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Abstract
The relationship between temperature and precipitation is not simple. Several physical processes can
determine whether this relationship is positive or negative, depending on the geographic location and the
season. This paper proposes new indices for studying this relationship at a seasonal level, based on daily
data of accumulated precipitation and mean temperature: the Rt(T75) index is defined as the percentage
of precipitation corresponding to warm days in the year t, and Rt(T25) the one corresponding to cold days.
The so-called "contribution index" is defined as the measurement and extent in which the Rt(T25) and
Rt(T75) indices contribute to the each interval of percentage precipitation values. To synthesize the
behavior of these indices the index IRt = Rt(T75)-Rt(T25) is proposed and compared to the ITt index,
defined as the difference between the average temperature of wet days and that of dry days. These
indices are analyzed for four meteorological stations that represent the main climatic domains of the
Iberian Peninsula from 1951 to 2019. The results show a negative relationship between temperatures and
precipitation, except for the two westernmost stations in winter. The role of atmospheric circulation in this
result, particularly the NAO, EA, and WeMO teleconnection patterns, is discussed. Finally, future avenues
of research are proposed.

1. Introduction
We can consider temperature as a continuous variable, well represented from the statistical point of view
by the normal distribution function. Precipitation, on the other hand, is a discontinuous and intermittent
variable, and, although we can construct "continuous" variables such as the amount of precipitation
accumulated in a specific time interval, its statistical representation is more appropriate using other
distribution functions, such as the gamma distribution (Horton et al., 2001). These differences are
compounded by the variety of physical processes that affect their interdependence. The fundamental
relationship between temperature and precipitation results from the laws of thermodynamics, including
the Clausius-Clapeyron law; the transfer of sensible heat and latent heat during phase changes of water
within clouds and the land surface; and the radiative properties of the different subsystems of the climate
system (Trenberth, 2011). The relationship between mean surface temperature and precipitation varies
according to geographic location and season (Du et al., 2013): in summer, clouds associated with
precipitation reduce incident solar radiation on the land surface, which, together with increased
evapotranspiration, generally results in a decrease in surface temperature. In contrast, the emission of
longwave radiation emitted by clouds can increase the surface temperature in winter. These factors
explain the appearance of a negative relationship in summer and a positive one in winter, especially in
mid-latitudes. In addition, other factors may influence this relationship, such as surface pressure, wind
intensity, and atmospheric circulation (Berg et al., 2015).

In terms of impacts, the covariability of temperatures and precipitation may be more important than
changes in one or the other variable considered individually (Hao et al., 2013). Temperature is one of the
best-studied climate variables, while our ability to predict precipitation is limited due to the complex
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interactions between multiple factors. Therefore, characterizing the covariability between the two
variables can improve our understanding of rainfall behavior and the collective impact of both variables
(Singh et al., 2020).

Different methods have been proposed in the literature to address this problem: Beniston (2009) used the
quantile approximation of the joint distribution of both variables to define climatic modes (warm/dry,
warm/wet, cold/dry, and cold/wet) and characterizes extreme events. A similar methodology was used by
Morán-Tejada et al. (2013) to study the climatic extremes of mountainous regions in the Iberian
Peninsula (IP) and by López-Moreno et al. (2011) to study the influence of the NAO in mountainous
regions of the Mediterranean basin. Other studies have focused on analyzing the behavior of
precipitation extremes and their relationship with temperatures (Dobrinsky et al., 2018; Chen et al., 2021;
Pinskwar, 2021). Several authors have used copula analysis to study the interdependence between the
two variables (Lazoglou and Anagnostopoulou, 2019; Dong et al., 2021). Others have employed bivariate
distribution function analysis to understand some of the causal relationships: Hao et al. (2020)
compared the joint bivariate Gaussian distribution of temperature and precipitation on a global scale and
monthly resolution with the conditional distribution given different ENSO states, and Rodrigo (2021) used
composite analysis to study the behavior of the seasonal correlation coefficients between temperature
and precipitation of the IP under the combined action of the EA and NAO patterns.

