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Abstract 14 

Background:  15 

Several studies have shown a substantial impact of Rotavirus (RV) vaccination on the 16 

burden of RV and all-cause acute gastroenteritis (AGE). However, the results of most 17 

impact studies could be confused by a dynamic and complex space-time process. 18 

Therefore, there is a need to analyse the impact of RV vaccination on RV and AGE 19 
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hospitalisations in a space-time framework to detect geographical-time patterns while 20 

avoiding the potential confusion caused by population inequalities in the impact 21 

estimations. 22 

Methods: 23 

 A retrospective population-based study using real-world data from the Valencia Region 24 

was performed among children aged less than 3 years old in the period 2005-2016. A 25 

Bayesian spatio-temporal model was constructed to analyse RV and AGE 26 

hospitalisations and to estimate the vaccination impact measured in averted 27 

hospitalisations.  28 

 Results:  We found important spatio-temporal patterns in RV and AGE 29 

hospitalisations, RV vaccination coverage and in their associated adverted 30 

hospitalisations.  Overall, ~1866 hospital admissions for RV were averted by RV 31 

vaccination during 2007–2016. Despite the low-medium vaccine coverage (~50%) in 32 

2015-2016, relevant 36% and 20% reductions were estimated in RV and AGE 33 

hospitalisations respectively. 34 

Conclusions: The introduction of the RV vaccines has substantially reduced the 35 

number of RV hospitalisations, averting ~1866 admissions during 2007-2016 which 36 
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were space and time dependent. This study improves the methodologies commonly 37 

used to estimate the RV vaccine impact and their interpretation. 38 

Keywords: Rotavirus, vaccine impact, spatio-temporal, real-world data, Bayesian model 39 

Background 40 

Rotavirus (RV) is the leading cause of gastroenteritis in children <5 years of age 41 

worldwide.(1) Before RV vaccines (RV1; Rotarix® and RV5; RotaTeq®) were licensed 42 

in 2006, RV infection caused approximately 138 million episodes of acute 43 

gastroenteritis (AGE) per year (~2 million hospitalisations), of which ~3.6 million 44 

(~87,000 hospitalisations) occurred in Europe.(2)  45 

The World Health Organization (WHO) recommended including RV vaccination 46 

worldwide. Currently, 98 countries have introduced RV vaccines into their national 47 

immunisation programs.(3) This measure has had a major impact on the burden of 48 

AGE, decreasing RV outpatient visits and hospitalisations by 60%-90% in Europe. (4) 49 

(5) (6) (7) 50 

Although in Spain RV vaccines are recommended by the Spanish Paediatric 51 

Association but not funded by the National Health System (NHS), several post-52 

authorization studies have also shown their effectiveness and impact on AGE and RV-53 

AGE hospitalisations. (8) (9) (10) (11) (12) The Valencia Region of Spain could show a 54 
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specific coverage-related impact of RV vaccines on AGE and RV-AGE hospitalisations 55 

and costs, despite the low-medium vaccine coverage (40%-50%).(8)  56 

Following WHO recommendations, most post-authorization studies usually estimate 57 

impact of the RV vaccine by comparing trends of RV or AGE hospitalisations in pre- 58 

and post- vaccination periods. (7) (13) (14) However, this ecological design is highly 59 

prone to bias and confounding. (15) (16) (17)  60 

In fact, a number of key studies have shown that the spread of infectious diseases 61 

significantly depends on spatial features of the population. (18) Consequently, 62 

epidemiological studies are often confounded by complex and dynamic spatio-temporal 63 

processes. (19), (18) RV vaccination and hospitalisations could, therefore, vary from 64 

time to time and between places for different reasons, including complex interaction of 65 

population demographics, socioeconomic inequalities, environmental factors, 66 

circulation of RV strains and their interactions across space and time. Spatial variation 67 

in RV vaccination coverage (20) and in RV hospitalisations has been previously shown 68 

in the USA, Germany, Brazil, New Zealand. (21) (22) (23) 69 

A previous study in Spain showed strong variability in both vaccination coverage and 70 

