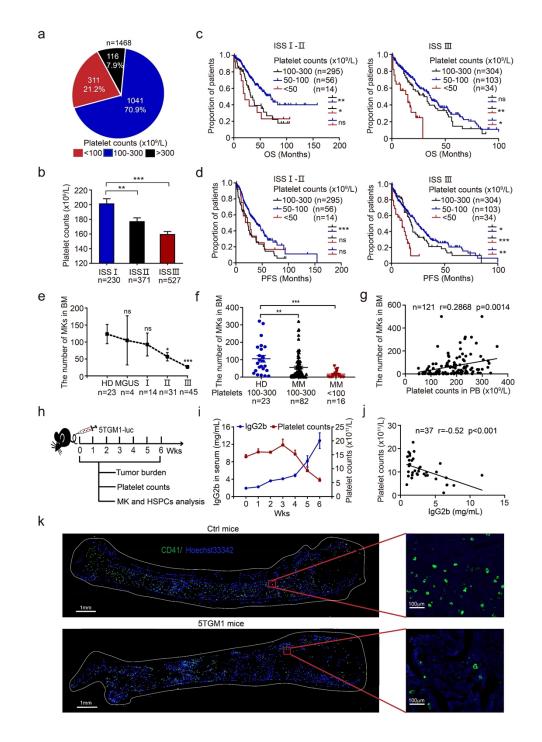
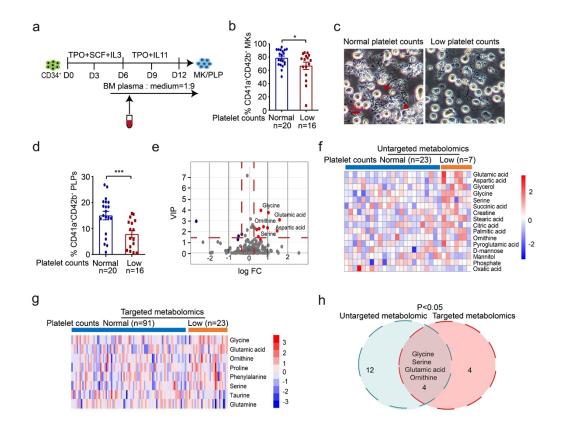
- 601 mail: zhoujx@ihcams.ac.cn.
- 602

