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Abstract

Spatial keyword query (SKQ) is a research hotspot in the field of spatio-temporal

databases. The spatial proximity and text similarity between objects and the query

are considered during query processing. In order to better meet the personal-

ized needs of users and improve the accuracy and real-time of spatial keyword

query results, we propose the Top-k spatial keyword query based on reachability

(RSKQ). Such query returns the k best objects that satisfy the reachability and

query keyword constraints according to a comprehensive score, which consider-

s the spatial proximity, text similarity, and accessibility between the query and

the object. Firstly, an efficient index called SRTR-tree is proposed, which can

intelligently organize road network structure information, keywords and location

information of spatio-textual objects, and vehicle trajectory information. More-

over, several pruning techniques are designed to prune massive objects irrelevant

to the query according to accessibility, spatial proximity, and textual similarity, so

as to speed up query processing. Based on the SRTR-tree and pruning strategies, a

non-trivial basic algorithm is proposed to process RSKQ queries. In addition, we

introduce a more efficient optimized algorithm to improve the efficiency of query

processing. Finally, a series of experimental evaluations are carried out to show

the effectiveness of our methods.
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Figure 1: Road network and spatio-textual objects

1. Introduction

With the rapid development of the mobile network and geo-location technol-

ogy, location-based services have been widely used in daily life, and the network

data objects containing spatial and textual information are growing rapidly. As a

key technology of location-based services, the spatial keyword query has attracted

widespread attention and becomes a research hotspot in the field of database. At

present, spatial keyword query processing is extended from Euclidean space to

the road network, but the existing research is usually limited to the static distance

between the query and spatio-textual objects, does not consider the possibility of

users reaching the target object from the query point within a given duration, that

is, the accessibility of the target object. However, in real life, the accessibility

of spatio-textual objects affects people’s satisfaction with query results to a great

extent.

As shown in Figure 1, there are three spatio-textual objects o1, o2, o3 and a

query point Q in the road network. Assuming that objects o1 and o2 meet the

query keyword constraints, and the road network distance between query Q and

object o1 is less than that between Q and o2, o1 should be better than o2. Howev-

er, sometimes, due to traffic conditions or some other reasons, the probability of

reaching o1 from Q is less than that from Q to o2, so o1 is not necessarily better

than o2 at this time. Therefore, the accessibility from the query point to objects

should be considered in Top-k spatial keyword query processing.
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At present, spatial keyword query processing no longer only focuses on the

spatial proximity and text similarity between the query and objects, many other

factors affecting query results are also considered. For example, direction-aware

spatial keyword queries [1, 2] and time-sensitive spatial keyword queries [3–6]

are proposed and solved. Meanwhile, the accessibility query in the static road

network has been deeply studied. It can predict the accessibility in different peri-

ods according to massive historical trajectory data [7, 8], and pay close attention

to weather, traffic conditions [9, 10], holidays [11], and other factors [12–14].

Both spatial keyword queries and accessibility queries are constantly explored to

better meet the needs of users in the real world, but no one has considered the

combination of the two types of queries. In view of the actual impact of object

accessibility on spatial keyword query results, we introduce accessibility into s-

patial keyword queries for the first time, and propose the Top-k spatial keyword

queries (RSKQ) based on accessibility.

Our RSKQ problem presents three main challenges. The first challenge is

to reasonably and efficiently organize complex road network data, and a large

amount of spatio-textual object information and trajectory information for subse-

quent calculation. Secondly, many users may initiate queries at the same time.

The proposed query processing method should be efficient and intelligent enough

to send the information of the matching objects to the relevant query users as soon

as possible. Furthermore, taking the reachability factor into account will further

increase the difficulty of query processing.

To overcome the above challenges, we first present a novel indexing structure

named SRTR-tree. The SRTR-tree uses an R-tree to organize the whole road net-

work, and each tree node maintains the set of keywords contained in all its child

nodes or segments and an inverted list to facilitate keyword matching in query

processing. For each road segment in leaf nodes, the Temporal-information com-

ponent is constructed to calculate its reachability. Moreover, three pruning tech-

niques are proposed to prune large amounts of road segments and spatio-textual

objects unrelated to the RSKQ query. Based on the SRTR-tree and three pruning

strategies, a basic algorithm and an optimized algorithm are designed to process

the RSKQ query.

The key contributions of this paper are as follows.

• This paper takes the first step towards studying Top-k spatial keyword queries

based on reachability (RSKQ). RSKQ distinguishes itself from the existing

spatial keyword queries since it considers the reachability factor under the

current time and traffic conditions, which will enhance the effectiveness of
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query results.

• An efficient index structure called SRTR-tree is proposed. In SRTR-tree,

the road network, keywords, location information of spatio-textual objects,

and the trajectory information of vehicles are smartly organized. Moreover,

several lemmas are proposed to prune huge amounts of irrelevant spatio-

textual objects for RSKQ queries.

• On the basis of SRTR-tree and pruning strategies, a non-trivial basic algo-

rithm based on road network expansion and an optimized algorithm that is

more efficient for RSKQ query processing are proposed.

• Experiments on a real road network and a trajectory dataset reveal the ef-

ficiency of our query processing methods and the associated SRTR-tree in-

dex.

The remainder of this paper is organized as follows. Section 2 reviews related

work. Section 3 gives basic concepts and problem descriptions. In Section 4, the

index structure SRTR-tree is discussed in detail, and Section 5 presents the basic

RSKQ query processing method based on SRTR-tree. Section 6 proposes the

optimized method and analyses the time complexity of our algorithms. Section 7

shows the experimental study, and finally, Section 8 concludes this paper.

2. Related Work

This paper makes the first attempt to study Top-k spatial keyword queries

based on reachability. In this section, we discuss two topics that are closely relat-

ed to our work, including (1) reachability query processing, (2) spatial keyword

query.

2.1. Reachability Query Processing

The conventional reachability query is one of the fundamental graph opera-

tions, asking if two nodes are connected in a directed graph. The methods in

[15, 16] construct a small-sized but effective index with a low construction cost

to solve such reachability queries. Zhou et al. [17] introduced a graph reduction

method to speed up the reachability calculation, while other works [18, 19] pro-

posed different labeling methods to reduce the index size.

Recently, reachability queries are commonly used to detect whether there is a

path from one point to another in an urban road network. Based on the histori-

cal trajectory dataset, Wu and Ding et al. [7] resegmented the road and matched
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the trajectory to the map, then found out all reachable road segments by max-

imum bounding region search and backtracking search, thereby mining spatio-

temporal reachable regions. Their method is effective for the single-location

spatio-temporal reachability query (S-Query) and the union-of-multi-location spatio-

temporal reachability query (U-Query). Later, Ding et al. [8] extended their pre-

vious ideas by introducing a new multi-source reachability query, namely, the

intersection-of-multi-location spatio-temporal reachability Query (I-Query). They

utilized an indexing schema composed of a spatio-temporal index and a connec-

tion index to answer I-Queries, which is vital for many urban applications, such

as location-based recommendation, advertising, and business coverage analysis.