Isaac and Stuart (1992) proposed the simple TPI index to estimate temperature-precipitation
relationships in Canada. This index is defined as the percentage of precipitation occurring at daily
temperatures lower than the median of the temperature series. A percentage lower than 50% indicates
that precipitation and warm days occur together, while the opposite would occur with percentages higher
than 50%. This index is advantageous because it can be applied to stations with a climatic record limited
to the magnitudes of mean daily temperature and total daily precipitation (Stuart and Isaac, 1994). Du et
al. (2013) compared TPI and Pearson correlation coefficients between precipitation and temperature in
Northeast China, obtaining similar results using both methods. A similar exercise was conducted by
Chrová and Holtanová (2018) for the European continent. In this instance, the TPI index was defined for
each month as the percentage of precipitation falling on days with temperature above the median value
so that in those cases where TPI > 50% (more than 50% of precipitation occurring on days with
temperature above the median value), the temperature-precipitation ratio is positive. The results are
negative in the opposite case (TPI < 50%, more than 50% of precipitation occurs on days with
temperatures below the median value).

The TPI index is a simple method used to characterize the relationship between temperature and
precipitation, but it provides little information on the behavior of this relationship in the case of extreme
values. Therefore, this paper presents a modified version of this index, splitting it into two, to express the
percentage of precipitation on both cold days and warm days. The objective is to describe the positive or
negative character of the temperature-precipitation relationship and quantify this relationship and the
contribution to it of cold and warm days. Four meteorological stations representative of different climatic
domains in the PI are used to analyze the applicability of these new indices. The geographical position of
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the PI, located in a transition region between mid-latitudes and subtropical latitudes, between the Atlantic
Ocean and the Mediterranean Sea, as well as its complex orography, make it a particularly interesting
region for climate studies. Indeed, it has been cataloged as an area susceptible to climate change (Giorgi,
2008). Section 2 presents the data used and describes the methodology applied. The results are
presented and discussed in Section 3, and finally, Section 4 summarizes the conclusions obtained and
future research perspectives.

2. Data And Methods

2.1. Data.
The database used in this study comprises daily precipitation amounts and daily mean temperatures for
four Spanish localities between 1951 and 2019. Figure 1 shows the locations of the stations. Data were
extracted from the European Climate Assessment & Dataset Project (ECA&D available at
https://www.ecad.eu/dailydata/index.php ; Klein-Tank et al., 2002). The four stations selected represent
the different climatic regimes of the PI (Martín Vide and Olcina Cantos, 2001): A Coruña on the north
coast (43°22'N, 8°25'W, 67 m above sea level), dominated by the influence of the Atlantic Ocean, with
maximum precipitation in winter, minimum in summer, abundant cloudiness and high environmental
humidity; Madrid in the Central Plateau (40°24'N, 3°40'W, 679 m), with maximum precipitation in winter
and spring, minimum in summer, frequent frosts in winter, and high summer maximum temperatures;
Seville to the SW in the Guadalquivir river basin (37°25'N, 5°53'W, 31 m), with maximum precipitation in
winter, minimum in summer and very high summer temperatures; and Valencia on the Mediterranean
coast (39°28'N, 0°22'W, 11 m), with maximum rainfall in autumn, often torrential, and minimum in
summer. The data were studied on a seasonal scale. The seasons of the year were defined in the usual
way: winter (December, January, February), spring (March, April, May), summer (June, July, August), and
autumn (September, October, November).

Monthly data from the East Atlantic (EA) and North Atlantic Oscillation (NAO) patterns (Climate
Prediction Center, available at http://www.ncep.noaa.gov/teledoc) and the West Mediterranean
Oscillation pattern (WeMO, available at http://cru.aec.uk) were also used. The monthly data were
averaged for each season to obtain a seasonal index.

2.2. Methods.
We define a warm (cold) day if Ti > T75 (< T25), where T25 and T75 are the quartiles of the daily mean
temperature of the reference period 1971–2000 (Table 1). This 30-year period was chosen following
WMO recommendations for establishing climatological normals and considering that it is the central
period of the total study period, from 1951 to 2019. Then, for each season of year t, the Rt(T25) and
Rt(T75)indices were defined as the percentage of precipitation corresponding to cold (c) and warm (h)
days, respectively. Formally,
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Table 1

Percentiles of daily mean temperature (°C)
corresponding to each season and station

during the reference period 1971–2000.
Season Station T25 T50 T75

Winter A Coruña 9.3 10.9 12.4

Madrid 5.1 7.0 8.7

Seville 9.7 11.6 13.4

Valencia 10.3 11.9 13.8

Spring A Coruña 11.1 12.7 14.5

Madrid 10.0 12.7 15.7

Seville 14.4 16.8 19.3

Valencia 13.7 15.8 18.1

Summer A Coruña 17.0 18.3 19.6

Madrid 21.0 23.8 26.1

Seville 24.1 26.4 28.4

Valencia 22.6 24.4 25.9

Autumn A Coruña 13.5 15.8 17.8

Madrid 10.8 14.5 19.0

Seville 16.0 19.6 23.3

Valencia 16.2 19.1 22.4

 Rt T25 = 100
∑ iθc T i R i

∑ iR i
  where θc Ti =

1siTi < T25
0siTi ≥ T25

 (1)