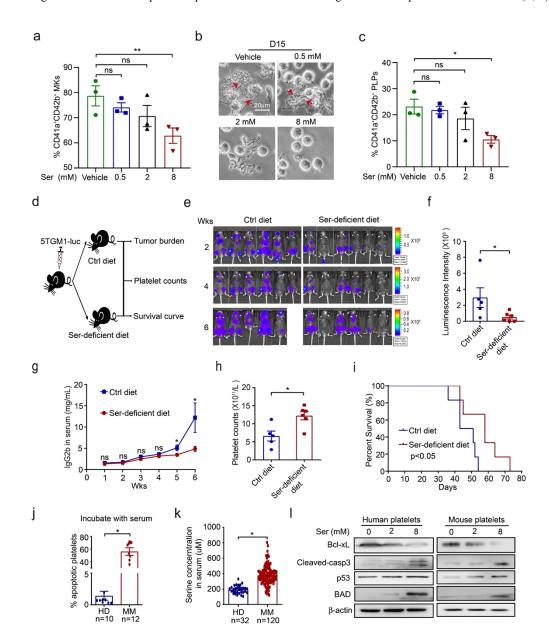
603 **References**

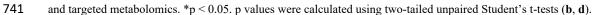
604	1.	Liu, J., et al. Incidence and mortality of multiple myeloma in China, 2006-2016: an analysis of
605		the Global Burden of Disease Study 2016. J Hematol Oncol 12, 136 (2019).
606	2.	Cowan, A.J., et al. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 327, 464-
607		477 (2022).
608	3.	Kyle, R.A., et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin
609		<i>Proc</i> 78 , 21-33 (2003).
610	4.	Al Saleh, A.S., et al. Hematopoietic score predicts outcomes in newly diagnosed multiple
611		myeloma patients. Am J Hematol 95 , 4-9 (2020).
612	5.	Kaneko, M., et al. Simple prognostic model for patients with multiple myeloma: a single-center
613		study in Japan. Ann Hematol 81, 33-36 (2002).
614	6.	Greipp, P.R., et al. International staging system for multiple myeloma. J Clin Oncol 23, 3412-
615		3420 (2005).
616	7.	Machlus, K.R. & Italiano, J.E., Jr. The incredible journey: From megakaryocyte development to
617		platelet formation. <i>J Cell Biol</i> 201 , 785-796 (2013).
618	8.	Li, W., et al. Thrombocytopenia in MDS: epidemiology, mechanisms, clinical consequences and
619		novel therapeutic strategies. <i>Leukemia</i> 30 , 536-544 (2016).
620	9.	Shahrabi, S., Behzad, M.M., Jaseb, K. & Saki, N. Thrombocytopenia in leukemia: Pathogenesis
621		and prognosis. Histol Histopathol 33, 895-908 (2018).
622	10.	Gao, A., et al. Bone marrow endothelial cell-derived interleukin-4 contributes to

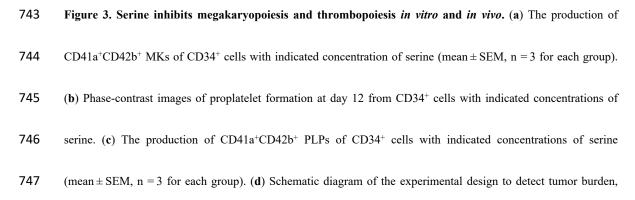
623		thrombocytopenia in acute myeloid leukemia. <i>Haematologica</i> 104 , 1950-1961 (2019).
624	11.	Shastri, A., Will, B., Steidl, U. & Verma, A. Stem and progenitor cell alterations in
625		myelodysplastic syndromes. Blood 129, 1586-1594 (2017).
626	12.	Wu, X., et al. Phosphoglycerate dehydrogenase promotes proliferation and bortezomib
627		resistance through increasing reduced glutathione synthesis in multiple myeloma. Br J
628		Haematol 190 , 52-66 (2020).
629	13.	Jian, X., et al. Alterations of gut microbiome accelerate multiple myeloma progression by
630		increasing the relative abundances of nitrogen-recycling bacteria. Microbiome 8, 74 (2020).
631	14.	Murphy, A.J., et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet
632		production and thrombocytosis. Nat Med 19 , 586-594 (2013).
633	15.	Ye, J.Y., et al. Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2
634		and F-actin reorganization. Stem Cells 32, 2973-2982 (2014).
635	16.	Pietras, N.M. & Pearson-Shaver, A.L. Immune Thrombocytopenic Purpura. in StatPearls
636		(Treasure Island (FL), 2022).
637	17.	Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and
638		management. <i>Am J Hematol</i> 95 , 548-567 (2020).
639	18.	Gooding, S., et al. Transcriptomic profiling of the myeloma bone-lining niche reveals BMP
640		signalling inhibition to improve bone disease. Nat Commun 10, 4533 (2019).
641	19.	Yang, Y., et al. Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and
642		Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Transl Med 5, 175-
643		185 (2016).
644	20.	Lebois, M. & Josefsson, E.C. Regulation of platelet lifespan by apoptosis. Platelets 27, 497-504
645		(2016).
646	21.	Qiao, J., et al. Imbalanced expression of Bcl-xL and Bax in platelets treated with plasma from
647		immune thrombocytopenia. <i>Immunol Res 64,</i> 604-609 (2016).
648	22.	Kimball, A.S., et al. The Histone Methyltransferase Setdb2 Modulates Macrophage Phenotype
649		and Uric Acid Production in Diabetic Wound Repair. Immunity 51, 258-271 e255 (2019).
650	23.	Kimura, S., Roberts, A.W., Metcalf, D. & Alexander, W.S. Hematopoietic stem cell deficiencies
651		in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci USA 95, 1195-1200
652		(1998).
653	24.	Ludwig, H., et al. Bendamustine-bortezomib-dexamethasone is an active and well-tolerated
654		regimen in patients with relapsed or refractory multiple myeloma. Blood 123, 985-991 (2014).
655	25.	Rodon, P., et al. Multiple myeloma in elderly patients: presenting features and outcome. Eur J
656		Haematol 66 , 11-17 (2001).
657	26.	Kyle, R.A. Multiple myeloma: review of 869 cases. <i>Mayo Clin Proc</i> 50, 29-40 (1975).
658	27.	Wang, H., et al. Decoding Human Megakaryocyte Development. Cell Stem Cell 28, 535-549
659		e538 (2021).
660	28.	Liu, C., et al. Characterization of Cellular Heterogeneity and an Immune Subpopulation of
661		Human Megakaryocytes. <i>Adv Sci (Weinh)</i> 8 , e2100921 (2021).
662	29.	Lomas, O.C., Tahri, S. & Ghobrial, I.M. The microenvironment in myeloma. Curr Opin Oncol 32,
663		170-175 (2020).
664	30.	Garcia-Ortiz, A., et al. The Role of Tumor Microenvironment in Multiple Myeloma
665		Development and Progression. Cancers (Basel) 13(2021).
666	31.	Bruns, I., et al. Multiple myeloma-related deregulation of bone marrow-derived CD34(+)