Then, some accessibility related applications have been discussed. Tribby A

et al. [12] constructed a GIS-based high-resolution spatio-temporal bus network

model. The accessibility of public transportion from the starting point to the desti-

nation is measured by calculating the total travel time, including the walking time

to the bus station, the typical waiting time at the bus station, the travel time on

the bus network, and the transfer time between routes. Tang et al. [10] proposed

a spatio-temporal reachable area calculation scheme called STRC. Two bound-

ary segment selection policies are designed for the time-sensitive applications and

the distance-related applications, respectively, which improve the applicability of

their scheme in real urban transportation services. Ruan et al. [11] proposed a lin-

ear integer programming model on the space-time network structure to maximize

the system-wide transportation accessibility from different origins to activity lo-

cations at special event sites. Tong et al. [13] improved reachability by construct-

ing a time-dependent space-time network to maximize the number of accessible

activity locations within the travel time budget for road users. When people par-

ticipate in collective social activities, they will consider the distance and time cost

from their current location to the activity location. Ning et al. [14] proposed a

multi-user location recommendation scheme based on the spatial characteristics

of urban road networks and user time requirements.

2.2. Spatial Keyword Query

The typical spatial keyword query consists of the query location, query key-

words, the constraint set, the sorting function, and the number of returned results,

and returns result objects that meet the constraints and rank high comprehensively.

Objects with geo-location and textual properties are called spatio-textual object-

s [20]. Inverted files are often constructed to organize the textual information of

objects. R-trees, grid indexes, and their variants are often used to organize spatial

information of spatio-textual objects.

5



In order to deal with Top-k spatial keyword queries, various index structures

are proposed based on R-tree. Zhou et al. [20] used R-tree to index the geographic

location of all objects. For each leaf node, an inverted file is created to index the

text of objects it contains. Cong et al. [21] designed IR-tree by combining invert-

ed lists and R-tree. Then, a variant of IR-tree, DIR tree, was designed to merge

text similarity and spatial proximity, and improve the index framework. WIR-tree

[22] is another variant of IR-tree, which groups objects according to the contained

keywords, so that each group shares as few keywords as possible, speeding up

the pruning of unrelated object groups. Felipe et al. [23] introduced an indexing

structure called IR2-Tree, which combines an R-Tree with superimposed text sig-

natures to answer Top-k spatial keyword queries. At the same time, some other

famous indexing techniques were also proposed, such as S2I[24], I3 [25], and

IL-Quadtree [26].

Moreover, some variants of the spatial keyword query have also been dis-

cussed. Wu et al. [27] studied the efficient processing of continuously moving

Top-k spatial keyword queries. They proposed two algorithms for computing safe

zones, which can guarantee the correct results at any time. Huang et al. [28] pro-

posed an effective method to support mobile Top-k spatial keyword queries. Li et

al. [29] explored the direction-aware query processing, which returns the k nearest

neighbors of the query that meet query direction and keyword constraints. Liu et

al. [30] studied the generic location-aware rank query over a set of location-aware

objects. Considering the time factor, Chen et al. [3] defined a new query, namely

time-aware collective spatial keyword query, which considers the positional rele-

vance, textual relevance, and temporal relevance between objects and the query at

the same time.

3. Preliminaries

This section first clarifies the key terms used in this paper, and then provides

a formal definition of the Top-k keyword query based on reachability. Table 1

summarizes the symbols and their definitions frequently used in this paper.

3.1. Basic Concepts

Definition 1. (Road Network) The road network can be represented by the graph

G = (V,E), where E is a set of edges, and V is the set of vertices. A vertex v ∈
V is a road intersection or an endpoint in the road network and an edge e ∈ E
represents a road segment.
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Definition 2. (Spatio-textual Object) A spatio-textual object o ∈ O is located on

the edge of the road network, and has its spatial location information o.l (latitude

and longitude) and textual description o.d. RSKQ queries proposed in this paper

return spatio-textual objects as results.

Definition 3. (Trajectory) The trajectory is the route of vehicles on the road net-

work. It is composed of a series of spatio-temporal points, each containing the

trajectory ID, spatial position (latitude and longitude), timestamp, and other at-

tributes, such as the travel speed and direction.

Definition 4. (Trajectory Reachability) Given the query start position q.s, start

time q.t, query duration q.l, and the road segment ri, the trajectory reachability

refers to whether any historical trajectory has passed through the road segment

ri from the start position q.s within the given duration q.l. If yes, the trajectory

accessibility is 1, otherwise 0.

Definition 5. (Reachable Road Segment) Given the query start position q.s, start

time q.t, and query duration q.l, if the trajectory reachability from q.s to ri is 1, ri
is a reachable road segment.

Based on the definition of reachable road segment, we introduce the road seg-

ment probability.

Definition 6. (Road Segment Reachability) The road segment probability describes

the percentage of days in the historical trajectory dataset that support the fact that

the road segment ri (the road segment where the object o is located) is reachable

from the start road segment r0 (the road segment where query q is located) within

the given duration. The road segment reachability is between 0 and 1.

Definition 7. (Spatio-textual Objects Reachability) The reachability of a spatio-

textual object o is represented by the reachability of the road segment where o is

located.

3.2. Problem Definition

Definition 8. (Top-k Spatial Keyword Query based on Reachability (RSKQ)) An

RSKQ query q is formally defined as q = 〈q.s, q.d, q.t, q.l, q.r, k〉, where q.s is the

query location, q.d is a set of query keywords, q.t is the start time, q.l is the query

duration, q.r is the user-specified reachability and k is the number of target results

to be returned. An RSKQ query q returns the top-k spatio-textual objects ranked

7



Table 1: Symbols and Definitions.

Notation Definition

q a Top-k spatial keyword query based on reachability

q.s the spatial information of query q including latitude and longitude

q.d the keyword set of query q

q.t the start time of query q

q.l the duration of query q

q.r the reachable probability specified by query q, which is the minimum

value of the reachability that result objects need to meet

k the number of target results to be returned by query q

O a set of spatio-textual objects in a specified road network

o a spatio-textual object in a road network

o.l the spatial information of o including latitude and longitude

o.d the set of keywords of o

Prob the reachability from query q to object o

Tr the text similarity between query q and object o

Sr the spatial proximity between query q and object o

by the comprehensive score satisfying the reachability constraint. In particular,

the comprehensive score of object o is determined by the following three factors:

(1) the reachability from q.s to o.l during the time interval [q.t, q.t + q.l]; (2) the

spatial proximity between q and o; (3) the text similarity between q and o.