RV/AGE hospitalisation rates over time and between health departments. (8) Thus, it 71 

would be important to evaluate variations in the RV/AGE hospitalisation risk and the 72 
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impact of RV vaccination in a space-time framework to detect geographical-time 73 

patterns while avoiding the potential confusion caused by population inequalities in the 74 

impact estimates. (8) (24) (18) (12) (7) (22) 75 

Our aim is to assess the spatio-temporal impact of RV vaccines on RV and AGE-76 

associated hospitalisations in children under 3 years of age in the Valencia Region 77 

using real-world data. In this study, real space-time rotavirus vaccination impact is 78 

predicted in terms of number of averted hospitalisations. 79 

Methods 80 

Setting and study population 81 

This is a retrospective, population-based study using real-world data from the Valencia 82 

Region, including all children less than 3 years old living in the Region between 2005 83 

and 2016. 84 

The Valencia Region of Spain has approximately 4 900 000 inhabitants. Of them, 85 

around 3% (~150 000 children) are younger than 3 years old. The regional health 86 

system is divided into 34 public hospitals (24 of them with paediatric emergency rooms) 87 

and 241 health care districts structured into 24 health departments. As RV vaccines are 88 

administered to infants from six weeks of age, children with the first dose of RV vaccine 89 

recorded before six weeks of age were excluded from the study.  90 
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Data sources 91 

The Valencia Region has a set of multiple electronic databases collecting health and 92 

sociodemographic data from 98% of the population (25). The population information 93 

system (SIP) was used to determine the population. Hospitalisations were collected 94 

from the minimum basic data set (MBDS). The vaccine information system (SIV) was 95 

used to obtain the vaccinated population; this source captures the immunisation history 96 

of each individual. Population, hospitalisation, and vaccination data were linked at 97 

individual level through a unique personal identification number. (26) 98 

Outcomes and exposure 99 

Our outcomes were identified from MBDS through a search of the following ICD-codes: 100 

(a) RV hospitalisations: hospitalisations with a discharge diagnosis of enteritis due to 101 

rotavirus (ICD-9-CM code 008.61, ICD-10 A08.0) in any diagnosis position. (b) AGE 102 

hospitalisations: hospitalisation with a discharge diagnosis of gastroenteritis-associated 103 

episode (ICD-9-CM codes 001-009, 558.9, 787.91; ICD-10 codes A00 – A09, K52.XX, 104 

R19.7) in any diagnosis position. 105 

Vaccination status was assessed as a time-varying variable. Children were considered 106 

vaccinated from the date of the first dose of RV5 or RV1 and unvaccinated before that 107 
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date. Children with no recorded rotavirus vaccination in SIV were considered as 108 

unvaccinated. 109 

Spatio-temporal analyses 110 

The database for the analysis gathered population and hospitalisations aggregated by 111 

vaccination status, sex, age, health department, biennial periods, and health care 112 

district.  113 

A Bayesian spatio-temporal ecological model was constructed to analyse RV and AGE 114 

hospitalisation rates and to estimate the impact of vaccination on hospitalisations. 115 

The model assumed that the number of hospitalisations (for RV or AGE) in the different 116 

observation units, 𝑌 = {𝑦1, … , 𝑦𝑣𝑠𝑎𝑑𝑡𝑚, … , 𝑦𝑛}, followed a binomial distribution, where “v” 117 

indexes the two vaccination status, “s” the two sexes, “a” the 3 age groups (0, 1 and 2 118 

years old), “d” the 24 health departments, “t” the 6 (biennial) periods, and “m” the 241 119 

health districts. From now on, we will index 𝑦 by 𝑦𝑖 instead of 𝑦𝑣𝑠𝑎𝑑𝑡𝑚 where i spans all 120 

the values of the sub-indexes v, s, a, d, t and m to make the notation shorter. Thus, the 121 

model assumed proceeds as follows: 122 

𝑦𝑖~ 𝐵𝑖𝑛(𝜃𝑖, 𝑁𝑖),     𝑖 = 1, … , 15,718 123 

 Where 𝜃𝑖 is the hospitalisation rate and 𝑁𝑖 the population for each observation unit. 𝜃𝑖 124 

was modelled considering the logit link as follows: 125 
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log (
𝜃𝑖