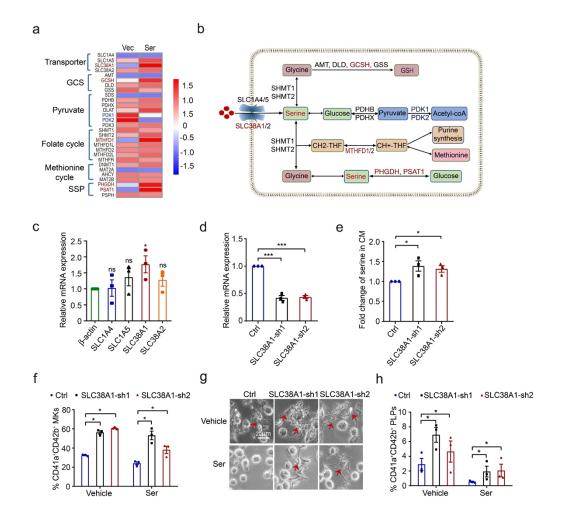
667		hematopoietic stem and progenitor cells. <i>Blood</i> 120 , 2620-2630 (2012).
668	32.	Zhou, L., et al. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can
669		be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res 71, 955-963 (2011).
670	33.	Locasale, J.W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev
671		Cancer 13 , 572-583 (2013).
672	34.	Amelio, I., Cutruzzola, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism
673		in cancer. <i>Trends Biochem Sci</i> 39 , 191-198 (2014).
674	35.	Maddocks, O.D., Labuschagne, C.F., Adams, P.D. & Vousden, K.H. Serine Metabolism Supports
675		the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer
676		Cells. <i>Mol Cell</i> 61 , 210-221 (2016).
677	36.	Almazni, I., Stapley, R. & Morgan, N.V. Inherited Thrombocytopenia: Update on Genes and
678		Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 6, 80 (2019).
679	37.	Balduini, C.L., Melazzini, F. & Pecci, A. Inherited thrombocytopenias-recent advances in clinical
680		and molecular aspects. Platelets 28, 3-13 (2017).
681	38.	Wang, H., et al. MEIS1 Regulates Hemogenic Endothelial Generation, Megakaryopoiesis, and
682		Thrombopoiesis in Human Pluripotent Stem Cells by Targeting TAL1 and FLI1. Stem Cell Reports
683		10 , 447-460 (2018).
684	39.	Smith, T.C., et al. Supervillin binding to myosin II and synergism with anillin are required for
685		cytokinesis. <i>Mol Biol Cell</i> 24 , 3603-3619 (2013).
686	40.	Begonja, A.J., et al. FInA binding to PACSIN2 F-BAR domain regulates membrane tubulation in
687		megakaryocytes and platelets. Blood 126, 80-88 (2015).
688	41.	Kunishima, S., et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum
689		Genet 92 , 431-438 (2013).
690	42.	Bender, M., et al. ADF/n-cofilin-dependent actin turnover determines platelet formation and
691		sizing. <i>Blood</i> 116 , 1767-1775 (2010).
692	43.	Inagaki, K., et al. Induction of megakaryocytopoiesis and thrombocytopoiesis by JTZ-132, a
693		novel small molecule with thrombopoietin mimetic activities. Blood 104, 58-64 (2004).
694	44.	Qiu, Y., et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and
695		UPLC-QTOFMS. J Proteome Res 8, 4844-4850 (2009).
696	45.	Newman, A.C., Labuschagne, C.F., Vousden, K.H. & Maddocks, O.D.K. Use of (13)C3(15)N1-
697		Serine or (13)C5(15)N1-Methionine for Studying Methylation Dynamics in Cancer Cell
698		Metabolism and Epigenetics. Methods Mol Biol 1928, 55-67 (2019).
699	46.	Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment
700		of short DNA sequences to the human genome. <i>Genome Biol</i> 10 , R25 (2009).
701		
702		
703		