Definition 9. (Comprehensive scoring function, Rank(q, o)) For the query q and

an object o, the scoring function Rank(q,o) returns the comprehensive score that

considers the reachability from q to o, the spatial proximity between q.s and o.l,
and the text similarity between q.d and o.d, as follows:

Rank(q, o) = α× Prob(q, o) + β × Sr(q.s, o.l) + (1−α−β)× Tr(q.d, o.d)
(1)

Prob(q, o) is the reachability from q to o in the time interval [q.t, q.t + q.l];
Sr(q.s, o.l) is the spatial proximity between q.s and o.l and Tr(q.d, o.d) is the

text similarity between q.d and o.d. α, β, (1− α− β) ∈ (0,1) represent the user’s

preference parameters, which are used to measure the importance of reachability,

spatial proximity, and text similarity in the scoring function. For example, when
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α = 0 and β 6= 0, it means that users only consider the spatial proximity and text

similarity between q and o; When α 6= 0 and β = 0, users only focus on whether

o.l can be reached from q.s within the query duration and whether o.d and q.d are

textual similar, but do not care about the road network distance between q.s and

o.l.

Definition 10. (Reachability value Prob(q, o)) In this paper, Prob(q, o) describes

the reachability from q.s to o.l in interval [q.t, q.t + q.l]. Assume that the road

segment where q is located is r0 and the road segment where o is located is ri,
Prob(q, o) can be calculated as follows:

Prob(q, o) = Prob(r0, ri) =
∑m

j=1
Probj(q,o)

m
× 100% (2)

Here m is the total number of days covered by the trajectory data, and the

reachability Prob(q, o) is the average value of Probj(q, o) (1 ≤ j ≤ m), which is

defined as follows.

Probj(q, o) = Probj(r0, ri) =

{

|tre|
|trs|
× 100% ri 6= r0

(1− |tre|
|trs|

)× 100% ri = r0
(3)

trs is a set of trajectories that pass through r0 at the start time q.t and finally

pass through ri, and | • | is the number of elements in the set •. If ri 6= r0, tre
is a set of trajectories that pass through r0 at the start time q.t and finally pass

through ri within the interval [q.t, q.t+ q.l]; otherwise, i.e., ri = r0, tre is a set of

trajectories that never leave the road segment r0 within [q.t, q.t+q.l]. In particular,

tre can be calculated as follows.

tre =

{
∑n

l=0 trl ri 6= r0
n
∩
l=0

trl ri = r0
(4)

If ri 6= r0, trl is a subset of trs, including the trajectories which pass through

r0 at the start time q.t and pass through ri within the l-th period of the query

duration q.l. The time interval q.l is divided according to the time granularity of

SRTR-tree: if q.l is larger than the time granularity ∆t of q.t in the SRTR-tree, q.l
is divided into n small periods by the time granularity, and road segment ri may

be passed by within any of the periods; otherwise, the reachability of ri within

[q.t, q.t + q.l] is replaced by its reachability within [q.t, q.t + ∆t]. If ri = r0, trl
is a set of trajectories that did not leave r0 within the l − th period of the query

duration q.l.
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Definition 11. (Spatial proximity Sr(q.s, o.l)) The spatial proximity Sr(q.s, o.l)
describes the proximity between query q and object o on the road network dis-

tance, which is defined as follows:

Sr(q.s, o.l) = 1− dR(q.s,o.l)
dmax

, (5)

where, dR(q.s, o.l) is the road network distance between q.s and o.l, and dmax

is the maximum road network distance between any two points in the given road

network.

Definition 12. (Text Similarity Tr(q.d, o.d)) The text similarity between query

q and object o can be calculated by common text similarity measure functions.

In this paper, the cosine similarity is used for similarity calculation, as defined

below:

Tr(q.d, o.d) =
∑

t∈q.d wt,o.d·wt,q.d√∑
t∈o.d(wt,o.d)2·

√∑
t∈q.d(wt,q.d)2

(6)

The weight of keyword t in the object keyword set o.d is wt,o.d=1 + ln(ft,o.d),
ft,o.d is the number of occurrences of t in o.d. wt,q.d = ln(1 + |O| /dft), |O| is

the number of spatio-textual objects in O, and dft is the number of occurrences

of keyword t in the keyword set of O. When the query keyword set q.d and the

keyword set of object o don’t have any same keywords, namely |q.d ∩ o.d| = 0,

their text similarity is 0.

4. System Structure

4.1. Data Pre-processing

Firstly, the original road network and trajectory data are preprocessed to fa-

cilitate the subsequent calculation. (1) Road re-segmentation. In this paper, the

accessibility of the object is expressed by that of the road segment where it is

located, so long road segments will affect the accuracy of query results. There-

fore, we re-segment the original roads according to a certain spatial granularity

(e.g. 500m). When the original road is re-segmented, if the length of the remain-

ing part is less than half of the given spatial granularity, the remaining part is

merged into its adjacent road segment. Otherwise, the remaining part is regard-

ed as a separate road segment. Then, we record the length of the new segments

after re-segmentation, and insert intersections to connect new segments generat-

ed to maintain the connectivity of original roads. (2) Trajectory-map matching.

10



r1

r2

r3

r4

r5 r6

r7

r8

r9

v2

v3

v5

v6

v9

v7

q

v1

v4

v8

v10

Figure 2: Partial road network structure after road re-segmentation

The raw trajectories are mapped to the re-segmented road network. Firstly, the

GPS points of a moving object are mapped to the corresponding segments, and

then all segments are connected to form a mapping trajectory. For each segment,

the instantaneous speed, vehicle ID, and timestamp values are added as their at-

tributes. A moving object has only one trajectory per day, which is composed of

GPS points recorded at different time stamps during the day. Figure 2 gives the

partial road network structure after road re-segmentation, which is composed of

nine road segments.

4.2. Index Structure

In order to efficiently organize the road network structure information, trajec-

tory information, and the spatial, temporal, textual, and reachability information

of spatio-textual objects, a new index structure called SRTR-tree is constructed

based on the R-tree.

Firstly, an R-tree is used to divide the road network and its objects, and the

partition results are saved. For example, Figure 3 gives the division results of

the road network in Figure 2. In particular, the road network (represented by the

root node of the R-tree) is first divided into three parts (nodes) E1, E2 and E3,

which will be the children of the root node and further subdivided. The above

spatial division is repeated until the number of road segments in each node does

not exceed a predefined threshold δ, and the spatio-textual objects are organized
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Figure 3: Intersections and spatio-textual objects in the road network

according to their segments. At the same time, each node of the SRTR-tree (except

the root node) has a pointer to its parent node and several pointers to its contained

child nodes or segments. Each object is located on a segment and has location

information and keyword information used to calculate the spatial proximity and

text similarity between the query and the object. The location information of an

object is represented by its distance to the vertex of the road segment where it is

located.

For the root node of the SRTR-tree, an Adjacency component is maintained,

which records the adjacent road segment information of each road segment in the

road network. For each node of the SRTR-tree, an Inverted file based on keywords

is constructed to accelerate the selection of areas or segments related to the query.