1 − 𝜃𝑖
) = log (

𝛿𝑚

1 − 𝛿𝑚
) + 𝛽0 + ∑ 𝛽𝑗

3

𝑗=1

𝑋𝑗 + 𝛼𝑑 + 𝑢𝑡 + 𝑣𝑡𝑚 126 

where log (
𝛿𝑚

1−𝛿𝑚
) acts as an offset term to control for the hospital attraction of each 127 

health district (people who live near the hospital are more frequently admitted to it than 128 

those who live far from hospital, (see additional file 1)), where 𝛿𝑚 is the estimated 129 

hospitalisation rate for all causes measured in each health care district (supplemental 130 

digital content 2). This rate was estimated using the spatial Besag-York-Mollié model 131 

(27) on hospital admissions for any cause. This offset makes that if no other term in the 132 

linear predictor had an effect, the corresponding risk, 𝜃𝑖, would be that corresponding 133 

to general hospital admissions for that health care district. 𝛽0 is the intercept term and 134 

𝛽𝑗 are the parameters associated with the categories of the covariates, 𝑋𝑗: vaccination 135 

status, sex and age. The health department random effect, 𝛼𝑑, was considered to fit the 136 

differences in admission policies between hospitals. 𝛼𝑑 was considered to have the 137 

following distribution 138 

𝛼𝑑  ~ 𝑁(0, 𝜎2), 139 

where 𝜎 is also estimated within the model. No spatial dependence was considered for 140 

this term because it is expected to fit the admission policies of each hospital, which 141 

should not follow any spatial pattern. The biennial period effect, 𝑢𝑡, was introduced to 142 

control the expected temporal variability in RV and AGE incidence. It was modelled as 143 
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a random effect considering correlation between adjacent periods by a first order 144 

random walk modelled as an intrinsic conditional autoregressive (ICAR) prior 145 

distribution. Besides the temporal and spatial (health department) terms already 146 

mentioned, it was considered appropriate to include a spatio-temporal term that could 147 

jointly vary in time and space. The random effect 𝑣𝑡𝑚 reproduces this effect. This term 148 

is assumed to follow a spatio-temporal autoregressive model. (28) Thus, the spatio-149 

temporal effect for the first period was formulated as 150 

𝑣1𝑚 = (1 − 𝜌2)−1/2𝑊1𝑚 151 

 and for the following periods  152 

𝑣𝑡𝑚 = 𝜌𝑣𝑡−1 𝑚 + 𝑊𝑡𝑚          𝑡 = 2, … , 6, 153 

where 𝑊𝑡𝑚 follows a spatial Besag, York and Molliè model (27) for each time period t 154 

inducing spatial dependence on 𝑣𝑡 𝑚. On the other hand, 𝜌 controls the temporal 155 

dependence in  𝑣𝑡 𝑚. This parameter is assumed to follow a uniform prior distribution 156 

between -1 and 1. Non-informative flat prior distributions were considered for 𝛽𝑗  (  𝑗 =157 

0, . . ,3) parameters. Uniform prior distributions between 0 and 5 were considered for the 158 

standard deviations of all the random effects in the model. 159 
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Predictive distributions were used to estimate the number of rotavirus hospitalisations 160 

averted in order to assess the impact of rotavirus vaccination by health care district and 161 

time period. The number of cases averted by vaccination was calculated as the 162 

difference between the hospitalisations predicted by the adjusted model without the 163 

vaccine effect and the hospitalisations predicted by the model explained above. 164 

R (Foundation for Statistical Computing, Vienna, Austria) and WinBUGS (Cambridge 165 

Biostatistics Unit and the Imperial College School of Medicine, London) software were 166 

used to perform the analysis using MCMC methods. A total of 2000 initial iterations 167 

were used as burn-in period of the MCMC. Subsequently, 10 000 iterations were run 168 

and only 1 in every 10 of them was saved. Three chains were simulated in total. MCMC 169 

convergence was assessed by visual inspection of history plots of posterior samples, 170 

the Brooks-Gelman-Rubin scale reduction factor, and the effective sample size 171 

implemented in the R2WinBUGS package of R. All statistical analyses conducted for 172 

this study are completely reproducible, and the data and the R code used for statistical 173 

analysis can be found as supplemental digital content to the paper. 174 

Results 175 

The study included 721 471 children < 3 years old. Of these, 189 247 were vaccinated 176 

against RV. There were a total of 17,482 AGE hospitalisations, of which 28% (4871) 177 