Figure 1. Thrombocytopenia is linked to poor prognosis in MM patients. (a) Assessment of platelet counts in newly diagnosed MM (NDMM) patients (n = 1,468). Three groups were defined as follows: patients with normalplatelet counts ($100-300 \times 10^{9}/L$, n = 1041), high-platelet counts (> $300 \times 10^{9}/L$, n = 116) and low-platelet counts ($\leq 100 \times 10^{9}/L$, n = 311). (b) Platelet counts in PB (peripheral blood) of NDMM patients with different ISS stage (mean ± SEM, nISS I = 230, nISS II = 371; nISS III = 527). (c and d) Kaplan-Meier analyses of overall survival


712	(OS) (c) and progression free survival (PFS) (d) in NDMM patients with normal-platelet counts ($100-300 \times 10^{9}/L$),
713	low-platelet counts (50-100×10 ⁹ /L) and low-platelet counts (< 50×10^{9} /L). (e) The number of MKs in BM aspirate
714	smears derived from healthy donors (HD), MGUS (monoclonal gammopathy of undetermined significance) and
715	NDMM patients with different ISS stage (nHD = 23, nMGUS=4, nISS I = 14, nISS II = 31; nISS III = 45). (f) The
716	number of MKs in BM aspirate smears derived from HD and MM patients with normal-platelet counts and low-
717	platelet counts (mean \pm SEM, nHD = 23, nplatelet (normal) = 82, nplatelet (low) = 16). (g) Assessment of the
718	correlation between platelet counts and numbers of MKs in BM ($n = 121$). (h) Schematic diagram of the experimental
719	design to detect platelet counts, tumor burden and the proportion of LSKs, CMPs, and MEP in 5TMG1 MM mouse
720	model. (i) Dynamic changes of IgG2b levels and platelet counts during MM progression. IgG2b level was detected
721	by using ELISA assay. Peripheral platelet counts were measured with haematologyanalyser ($n = 6$). (j) Assessment
722	of the correlation between IgG2b levels and platelet counts ($n = 37$). (k) Representative images of
723	immunofluorescence analysis for MKs staining using CD41-FITC antibody (Green) and Hoechst 33342 (Blue) in
724	the BM of control mice and MM mice. Top, normal numbers of MKs in control mice; bottom, decreased numbers
725	of MKs in MM mice. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, ns: not significant (p > 0.05). p values were calculated
726	using Log-rank test (c, d). p values were calculated using one-way ANOVA (b, e, f).