Each leaf node of the SRTR-tree also stores the information about the road seg-

ments it contains and all spatio-textual objects on those segments. Specifically, a

segment list is linked to each leaf node, and a Temporal-information component

is connected to each road segment. Figure 4 shows the overall structure of the

SRTR-tree, and Figures 5, 6, and 7 show the structures of Adjacent components,

Inverted files, and Temporal-information components, respectively.

Adjacency component The adjacency component records the adjacent seg-

ments and related intersections of each segment in the road network to find which

segments the path from the query q to a specific spatio-textual object will pass

through. For example, we can retrieve the entries corresponding to segment r2 in

12



Root

E1 E2 E3

E4 E5 E6

Adjacency 

component

E7
Inverted 

file 

r2

r1
Temporal-

information 

component

Segment list

Figure 4: SRTR-tree

the Adjacent component to obtain its adjacent segment r1, r4, and r5, and nodes

v2, v3, and v3, which are the intersections of these three adjacent segments and

segment r2, respectively.

Inverted file The Inverted file is connected to the node of SRTR-tree, and for

each keyword contained in the node, it records the ID of the child node containing

the keyword. For example, when the user launches a query with “shopping” as

the query keyword, we can prune the region E4 according to the inverted file of

E1, because the child node containing the keyword “shopping” in E1 is only E5.

Temporal-information component Temporal information has two dimen-

sions - date and time of day. The date information corresponds to the date of

the historical trajectory data, and the time of a day is firstly divided into “morning

rush period” (7:00-9:00), “evening rush period” (17:00-20:00), and “flat peak pe-

riod” (other periods except the first two periods) according to the traffic situation.

Secondly, the two hours in the morning rush period and three hours in the evening

rush period are divided into several 10-minute intervals, and the flat peak period is

divided into several 30-minute intervals. This is because in the morning-evening

rush period of every day, people plan the time more accurately than other periods,

and have higher requirements for the reachability of objects on the road network.

The smaller the time granularity, the more accurate the calculation result is. Fi-

nally, according to the principle of “time first, date late”, the IDs of all trajectories
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passing through a certain road segment will be stored in the corresponding date

and time information table. The specific information of the trajectory includes the

road segment it passes through, travel speed, and time stamps.

The temporal information is mainly used to calculate the reachability of the

road segment within an interval. We take the calculation of reachability from road

segment ra to rb as an example. Firstly, we locate the corresponding time period

of ra’s time table in the SRTR-tree according to the start segment ra and the start

time q.t, and then explore the trajectory information set of the time period to find

the set SRd of trajectories which will pass through rb later in the day for each day

d. Similarly, the trajectory set ERd passing through road segment rb during the

period [q.t, q.t+ q.l] of each day d can be found. Finally, by calculating the value

of |SRd ∩ ERd| / |SRd|, the reachability of day d from road segments ra to rb is

obtained. The final result of accessibility is the average of the calculated daily

accessibility.
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Figure 6: Inverted file

5. Query Processing Algorithm

5.1. The Pruning Strategy

Lemma 1. Given a query q= 〈q.s, q.d, q.t, q.l, q.r, k〉 and a segment R, R can be

safely pruned if Prob(q, R) < q.r, where Prob(q, R) is the reachability from q.s
to R within interval [q.t, q.t+ q.l]. In addition, the adjacent segment R′ of R that

has not been retrieved can also be safely pruned.

Proof. According to the SRTR-tree, for any object o on segment R, Prob(q, o) =
Prob(q, R). If Prob(q, R) < q.r, then Prob(q, o) < q.r, thus all objects on

segment R cannot meet the reachability requirement. As a result, R can be safely

pruned.

Because R′ is not encountered during the road network exploration from q.s to

R, the distance between R′ and the query q is farther than that between R and q, so

Prob(q, R′) ≤ Prob(q, R) < q.r. As a result, R′ can also be safely pruned.

Lemma 2. Given a query q=〈q.s, q.d, q.t, q.l, q.r, k〉 and a region E (or a segment

R), if q.d ∩ E.d = ∅ (or q.d ∩ R.d = ∅), region E (or segment R) can be safely

pruned.

Proof. For any object o in region E (or segment R), there is o.d ⊆ E.d (or o.d ⊆
R.d). If E.d∩ q.d = ∅ (or R.d∩ q.d = ∅), then o.d∩ q.d = ∅, which means that

object o is irrelevant to query keywords and can not be a result object.
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Figure 7: Temporal-information component

Lemma 3. Given a query q=〈q.s, q.d, q.t, q.l, q.r, k〉 and a segment R, if dR(q.s, R) >
dmax · [1−Rank(q, ok)] /β, segment R can be safely pruned, where dR(q.s, R)
is the road network distance between q and R, dmax is the maximum distance be-

tween any two points in the given road network, ok is the current kth result object,

and Rank(q, ok) is the comprehensive score of object ok. In addition, the adjacent

segment R′ of R that has not been retrieved can also be safely pruned.

Proof. If dR(q.s, R) > dmax · [1−Rank(q, ok)] /β, for any object o in segment

R, dR(q.s, o) > dmax · [1−Rank(q, ok)] /β. Through transformation, we have

Rank(q, o)=1−β ·dR(q.s, o) /dmax < 1−β ·(dmax · [1−Rank(q, ok)] /β) /dmax

= Rank(q, ok). Thus o can not be a result object and segment R can be safely

pruned. Similar to the proof of the second half of Lemma 1, the adjacent segment

R′ of R that has not been retrieved can also be safely pruned.

Lemma 4. Given a query q=〈q.s, q.d, q.t, q.l, q.r, k〉 and a segment R, if dR(q.s, R) >
vmax× q.l, the road segment R and the adjacent segments of R that have not been
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retrieved can be safely pruned, where vmax is the upper limit of the driving speed

for all road segments.

Proof. vmax×q.l is the farthest distance that can be traveled from the start location

q.s within the duration q.l. If the road network distance between q and R is greater

than vmax × q.l, the road segment R and its adjacent segments that have not been

retrieved are all unreachable, thus they can be safely pruned.

5.2. Basic Algorithm of RSKQ Query Processing

Algorithm 1 gives an SRTR-tree based method for calculating the reachability

from the query q to the object o within the duration q.l starting from q.t. As

mentioned earlier, the reachability from q to o is represented by that from the start

road segment r0 where the query q is located to the segment rb where the object

o is located. The SRTR-tree based reachability calculation method takes as inputs

an SRTR-tree index, a RSKQ query q = 〈q.s, q.d, q.t, q.l, q.r, k〉whose start road

segment is r0, and the segment rb, and outputs probability, the reachability value

which is between 0 to 1.

Firstly, variable probability is initialized to−∞, and trajectory sets trs and tre
are initialized to empty to keep the IDs of trajectories that pass through the start

road segment r0 at q.t and finally pass through rb, and the IDs of trajectories that

pass through r0 at the start time q.t and finally pass through rb within the interval

[q.t, q.t+ q.l], respectively (Line 4). m is the total number of days covered by the

trajectory data, and ∆t is the time granularity of the time interval containing the

start time q.t in the SRTR-tree.