11 
  

were codified as RV. AGE and RV hospitalisations accounted for 8.4% and 2.4% 178 

respectively of all hospitalisations (207 014 hospitalisations for any cause). Vaccinated 179 

children accounted for 2248 AGE and 200 RV admissions. 180 

Spatio-temporal hospitalisation rate and relative risk 181 

Risk of RV and AGE hospitalisations decreased with the increase of rotavirus 182 

vaccination coverage (Table 1). RV and AGE hospitalisation rates were 86% (95% CI: 183 

84-88) and 47% (95% CI: 45-50) lower in vaccinees, respectively. Risk of RV and AGE 184 

hospitalisation also decreased with increasing age, by 72% (95% CI: 70-74) and 58% 185 

(95% CI: 56-60) respectively in two-year-old children as compared to those aged less 186 

than one year old. Risk of RV and AGE-hospitalisation was respectively 19% (95% CI: 187 

15-23) and 15% (95% CI: 12-18) lower in girls as compared to boys. A strong variability 188 

in both RV and AGE hospitalisation rates was found between health departments 189 

(supplemental material 2). Risk of AGE hospitalisation showed a downward trend 190 

during the study (supplemental digital content 2), while the RV rate only declined 191 

between 2005 and 2010. Once controlled the vaccine effect, RV peaked in 2013-2014, 192 

with an 8% (95% CI: 6-14) higher rate than the average risk for the whole study period 193 

(supplemental digital content 2). Additional structured spatio-temporal interaction was 194 
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found for both outcomes. The spatio-temporal effect maps (supplemental digital 195 

content 2) showed spatial clusters after adjusting for confounders.  196 

Spatio-temporal RV vaccination coverage  197 

Rotavirus vaccination coverage varied considerably across the Valencia Region during 198 

the study period, with pockets of undervaccination in many health care districts. 199 

Vaccination rates increased over the years in the districts. In 2016, 50% of the health 200 

care districts had a coverage higher than 53% (IQR: 35%-64%) (Figure1). The overall 201 

RV vaccination coverage increased from 0% to 49% during the study period.  202 

Spatio-temporal RV vaccination impact 203 

The number of hospitalisations averted by vaccination was coverage-dependent (Table 204 

2), with impact of vaccination increasing as the number of vaccinees increased. With 205 

189 247 children vaccinated, 1142 (95% CI: 1069-1222) RV and 1866 (95% CI: 1736-206 

1992) AGE hospitalisations were averted. This represented overall reductions of 19.9 207 

% (95% CI: 19.7-20.2) in RV hospitalisations and 10.2% (95% CI: 9.7-10.5) in AGE 208 

hospitalisations for the whole period. The number of hospitalisations averted increased 209 

over time with increasing coverage. In 2015-2016, with a vaccination coverage of 210 

approximately 50%, there were reductions of 35.6% (95% CI: 35.2-36.1) and 19.7 % 211 

(95% CI: 19.0-20.3) in RV and AGE hospitalisations respectively (Table 2). Maps in 212 
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Figure 2 show the distribution of RV and AGE hospitalisations averted by health care 213 

district over time. The impact on RV and AGE hospitalisations was greater in health 214 

care districts with higher coverage. Assuming 100% RV vaccine coverage, RV 215 

hospitalisations would be expected to be reduced by 85.8% (95% CI: 84.8-86.5) or 216 

4,920 (95% CI: 4602-5221) hospitalisations in the case of RV, and AGE 217 

hospitalisations by 46.9% (95% CI: 45.1-48.4) or 8,606 (95% CI: 8056-9148) 218 

hospitalisations as compared to admissions if no child had been vaccinated during the 219 

study period. 220 

Discussion 221 

This is the first study estimating the spatio-temporal impact of RV vaccination on RV 222 

and AGE hospitalisations. The number of averted hospitalisations by RV vaccination 223 

was increasing in space and time in the Valencia Region during the study period in 224 

children <3 years. Overall, ~1866 hospital admissions for RV were averted during 225 

2007–2016. Despite the low-medium vaccine coverage (~50%) in 2015-2016, relevant 226 

36% and 20% reductions were estimated in RV and AGE hospitalisations respectively. 227 