728 Figure 2. Serine is upregulated in BM and linked to thrombocytopenia in MM. (a) Schematic diagram showing 729 megakaryocytic differentiation of CD34+ cells treated with BM plasma derived from MM patients with or without 730 thrombocytopenia. (b) Flow cytometry analysis of the percentage of CD41a⁺CD42b⁺ cells at day 12 of 731 megakaryocytic differentiation with BM plasma treatment (mean \pm SEM, nplatelet (normal) = 20, nplatelet (low) = 732 16). (c) Phase-contrast images of proplatelet formation at day 12 from CD34⁺ cells with BM plasma treatment (scale 733 bar, 20µm). (d) Generation of CD41a⁺CD42b⁺ PLPs at day 12 of CD34⁺ cells with BM plasma treatment 734 $(mean \pm SEM, nplatelet (normal) = 20, nplatelet (low) = 16).$ (e) Volcano plot of differential metabolites in BM 735 plasma between MM patients with normal-platelet counts (n = 23) and patients with low-platelet counts (n = 7) by 736 using with un-targeted metabolomics. Significantly upregulated metabolites are represented as 'red' dots, and 737 downregulated metabolites are represented as 'blue' dots. (f) Heat maps of the 16 differential metabolites in BM 738 plasma between MM patients with normal platelet counts and with low platelet counts. (g) Heatmaps of the 8 739 differential amino acids in BM plasma between MM patients with normal platelet counts (n = 91) and patients with

748	platelet counts and the survival in 5TMG1 MM mouse model fed with the control diet or serine-deficient diet ($n = 6$
749	per group). (e) Tumor-associated luminescence intensity in live 5TGM1 MM mice fed with the control diet or serine-
750	deficient diet. (f) Quantification of luminescence intensity in 5TGM1 MM mice fed with the control diet or serine-
751	deficient diet at 2, 4, 6 weeks (mean ± SEM). (g) The concentrations of IgG2b in mouse serum as detected with
752	ELISA. (h) The number of platelet counts in PB in 5TGM1 MM mice fed with the control diet or serine-deficient
753	diet. (i) The survival curves of 5TGM1 MM mice fed with the control diet or serine-deficient diet. (j) The apoptosis
754	rate of platelets derived from HD incubated with serum from HD or MM patients. (k) The level of serine in serum
755	from HD or MM patients as revealed with targeted metabolomics. (I) Western blot analysis of BCL-xL, C-caspase3,
756	p53 and BAD expression in platelets derived from HD or control mice treated with indicated concentration of serine.
757	*p< 0.05, **p< 0.01, ns: not significant (p > 0.05). p values were calculated using one-way ANOVA (\mathbf{a}, \mathbf{c}). p values
758	were calculated using two-tailed unpaired Student's t-tests (\mathbf{f} , \mathbf{h} , \mathbf{j} , \mathbf{k}). p value was calculated using Log-rank test (\mathbf{i}).

760 Figure 4. Serine intake is mediated by SLC38A1. (a) The expression profile of serine metabolism-related genes 761 in MKs cultured with vehicle or excessive serine. (b) Schematics of serine metabolism. (c) Assessment of mRNA 762 expression of serine transporters in differentiated cells treated with vehicle or excessive serine at day 12. (d) The 763 mRNA level of SLC38A1 in CD34⁺ cells containing control and SLC38A1 shRNAs as detected with qPCR analysis. 764 (e) The concentration of extracellular serine in CD34⁺ cells containing control and SLC38A1 shRNAs. (f) Flow 765 cytometry analysis of the percentage of CD41a+CD42b+ MKs from CD34+ cells with SLC38A1 knockdown exposed 766 to serine. (g) Representative images of proplatelet formation from MKs from CD34⁺ cells with SLC38A1 767 knockdown exposed to vehicle or serine. (h) Generation of CD41a⁺CD42b⁺ PLPs at day 12 from CD34⁺ cells with 768 SLC38A1 knockdown exposed to vehicle or serine. *p < 0.05, ***p < 0.001, ns: not significant (p > 0.05). p values 769 were calculated using one-way ANOVA.