Lines 5-22 give the processing steps for calculating reachability from the start

road segment r0 to the segment rb. In particular, we obtain the reachability for

each day d (1 ≤ d ≤ m), and take the average value as the final result.

For each day d, the trajectories in the Temporal-information component of

SRTR-tree are processed orderly as follows:

(1) Constructing set trs. If r0 6= rb, find the trajectory list of the time pe-

riod containing q.t in the Temporal-information component. Then, by checking

the specific information of trajectories, the IDs of the trajectories that will pass

through rb are added to set trs (Lines 6-7). Otherwise, add the IDs of all trajecto-

ries in this period to set trs (Lines 8-9).

(2) Constructing set tre. If q.l > ∆t, q.l is divided into several small time in-

tervals ∆t1,∆t2, ...,∆tn based on the time granularity of the Temporal-information

component (Lines 10-11). If query q and object o are on different road segments,

i.e., r0 6= rb, the IDs of the trajectories in set trs that pass through rb within any

17



Algorithm 1: Reachability calculation PROB(q, rb)

1 Input: the query q=〈q.s, q.d, q.t, q.l, q.r, k〉 (assume that the start road segment of

q is r0), the SRTR-tree, and the road segment rb;
2 Output: probability, the value of reachability from r0 to rb (also the reachability

from the query q to the object o) within q.l starting from q.t;
3 begin

4 float probability ← −∞, trs ← ∅, tre ← ∅;

5 for int d← 1 to m do

6 if r0 6= rb then

7 Add IDs of trajectories that pass through r0 at the start time q.t and

finally pass through rb into trs according to the Temporal-information

component in the SRTR-tree;

8 else

9 Add IDs of trajectories that pass through r0 at q.t into set trs

10 if q.l > ∆t then

11 q.l is divided into several small time intervals ∆t1,∆t2...∆tn;

12 if r0 6= rb then

13 tre =
∑n

c=1 trc (trc ⊆ trs);

14 else

15 tre =
n
∩
c=1

trc (trc ⊆ trs);

16 else

17 Add IDs of trajectories in trs that pass through rb within

[q.t, q.t+∆t] into set tre ;

18 if r0 6= rb then

19 Probd(r0, rb) =
|tre|
|trs|
× 100%;

20 else

21 Probd(r0, rb) = (1− |tre|
|trs|

)× 100%;

22 probability = Prob(r0, rb) =
∑m

d=1
Probd(r0,rb)
m

× 100%;

23 Return probability;

of those small time intervals are added to tre (Lines 12-13). Otherwise, set tre
consists of the IDs of the trajectories that do not leave the start segment r0 within

the duration q.l (Lines 14-15). If q.l ≤ ∆t, set tre keeps the IDs of the trajectories

in trs that pass through rb within the time period [q.t, q.t+∆t] (Lines 16-17).
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(3) Calculating Probd(r0, rb) for day d. If r0 and rb are not the same road

segment, Probd(r0, rb) = |tre| / |trs| × 100% according to Eqn.(3) (Lines 18-

19). Otherwise, Probd(r0, rb) = (1 − |tre| / |trs|) × 100% (Lines 20-21), be-

cause intuitively, the more trajectories that never leave the road segment r0 within

[q.t, q.t+ q.l], the lower the reachability of objects on other segments except r0.
Finally, the average value of daily accessibility will be calculated and returned

as probability (Lines 22-23).

Algorithm 2 illustrates the detailed implementation of handing RSKQ queries

based on the SRTR-tree (SRTR-tree method for short). It takes as inputs the

SRTR-tree index, a RSKQ query q = 〈q.s, q.d, q.t, q.l, q.r, k〉, and outputs the

result set R, where the number of result objects is between 0 to k. This approach

adopts the idea of road network expansion. Starting from the segment r0 where

q is located, it explores the adjacent road segments in ascending order of road

network distance until k result objects are found or all possible road segments are

explored.

Set R, queue NR, and pointer LNode, initialized to empty, are used to keep

at most k result objects, candidate road segments not visited, and the SRTR-tree

leaf node (i.e., the segment in the road network) being accessed, respectively.

In addition, a float Rank(q, ok), which is initialized to −∞, is used to keep the

comprehensive score of the current kth result object in set R (Line 4).

Firstly, it locates the start road segment r0 where the query q is located ac-

cording to its location information q.s (line 5). Lines 6-14 detail the processing

of spatio-textual objects on the start road segment r0. If r0.d ∩ q.d 6= ∅, there

is at least one object related to query keywords on segment r0, and the reacha-

bility Prob(q, r0) of the start segment r0 is calculated by calling algorithm 1. If

Prob(q, r0) < q.r, we believe that all segments on the road network are unreach-

able, so there are no result objects for the query q, and the query is terminated

(Lines 7-8). Otherwise, for each object o on segment r0, if it meets the query

keyword requirement, its comprehensive score will be calculated. If the score is

greater than that of the current kth result object in R , it will be added to the result

set R. The value of Rank(q, ok) is updated accordingly (Lines 10-12). When the

number of objects in R reaches k, the query terminates and k result objects are

returned (Lines 13-14).

Lines 15-26 give the processing steps for other road segments except for r0
and objects on them. Firstly, the adjacent road segments of r0 are pushed in-

to queue NR in ascending order of road network distance (Line 15). When

queue NR is not empty, its elements are processed orderly as follows: (1) the

head element of NR is popped out and pointed by LNode (Line 17). (2) N-
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Algorithm 2: Basic RSKQ Query Algorithm Based on Network Expansion

1 Input: the RSKQ query q=〈q.s, q.d, q.t, q.l, q.r, k〉, the SRTR-tree;

2 Output: the result set R;

3 begin

4 R← ∅, NR← ∅, LNode← ∅, Rank(q, ok)← −∞;

5 Locate the start road segment r0 where q is located;

6 if r0.d ∩ q.d 6= ∅ then

7 if Prob(q, r0) = PROB(q, r0) < q.l then

8 No result object exists, and the query terminates;

9 else

10 for each object o on the segment r0 do

11 if o.d ∩ q.d 6= ∅ && Rank(q, o) > Rank(q, ok) then

12 Put o into R, and update the value of Rank(q, ok)
accordingly;

13 if |R| = k then

14 The query terminates, and the result set R returns;

15 Push adjacent road segments of r0 into NR in ascending order of road

network distance;

16 while NR 6= ∅ do

17 LNode = Dequeue(NR);

18 if dR(q.s, LNode) < dmax [1−Rank(q, ok)] /β &&
dR(q.s, LNode) < vmax × q.l &&

Prob(q, LNode) = PROB(q, LNode) > q.r then

19 Enqueue un-visited adjacent road segments of LNode in ascending

order of road network distance;