It should be noted that ~8606 hospitalisations would have possibly been averted during 228 

the whole study period if all children had been vaccinated. Direct benefits of 229 

vaccination were observed in the reduction of hospitalisation rates for RV (86%) and 230 
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GEA (47%) in vaccinated children. These results are in accordance with the vaccine 231 

effectiveness estimated in the Valencia Region previously (9). Regarding the spatio-232 

temporal results, substantial variability was seen in RV vaccine coverage and 233 

hospitalisation risk for RV and AGE among health departments and health care 234 

districts. Spatio-temporal clusters were clearly distinguished. These patterns could be 235 

explained by climatic, environmental, sociodemographic or economic differences, or by 236 

the different admission policies of health departments. 237 

Although other impact studies reported relevant reductions in both RV and AGE 238 

hospitalisations in children <5 years following RV vaccination (4), (6), (6) (29), (30), (7), 239 

(13) , (14), (31), only two of them showed a coverage-dependent response (8), (32). 240 

Moreover, many of them were time-trend ecological studies comparing hospitalisation 241 

data in pre and post-vaccine populations and a historical pre-vaccine group (7), (13) , 242 

(14), (31). Even though this is the most commonly used method, it has been associated 243 

with potential bias (15), (16). The main limitation of this method is that the effect 244 

measured can be due to other factors not related to the introduction of the vaccine 245 

such as RV seasonality, changes in reporting, in medical practices, in health seeking 246 

behaviour, etc (33). Besides, vaccine impact based on hospitalisation data is prone to 247 

confounding, because hospitalisations rates are closely related to changes in the 248 
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quality, access and use of the health care system which often occur simultaneously 249 

with introduction of new vaccines (17).  250 

On the other hand, few spatial and spatio-temporal models have studied RV and AGE 251 

dynamics and none of them included the vaccination status of the population. Spatial 252 

variation in RV hospitalisations explained by sociodemographic characteristics of the 253 

population has previously been shown in studies conducted in Germany and New 254 

Zealand (21), (22). Other studies in the USA and Brazil found that spatio-temporal 255 

variation in birth rate can lead to secular changes in the RV pattern (34), (23). Finally, a 256 

study conducted in Bhutan showed that rainfall and temperature explain much of the 257 

spatio-temporal dynamics of diarrhoea (possibly due to RV infection in approximately 258 

23% of cases) (29). The studies developed in Germany and New Zealand were based 259 

in aggregated data over time, however, caution should be taken when interpreting this 260 

analysis because the area-specific risk may be overestimated or underestimated. 261 

Furthermore, none of these standard models considered spatio-temporal dependence; 262 

however, what occurs in a health care district is intimately related to what occurs in the 263 

adjacent one and is also related to what happened previously (35). 264 

The present study developed a sophisticated model to analyse the impact of RV 265 

vaccination on RV and AGE hospitalisations in a space-time framework. This approach 266 
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improves the commonly used methodologies to estimate the RV vaccine impact and its 267 

interpretation. The spatio-temporal model used avoided the potential confusion caused 268 

by population inequalities in the vaccine effect estimation and, consequently, in the 269 

impact estimations, since these are directly attributed to vaccination. The use of 270 

models with temporal structure to smooth out the rates is a good solution to estimate 271 

unbiased results (36). For this reason, our analysis provided the change over time in 272 

the hospitalisation risk patterns in the Valencia Region by health care district and time 273 

period. In addition, secular trends, variability among departments, and hospital 274 

attraction were also contemplated to avoid confusion due to possible changes in 275 

hospitalisations-admission policies as previously seen (37). Covariates adjustment 276 

helped us to show a spatio-temporal effect potentially representative of the 277 

transmission dynamics of the RV disease. In addition, the Bayesian approach allowed 278 

us to adequately capture dependencies among health areas and the potential 279 

relationship of data over time that cannot be easily modelled in classical statistics (38).  280 

Nevertheless, some limitations of our study should be highlighted.  281 

First of all, RV vaccines are not included in the official immunisation schedule, which 282 

may suggest differences between rotavirus vaccinees and non-vaccinees in terms of 283 

socioeconomic conditions and health-seeking behaviour. Therefore, socioeconomic 284 
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factors might be an important confounder of our results and admissions at private 285 

hospitals should also be considered in future studies.  286 

Secondly, although the positive predictive value of the rotavirus ICD-9-CM code 287 

identifying acute gastroenteritis attributable to rotavirus using MBDS resulted in 90% 288 

(9), different immunochromatographic methods with different sensitivities and 289 

specificities could have been used in the different hospitals during the study period 290 