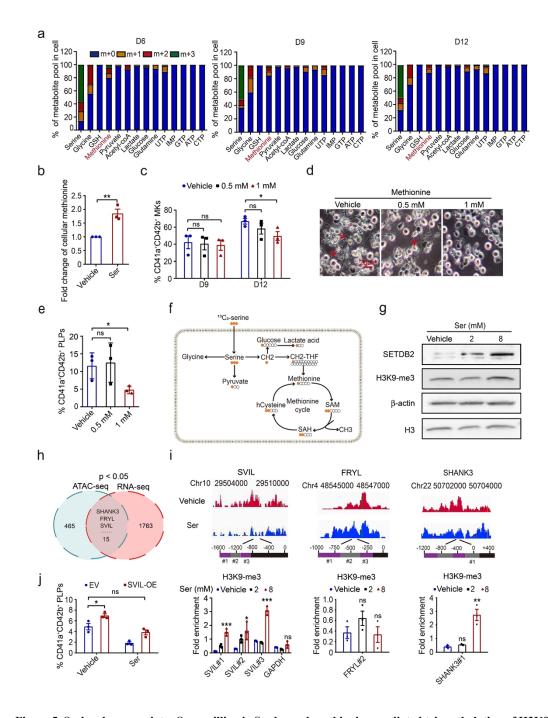


Figure 5. Serine downregulates Supervillin via S-adenosyl-methionine-mediated tri-methylation of H3K9. (a)
The metabolic flux of ¹³C₃ serine in CD34⁺ cells undergoing MK differentiation. (b) The level of cellular methionine
in differentiated cells at day 12. (c) Generation of CD41a⁺CD42b⁺ MKs of CD34⁺ cells with indicated concentrations
of methionine. (d) Phase-contrast images of proplatelet formation at day 12 from CD34⁺ cells treated with indicated
concentrations of methionine. (e) Generation of CD41a⁺CD42b⁺ PLPs from CD34⁺ cells with indicated
concentrations of methionine. (f) Schematics of serine metabolism in MKs. (g) Western blots of SETDB2, β-actin,

777	H3K9-me3 and H3 in differentiated cells cultured with vehicle or serine at day 12. (h) Venn diagram of
778	downregulated genes in both ATAC-seq and RNA-seq analyses. (i) Peaks of the promoter of SVIL, FRYL and
779	SHANK3 and the binding of H3K9-me3 to the promoters of the three genes in differentiated cells cultured with
780	vehicle or serine at day 12, as revealed with ATAC-seq and ChIP-qPCR, respectively. (j) Generation of
781	CD41a ⁺ CD42b ⁺ PLPs from CD34 ⁺ cells with overexpression of SVIL exposed to serine. *p< 0.05, **p< 0.01. p
782	values were calculated using two-tailed unpaired Student's t-tests (b). p values were calculated using one-way
783	ANOVA (c , e , i , j).

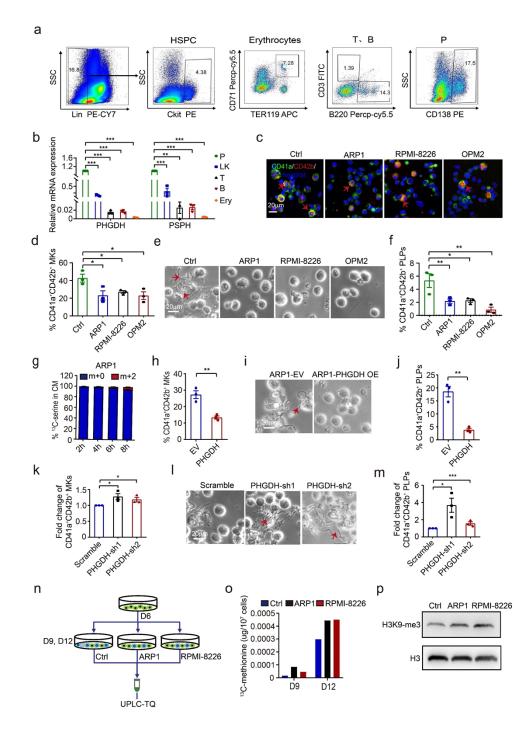


Figure 6. Serine accumulated in the BM microenvironment is released from myeloma cells. (a) Representative
plots for the isolation of HSPCs, erythrocytes, T cell, B cell and plasma cells from the BM microenvironment of
5TGM1 MM mouse. (b) Relative mRNA levels of PHGDH and PSPH were detected in HSPCs, erythrocytes, T cell,
B cell and plasma cells by using qPCR. (c) Representative images of IF for MKs stained with FITC-CD41a and
APC-CD42b in differentiated cells treated with or without the CM. (d) Flow cytometry analysis of the percentage