20 if LNode.d ∩ q.d 6= ∅ then

21 for each object o′ on LNode do

22 if o′.d ∩ q.d 6= ∅ && Rank(q, o′) > Rank(q, ok) then

23 Put o′ into R, and update Rank(q, ok) accordingly;

24 if |R| = k then

25 The query terminates, and the result set R returns;

26 The result set R returns;
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ode LNode may contain result objects if it meets the following requirements: i)

dR(q.s, LNode) < dmax [1−Rank(q, ok−th)] /β and dR(q.s, LNode) < vmax ×
q.l, where dR(q.s, LNode) is the road network distance between q and LNode;

ii) Prob(q, LNode), the reachability from the query q to LNode calculated by

algorithm 1, is greater than q.r (Lines 17-18). Thus, the un-visited adjacent road

segments of LNode are also candidate road segments and are pushed into NR in

ascending order of road network distance (Line 19). (3) If LNode.d ∩ q.d 6= ∅,

there is at least one object on node LNode contains any query keyword and needs

to be processed (Line 20). Therefore, for each object o′ on the qualified LNode,

if o′.d ∩ q.d 6= ∅ and Rank(q, o′) > Rank(q, ok), we put the object o′ into R
and update Rank(q, ok) accordingly (Lines 21-23). If there are k objects in the

result set R, the query terminates (Lines 24-25). After retrieving and processing

all possible road segments, the result set R is obtained and returned (Line 26).

6. The Optimized Approach

6.1. Optimized Algorithm of Query Processing

The basic algorithm discussed in Section 5 can return the result set R, which

contains the Top-k result objects of the query. However, Algorithm 2 is based on

network expansion and will incur a lot of time overhead if the qualified objects

are distributed in a large area of the underlying road network. To this end, we

will propose an optimized query processing algorithm, which can prune irrelevant

regions and objects by using the SRTR-tree and corresponding pruning strategies,

so as to greatly improve the efficiency of query processing. Algorithm 3 gives

detail steps of the optimized RSKQ query processing method based on SRTR-

tree. Its input parameters and their meaning are similar to that of Algorithm 2,

and the result set R is output.

Set R, queue NR, and pointer TNode are initialized to empty, to keep result

objects, candidate areas and road segments on the road network, and an area or

a road segment being processed, respectively. Rank(q, ok) is initialized to −∞
(Line 4).

Firstly, the start road segment r0 where the query is located is identified (Line

5). The processing steps for objects on the start road segment r0 are the same as

Lines 6-14 of Algorithm 2. After that, if |R| < k, other areas and road segments

on the road network will be processed.

Specifically, the node containing the start segment r0 is pushed into the queue

NR (Line 7). When queue NR is not empty, its elements are processed orderly

as follows: (1) The head element of NR is popped out and pointed by TNode
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Algorithm 3: Optimized RSKQ Query Algorithm Based on SRTR-tree

1 Input: the RSKQ query q = 〈q.s, q.d, q.t, q.l, q.r, k〉, the SRTR-tree;

2 Output: the result set R;

3 begin

4 R← ∅, NR← ∅, TNode← ∅, Rank(q, ok)← −∞;

5 Locate the start road segment r0 where the query q is located according to q.s;

6 Same as lines 6-14 of Algorithm 2 ;

7 Push the node that r0 is contained into queue NR;

8 while NR 6= ∅ do

9 TNode = Dequeue(NR);

10 if TNode.d ∩ q.d 6= ∅ && dR(q.s, TNode) < vmax × q.l &&

dR(q.s, TNode) < dmax [1−Rank(q, ok)] /β then

11 if TNode is a non-leaf node then

12 Push un-visited child nodes of TNode into queue NR;

13 if TNode is not the root node then

14 Push parent node of TNode into queue NR;

15 else

16 for each un-visited segment r in TNode do

17 if r.d ∩ q.d 6= ∅ && Prob(q, r) > q.r then

18 for each object o′ on r do

19 if o′.d ∩ q.d 6= ∅ && Rank(q, o′) > Rank(q, ok)
then

20 Put o′ into R, and update Rank(q, ok)
accordingly;

21 if |R| = k then

22 The query terminates, and the result set R
returns;

23 else

24 if TNode is the root node then

25 The query terminates;

26 else

27 Push parent node of TNode into queue NR;

28 The result set R returns;
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(Line 9); (2) We first determine whether TNode meets the keyword and distance

constraint, which means that the area covered by TNode may contain result ob-

jects; (3) When the spatial and textual requirements are satisfied, i) if TNode is

a non-leaf node, its unvisited child nodes are pushed into queue NR for further

consideration (Lines 10-12). Then, we continue to determine whether TNode is

the root node of SRTR-tree. If not, its parent node is pushed into queue NR (Lines

13-14); ii) When TNode is a leaf node, the pruning strategies are used to deter-

mine whether the segments it contains are related to query q. For each segment

r, if it meets the query keyword and accessibility requirements, it may contain

result objects that need further processing (Line 16-17). For each object o′ on r,

if o′.d ∩ q.d 6= ∅ and Rank(q, o′) > Rank(q, ok), add o′ into the result set R and

update the value of Rank(q, ok) accordingly (Lines 18-20). If there are k objects

in the result set R, the query terminates (Lines 21-22). (4) When the keywords of

TNode are irrelevant to q.d or the distance between TNode and q is too far, all

objects on TNode are not considered. If TNode is the root node, the query will

be terminated (Lines 24-25); otherwise, the parent node of TNode will be pushed

into queue NR (Lines 26-27). After retrieving and processing all possible nodes,

the result set R is obtained and returned (Line 28).

6.2. Algorithm Complexity Analysis

Now we discuss the time complexity of our RSKQ processing algorithms.

As mentioned earlier, the reachability from the query q to the object o starting

from q.t in duration [q.t, q.t+q.l] is represented by that from the start road segment

r0 to the segment rb where o is located. According to Algorithm 1, for each day

d in historical trajectory data, the calculation of reachability includes three main

steps: (1) Construct set trs; (2) Construct set tre; (3) Calculate the reachability.

Let |TRstart| be the average number of trajectories that pass through the start

road segment r0 at q.t, |TRend| be the average number of trajectories that pass

through r0 at q.t and finally pass through rb, |TRtarget| be the average number of

trajectories that pass through r0 at q.t and pass through rb in duration [q.t, q.t+q, l],
m be the total number of days covered by the trajectory data. Therefore, it takes

O((|TRstartd |+ |TRendd |+ |TRtargetd |)×m) to calculate the reachability for m
days and takes the average reachability value as the reachability from q to o for

day d.