(39). In fact, ~40% of underdiagnosis in RV hospitalisations was detected in the 291 

present study.  292 

Finally, it should be noted that both vaccines (RV1 and RV5) were used concurrently 293 

until 2010. But, RV5 was the only rotavirus vaccine available in Spain between 2010 294 

and 2016. Therefore, results will have a limited value for estimating the impact of RV1.  295 

Conclusions 296 

In summary, the introduction of the RV vaccines has substantially reduced the number 297 

of RV hospitalisations. The sophisticated spatio-temporal analysis allows us to show 298 

the impact of different vaccine coverage rates in terms of avoided hospitalisations in a 299 

geographical-time framework. Interestingly, our study predicted that ~8606 RV 300 

hospitalisations could have been adverted with all children vaccinated. This study 301 

improves the methodologies commonly used to estimate the RV vaccine impact and its 302 
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interpretation. The spatio-temporal model avoided the potential confusion caused by 303 

population inequalities in the impact estimations. It also detects spatial clusters of the 304 

RV and AGE-hospitalisation risk attributable to common environmental, demographical, 305 

or cultural effects shared by neighboring regions. 306 
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 Table 1: Model coefficients, Odds Ratio (OR) and 95% credibility interval (CI). 462 

 463 

 
RV AGE 

 

Coefficient, 

posterior mean (95% CI) 
OR (95% CI) 

Coefficient, 

posterior mean (95% CI) 
OR (95% CI) 

Intercept -4.88(-5.01,-4.76)  -3.78(-3.88,-3.67) 

              Vaccination Status      Unvaccinated 0 1 0 1 

Vaccinated -1.96(-2.11,-1.81) 0.14(0.12,0.16) -0.64(-0.68,-0.59) 0.53(0.5,0.55) 

Age                0 years 0 1 0 1 

1 year -0.24(-0.3,-0.18) 0.79(0.74,0.84) -0.16(-0.19,-0.13) 0.85(0.82,0.88) 

2 years -1.28(-1.36,-1.2) 0.28(0.26,0.3) -0.87(-0.91,-0.83) 0.42(0.4,0.44) 

Sex                    Male 0 1 0 1 

Female -0.21(-0.27,-0.16) 0.81(0.77,0.85) -0.16(-0.2,-0.13) 0.85(0.82,0.88) 

Heterogeneity (random effect) 
    

Health department (unstructured) 0.28(0.18,0.43)  0.22(0.15,0.32)  

Health care district (unstructured) 0.08(0,0.18)  0.05(0,0.11)  

Health care district (structured) 0.38(0.3,0.47)  0.32(0.27,0.37)  

Period (structured) 0.19(0.08,0.46)  0.17(0.08,0.39)  

ρ 0.39(0.15,0.6)  0.36(0.21,0.5) 
 

See additional file 2: OR and its 95% CI for period, health department, and spatio-temporal effects. 464 
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Table 2:  Impact of rotavirus vaccination on RV and AGE hospitalisations by period. Percentage and number of hospitalisations averted 465 

estimated by the model. 466 

 
  

 
%, N (95% CI ) 

Period 
Children 

Vaccinated (N) 

Unvaccinated (N) 

 

RV Vaccine 

coverage (%) 
RV Hospitalisations averted AGE Hospitalisations averted 

2005-2006 149 235 322 0.1 0%, 0(0, 0) 0%, 1(1, 1) 

2007-2008 28 202 229 239 11.0 9%, 92(84, 100) 5%, 169(157, 180) 

2009-2010 61 577 198 730 23.7 23%, 211(193, 230) 13%, 390(361, 420) 

2011-2012 86 630 163 169 34.7 24%, 213(193, 232) 13%, 359(330, 387) 

2013-2014 86 141 144 928 37.3 30%, 303(274, 332) 16%, 446(412, 482) 

2015-2016 106 331 112 376 48.6 36%, 323(295, 356) 20%, 502(463, 543) 
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 467 

Figure 1: Description of RV vaccine coverage (%) by health care district and year. 468 
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Figure 2: Spatio-temporal impact of RV vaccination on RV and AGE hospitalisations. RV vaccine coverage (%) and number of averted 469 

hospitalisations by health care district and period estimated in the spatio-temporal model. 470 