790	of CD41a ⁺ CD42b ⁺ cells at day 9 and 12 of megakaryocytic differentiation with or without the CM treatment. (e)
791	Phase-contrast images of proplatelet formation at day 12 from CD34 ⁺ cells with or without the CM treatment (scale
792	bar, 20 μ m). (f) Generation of CD41a ⁺ CD42b ⁺ PLPs at day 12 of CD34 ⁺ cells with or without CM treatment. (g) ¹³ C-
793	labeled serine in the CM from ARP1 cells treated with ${}^{13}C_2$ glycine. (h) Flow cytometry analysis of the percentage
794	of CD41a ⁺ CD42b ⁺ MKs from CD34 ⁺ cells treated with CM derived from ARP1-EV and ARP1-PHGDH cells. (i)
795	Representative images of proplatelet formation from MKs treated with CMs derived from ARP1-EV and ARP1-
796	PHGDH cells. (j) Generation of CD41a ⁺ CD42b ⁺ PLPs at day 12 from CD34 ⁺ cells treated with CM derived from
797	ARP1-EV and ARP1-PHGDH cells. (k) Flow cytometry analysis of the percentage of CD41a ⁺ CD42b ⁺ MKs from
798	CD34 ⁺ cells treated with ARP1-PHGDH-sh1 CM and ARP1-PHGDH-sh2 CM. (I) Representative images of
799	proplatelet formation from MKs treated with ARP1-PHGDH-sh1 CM and ARP1-PHGDH-sh2 CM. (m) Generation
800	of CD41a ⁺ CD42b ⁺ PLPs at day 12 from CD34 ⁺ cells treated with ARP1-PHGDH-sh1CM and ARP1-PHGDH-sh2
801	CM. (n) Schematics of the serine metabolic flux experiments in CM from MM cells. (o) Levels of ¹³ C-methionine
802	in cells after incubated with the CM of ARP1 cells and RPMI-8226 cells with ${}^{13}C_3$ -serine for 4 h. (p) Western blot
803	analysis of H3K9-me3 in cells at day 12 treated with control or CM from ARP1 cells and RPMI-8226 cells. *p<
804	0.05, **p< 0.01. p values were calculated using two-tailed unpaired Student's t-tests (h, j). p values were calculated
805	using one-way ANOVA (b , d , f , k , m).

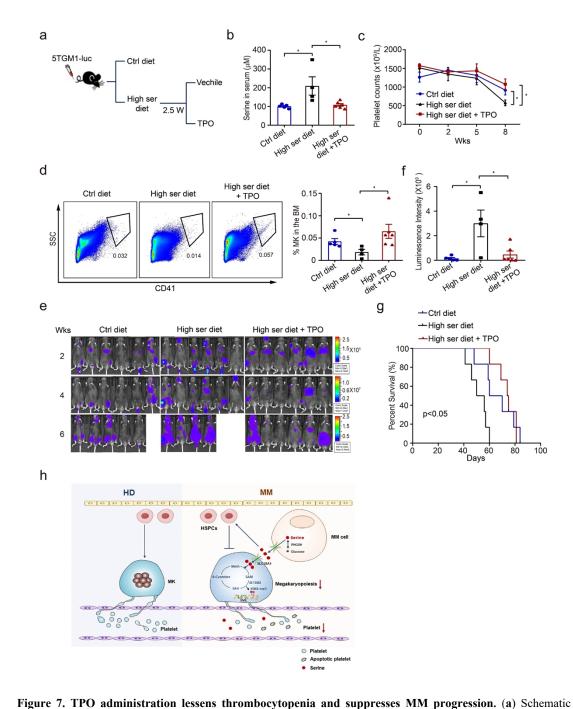


Figure 7. TPO administration lessens thrombocytopenia and suppresses MM progression. (a) Schematic diagram of 5TGM1 mice fed with the control diet (n = 6), high-serine diet (n = 6) or high-serine diet plus TPO intervention (2 mg/kg) (n = 6). (b) Serum serine concentrations in 5TGM1 mice fed with the indicated diets with BSA or TPO intervention. (c) Dynamic changes of platelet counts in PB of 5TGM1mice fed with the indicated diets with BSA or TPO intervention. (d) The percentage of MKs in BM cells of 5TGM1 mice fed with the indicated diets with BSA or TPO intervention as revealed with flow cytometry analysis. (e) Live imaging of the tumor-associated