Our basic and optimized algorithms only take O((|TRstart|+|TRend|+|TRtarget|)×
m) to process RSKQ queries if the reachability of r0 is less than q.r. This is ob-

vious because if the reachability of the road section where q is located is lower
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than q.r, no object in the road network can meet the query reachability require-

ment. Otherwise, let |Svisit| be the average number of road segments to be re-

trieved for the query, |Sdiatance|, |Sreach|, |Skeyword| be the number of segments to

be retrieved that meet the distance, reachability, and keyword requirement, respec-

tively, |Sremain| be the number of segments not pruned by Lemmas 1, 2, 3, and

4, |ocand| be the average number of objects related to q.d in a segment R, where

q.d∩R.d 6= ∅. The time cost to judge whether a segment satisfy the distance and

keyword constraint is O(1) and O(|q.d| × |R.d|), respectively.

According to Algorithm 2, the cost of obtaining the segments that satisfy the

distance constraint is O(|Svisit|). On this basis, it takes O(|Sdistance|×(|TRstart|+
|TRend|+|TRtarget|)×m) to find reachable segments, and then O(|q.d|×|R.d|)×
|Sdiatance ∩ Sreach| is costed to get candidate segments. In addition, |Sremain| ×
|ocand| is for retrieving candidate objects. To sum up, the time complexity of the

basic algorithm is O(|Svisit| + |Sdistance| × (|TRstart| + |TRend| + |TRtarget|) ×
m+O(|q.d| × |R.d|)× |Sdiatance ∩ Sreach|+ |Sremain| × |ocand|).

For the optimized algorithm, we prune irrelevant nodes according to query

keyword and distance constraints, and on the basis retrieve the objects in leaf n-

odes that satisfy the keyword, distance, and reachability requirements. The time

complexity of the optimized algorithm is O(|Svisit| /δ + |Sdistance| /δ × |q.d| ×
|N.d| + |Sdiatance ∩ Skeyword| × (|TRstartd | + |TRendd | + |TRtargetd |) × m +
|Sremain| × |ocand|). Firstly, it takes O(|Svisit| /δ) to find the nodes that satisfy

the distance requirement and O(|Sdistance| /δ × |q.d| × |N.d|) to get the nodes re-

lated to query keywords, where |N.d| is the average number of distinct keywords

contained by each node. Then, O(|Sdiatance ∩ Skeyword|×(|TRstartd |+ |TRendd |+
|TRtargetd |)×m) is costed to find candidate segments and O(|Sremain| × |ocand|)
is used to retrieve the objects related to the query. As shown in algorithm 3, we

can prune the subtree rooted at TNode if TNode is irrelevant to q.d or is too far

from q. Therefore, compared with the basic algorithm, the optimized algorithm

needs to retrieve less segments and has lower time complexity.

7. Performance Evaluation

This section evaluates the performance of our methods for the Top-k spatial

keyword query based on reachability. It first describes the experimental setup in

Section 7.1, and then discusses the experimental results in Section 7.2.
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Table 2: Parameters Evaluated in the Experiments.

Parameter Values

number of query keywords (|q.d|) 1, 2, 3, 4

start time q.t (o’clock) 8, 12, 16, 20, 24

duration q.l (min) 10, 20, 30, 40

reachability q.r 0, 0.2, 0.4, 0.6, 0.8, 1

number of objects (|O|) 2, 4, 6, 8 (M)

number of results (k) 1, 5, 9, 13

parameter α 0, 0.3, 0.6, 0.9

parameter β 0, 0.3, 0.6, 0.9

7.1. Experimental Settings

We adopt three datasets in our experiments: (1) Road Network. The road

network of Shenzhen, China is extracted from OpenStreetMap. (2) Objects. The

synthetic object set includes a set of spatio-textual objects, and the locations of

objects are randomly distributed on the edges of the road network in Shenzhen.

The keywords of objects are obtained from OpenStreetMap. (3) Trajectories. We

use a trajectory dataset collected from taxis in Shenzhen. The dataset was col-

lected for 30 days in November 2014. These trajectories represent 21,385 unique

taxis in Shenzhen. It contains 407,040,083 GPS points of 21,385 taxis, with an

average sampling rate of 30 seconds.

To our best knowledge, there is no other work on dealing with RSKQ queries

up to now. IR-tree based methods are often used to solve traditional Top-k spa-

tial keyword queries, and the single-source maximum boundary search algorithm

(SQMB) and the trace back search algorithm (TBS) work together to search the

reachable area. Therefore, we combine the above three methods as the compar-

ison baseline method (called “IR-tree+SQMB+TBS”) to verify the performance

of the two methods based on SRTR-tree index (called Basic method and Opti-

mized method respectively). The baseline method first finds reachable segments

under given conditions, and then finds the Top-k spatio-textual objects that satisfy

spatial and textual constraints, which are located on these candidate segments.

The following experiments verify the performance of the three methods by

varying the start time, the number of keywords, the query duration, the number of

spatio-textual objects, the number of results, reachability, parameters α and β, as

shown in Table 2.
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Figure 8: The effect of |q.d|

7.2. Experimental Results

7.2.1. Varying the number of keywords

As shown in Figure 8, the processing time of these three methods increases

with the increment of the query keyword number. This is because as the num-

ber of keywords increases, candidate regions or road segments in the IR-tree and

SRTR-tree increase, and correspondingly more time is required to calculate the

comprehensive score of the candidate objects. However, the processing time of

IR-tree+SQMB+TBS is much higher than our methods, because no matter how

the number of query keywords changes, it has to obtain reachable road segments

by the SQMB+TBS algorithm first. Our optimized method prunes irrelevant areas

and road segments faster, which is superior to the basic method.

7.2.2. Varying the query start time

The change of query start time has no effect on the traditional Top-k spatial

keyword query, and it mainly affects the efficiency of reachability calculation.

We set the same time granularity as the SRTR-tree for the index structure of the

reachable area computing algorithm “SQMB+TBS” according to rush periods and

other periods of a day. From Figure 9, we observe that the running time of “IR-

tree+SQMB+TBS” changes with the query start time. The running time around 8
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Figure 9: The effect of q.t

am and 8 pm is significantly lower than that in other periods, mainly due to traffic

congestion during rush hours. When the query start time is set to 4 pm or 12

pm, the processing time is basically the same. The better the traffic condition, the

larger the reachable area, and the longer the calculation time of reachability. Our

basic method shows the same change trend as the “IR-tree+SQMB+TBS” method,

but the change range is small. For the optimized method, it first prunes irrelevant

areas according to query keywords, and has less reachability calculation, so its

running time is shorter than the other two methods.

7.2.3. Varying the query duration

To evaluate the effect of the query duration q.l on the processing time of the

baseline method and our two algorithms, we increase q.l from 10 to 40 minutes.

As shown in Figure 9, the running cost of these methods increases with the in-

crease of q.l.
For “IR-tree+SQMB+TBS”, the reason lies in two aspects. Firstly, the “SQM-

B+TBS” algorithm can skip the area near the query starting position q.s, and

start the search from the road segments on the farthest boundary of the maximum

boundary region, which is the area that can be reached within the query duration

q.l starting from q.s. Its processing time increases as q.l increases, because of
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Figure 10: The effect of q.l

the expansion of the maximum boundary region. At the same time, for the IR-tree

based method of solving spatial keyword queries, there are more candidate objects

to be retrieved in a larger reachable area, so the running time increases. When q.l
increases, the processing time of our basic method increases due to more reacha-

bility calculations of road segments. In the optimized method, the priority use of

pruning techniques based on query keywords and road network distance reduces

the reachability calculation of irrelevant areas and segments, thus the processing

time is the shortest.

7.2.4. Varying the reachability

The parameter q.r is the lower limit value of reachable probability for result

objects of RSKQ queries. We fix other parameters to study how different reach-

ability q.r influence the performance of our query processing algorithm, as shown

in Figure 11.

The “SQMB+TBS” algorithm finds the furthest and closest road segments that

can be reached based on the maximum and minimum speed in all directions, so

the query processing time is less dependent on the reachability q.r. As the reach-

ability increases, the number of reachable segments reduces, and the number of

candidate objects decreases, which shortens the query processing time. Our basic
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Figure 11: The effect of q.r

algorithm starts from the segment r0 where the query q is located and explores

adjacent reachable road segments in ascending order of road network distance to

find result objects. When q.r is 0, the number of road segments to be explored

is the largest and the processing time is the longest. When the reachability q.r
increases, the processing time decreases continuously. For the optimized method,

fewer reachable road segments lead to fewer candidates and its processing time is

slightly reduced, which is always less than that of the other two methods.

7.2.5. Varying the number of objects

As shown in Figure 12, when the number of spatio-textual objects in the sys-

tem increases, the running time of the baseline method increases. Although the

increase in the number of objects hardly affects the processing time of reachability

calculation, it takes more time to retrieve candidate objects. For our basic method,

when the number of spatio-textual objects increases, they are more densely dis-

tributed in the road network, which leads to fewer road segments to be retrieved,

so the processing time is reduced. Although the processing time of the optimized

method increases slightly with the increase of objects, it is still superior to other

methods.

29



2 4 6 8
0

10

20

30

Pr
oc

es
sin

g 
Ti

m
e 

(s
)

Number of  Objects (M)

 IR-tree+SQMB+TBS
 Basic method
 Optimized method

Figure 12: The effect of |O|

7.2.6. Varying the number of query results

We study the impact of varying k (i.e., the number of result objects requested)

with the results plotted in Figure 13. For the SQMB+TBS algorithm that han-

dles reachability computation, the change of k does not affect its processing time.

The increase of k makes the IR-tree based method has to retrieve more objects,

but the time required for the spatial keyword query is several orders of magni-

tude less than that required for reachability calculation. Therefore, the processing

time of the baseline method changes little with the change of k value. For our

methods, the more the number of results, the more sections to be retrieved and the

greater the amount of reachability calculation, which makes the processing time

longer. But our methods are still superior to the baseline method. The optimized

method first prunes the road segments irrelevant to the query keywords to reduce

the reachability calculation, so as to shorten the query processing time.

7.2.7. Varying parameter α

In this experiment, we evaluate the impact of the query preference parameter

α as illustrated in Figure 14. The parameter α is used to measure the importance

of reachability in the scoring function. When α is 0, it means that only the road

network distance between the query q and the object o is concerned, and whether
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Figure 13: The effect of k

0.0 0.3 0.6 0.9
0

10

20

30

Pr
oc

es
sin

g 
Ti

m
e 

(s
)

α

 IR-tree+SQMB+TBS
 Basic method
 Optimized method

Figure 14: The effect of α
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Figure 15: The effect of β

the object can be reached within the duration q.l is not concerned. In this case,

the RSKQ query is equivalent to the traditional Top-k spatial keyword query, and

the processing time of three methods is almost the same. When α is greater than

0, the accessibility of objects should be considered in query processing, and the

processing time is much higher than the traditional Top-k spatial keyword query.

However, with the continuous increase of α, the increase of processing time tends

to be gentle.

7.2.8. Varying parameter β

Next, the effect of varying the query preference parameter β on the perfor-

mance of these three methods is evaluated. Figure 15 shows that the processing

time of the methods does not decrease very much with increasing β. When β is 0,

only the reachability from query q to object o is concerned, without considering

the distance between q and o. As β gradually increases, the weight of the spatial

proximity between the query q and the object o increases. More areas and road

segments on the road network which are far from the query q are pruned and the

processing time decreases.
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8. Conclusion

This paper addresses the issue of processing the Top-k spatial keyword query

based on reachability (RSKQ). The traditional spatial keyword query only consid-

ers the text similarity and spatial proximity between the query and spatio-textual

objects. The RSKQ query introduces object accessibility into traditional spatial

keyword queries to determine whether the result object can be reached within a

given time interval from the start position and time point of a given query, so as

to improve the effectiveness of the query result. To solve RSKQ queries, an ef-

ficient index called SRTR-tree is designed. The SRTR-tree effectively organizes

the information of the road network, trajectories, and spatio-textual objects on the

road network. Among them, the road network and trajectory information are used

to calculate reachability. Moreover, several lemmas are proposed to prune huge

amounts of irrelevant spatial objects for queries. Based on the SRTR-tree, we

propose two algorithms and demonstrate their efficiency through extensive exper-

iments. The results show that the proposed methods are feasible and the optimized

method is more efficient. In the future, we will introduce accessibility into oth-

er SKQ queries, such as mobile SkQ queries, direction-aware SKQ queris, and

collective SKQ queries.
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[16] Renê Rodrigues Veloso, Loı̈c Cerf, Wagner Meira Jr, and Mohammed J Za-

ki. Reachability queries in very large graphs: A fast refined online search

approach. In EDBT, pages 511–522. Citeseer, 2014.

[17] Junfeng Zhou, Shijie Zhou, Jeffrey Xu Yu, Hao Wei, Ziyang Chen, and Xian

Tang. Dag reduction: Fast answering reachability queries. In Proceedings

of the 2017 ACM International Conference on Management of Data, pages

375–390, 2017.

[18] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. Reachability querying:

An independent permutation labeling approach. Proceedings of the VLDB

Endowment, 7(12):1191–1202, 2014.

[19] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. Reachability querying: can

it be even faster? IEEE Transactions on Knowledge and Data Engineering,

29(3):683–697, 2016.

[20] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Y. Ma. Hybrid index structures

for location-based web search. ACM, 2005.

[21] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the

top-k most relevant spatial web objects. Proc. VLDB Endow., 2(1):337–348,

2009.

36



[22] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S Jensen. Joint

top-k spatial keyword query processing. IEEE Transactions on Knowledge

and Data Engineering, 24(10):1889–1903, 2011.

[23] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on

spatial databases. In 2008 IEEE 24th International Conference on Data

Engineering, pages 656–665. IEEE, 2008.

[24] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil
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