813	luminescence intensity of 5TGM1 MM mice fed with the control diet, high-serine diet or high-serine diet plus TPO
814	for 2, 4, or 6 weeks. (f) Quantification of tumor-associated luminescence intensity in the 5TGM1 MM mice cohorts
815	shown in panel e (mean \pm SEM). (g) The survival curves of 5TGM1 MM mice fed with the control or high-serine
816	diet with or without TPO. (h) The working model of this study. $*p < 0.05$. p values were calculated using Log-rank
817	test (g). p values were calculated using one-way ANOVA (b, c, d, f).
818	
819	
820	
821	
822	
823	
824	
825	
826	
827	
828	
829	
830	
831	
832	
833	
834	

Patients' Characteristics	Low platelet count (n=311) (n/N×100%)	Normal platelet count (n=1041) (n/N×100%)	High platelet count (n=116) (n/N×100%)	p-value (low vs. normal)
Age (y)	60	59	57	0.246
Sex				0.171
Male	197/311 (63.3)	638/1041 (61.3)	62/116 (53.4)	
Female	114/311 (36.7)	403/1041 (38.7)	54/116 (46.6)	
ISS stage				0.000**
I	30/233 (12.9)	177/816 (21.7)	22/84 (26.2)	
П	64/233 (27.5)	280/816 (34.3)	28/84 (33.3)	
III	139/233 (59.6)	358/816 (44)	34/84 (40.5)	
DS stage				0.002**
I	8/279 (2.9)	65/889 (7.3)	8/97(8.2)	
П	18/279 (6.5)	97/889 (10.9)	15/97(15.5)	
III	253/279 (90.6)	727/889 (81.8)	74/97(76.3)	
Plasma cells in BM (%)	40.1	32.8	24.3	0.000***
Median Calcium (mmol/L)	2.32	2.34	2.3	0.743
Renal dysfunction	67/282 (23.8)	195/911 (21.4)	19/99 (19.2)	0.573
Median Hb (g/L)	73.7	93.4	95.3	0.000***
Median LDH (U/L)	221	175	163	0.000***
1q21 gain				0.004**
No	33/113 (29.2)	205/452 (45.4)	29/46 (63)	
Yes	80/113 (70.8)	247/452 (54.6)	17/46 (37)	
TP53 deletion				0.037*
No	94/122 (77)	435/522 (83.3)	50/54 (92.6)	
Yes	28/122 (23)	87/522 (16.7)	4/54 (7.4)	
IgH translocation				0.459
No	45/120 (37.5)	218/498 (43.8)	22/52 (42.3)	
Yes	75/120 (62.5)	280/498 (56.2)	30/52 (57.7)	

 Table 1. The correlation of platelet count and clinical characteristics of MM

- 836 Abbreviations: DS stage: Durie-Salmon stage; ISS: International Staging System; FISH, fluorescence in
- 837 situ hybridization; LDH, lactate dehydrogenase; y, years. Hb: hemoglobin; Renal dysfunction: Creatinine level > 2.0
- 838 mg/dL; 1q21 gain: FISH 1q21 gain in ≥10% of cells; TP53 deletion: FISH TP53 deletion in ≥10% of cells; FISH
- 839 IgH translocation in $\geq 10\%$ of cells; OS: overall survival; PFS: progression-free survival; all MM patients were newly
- 841 measured using the chi-square test.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTableS1relatedtoFigure1.docx
- SupplementaryTableS2relatedtoFigure1.docx
- SupplementaryTableS3relatedtoFigure2.docx
- SupplementaryTableS4relatedtoFigure4.xlsx
- SupplementaryTableS5relatedtoFigure5.xls
- SupplementaryTableS6relatedtoFigure5.xls
- SupplementaryTableS7relatedtoSupplementarydata.docx
- SupplementaryTableS8relatedtoDiscussion.docx