 Rt T75 = 100
∑ iθh T i R i

∑ iR i
  where θh Ti =

1siTi > T75
0siTi ≤ T75

 (2)

Ri is the daily rainfall for each day i of year t. The values of Rt(T25) and Rt(T75) are within the range of
values (in %) U = [0,100]. Empirical distribution functions show whether the relationship between
temperatures and precipitation is positive (Rt(T75) > Rt(T25)) or negative (Rt(T75) < Rt(T25)). The study is
focused on the analysis of the sets A = {Rt(T25); t = 1,2,…,n} y D = {Rt(T75); t = 1,2,…,n} where n is the total

( ) ( ) ( ) { }
( ) ( ) ( ) { }
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number of years in the series. Analysis of the empirical distribution functions of these sets shows (as we
shall see) that these sets are not disjoint, i.e., A∩D≠∅. Given a certain value of the percentage of Rt can
correspond to both the sets, that is, cold days (A) and warm days (D). We can ask ourselves to what
extent this percentage value is related to each defined set. The possible values of Rt (0 ≤ Rt ≤ 100%) are
divided into successive intervals of percentages R = [0,10], (10, 20], (20,30],..., (90,100] (we use the usual
notation for each interval: (a,b] = {R∈U/ a < R ≤ b}), and for each of them we calculate the quantities

 CA(R) =
NA( R )
N( R )   ∀R∈U (3)

 CD(R) =
ND ( R )
N( R )   ∀R∈U (4)

where NA(R) and ND(R) are the number of elements of A and D, and N(R) is the total number of elements
with percentage R. CA(R) and CD(R), therefore, measure the contribution to the percentage of precipitation
R of cold and warm days, respectively (this is a definition analogous to that used to distinguish the
contribution to total precipitation from convective precipitation and large-scale frontal precipitation
(Kumari et al., 2021)). The following are deemed in this paper to be "contribution indices." It is defined as
0 ≤ Cj ≤ 1 (j = A,D). If, for example, for a given interval R, CA(R) = 0.3 and CD(R) = 0.7, this result is
interpreted in terms of that interval of R being more probable when there are warm days (contribution 0.7)
than cold days (contribution 0.3). As many Cj indices can be determined as intervals we define them in
the temperature series. For this work, four subsets were defined with their corresponding contribution
indices, CA for cold days (Ti < T25), CB for cool days (T25 ≤ Ti < T50), CC for mild days (T50 ≤ Ti ≤ T75), and
CD para warm days (Ti > T75), with T50 being the median of the daily temperature series of the reference
period and taking into account that ∑ jCj(R) = 1 .

We are particularly interested in the difference between cold and warm days. Comparison between sets A
and D can be made using these contribution indices. The fact that A∩D≠∅ raises the need to study the
intersection between both sets. Thus, we find that

CA∩D(R) = min (CA(R), CD(R)), ∀R∈U (5)

If it is possible to find disjoint sets, these will be given by A-(A∩D) for cold days and D-(D∩A) for warm
days (note that the intersection is commutative, i.e., A∩D = D∩A). The contribution index for cold days is
as follows

 CA− ( A∩D) (R) = CA(R) − min(CA(R), CD(R))  ∀R∈U (6)

and similarly for warm days. The R percentages that do not occur on warm days may be found by
considering that CA−A∩B(R) ≠ 0 (CD−D∩A(R) ≠ 0 for percentages not occurring on cold days, note that
expression (6) does not exclude the possibility of intersections with sets B and C, corresponding to cool
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and mild days, respectively). Thus, we can characterize not only whether the relationship is positive or
negative but also the range of percentage values in which this relationship occurs.

To synthesize the behavior of these indexes, we define the IRt index as

IRt = Rt(T75) – Rt(T25) ∀t = 1,…,n (7)

Therefore, IRt > 0 indicates a positive relationship, and IRt < 0 a negative relationship between
temperatures and precipitation. This index is compared to the TPI index for each meteorological station
and season.

Analogously, we define the ITt index as

 ITt =
−
T wt −

−
T dt  ∀t = 1,...,n (8)

where 
−
T wt and 

−
T dt are, respectively, the mean temperatures of the wet (Ri > 1 mm) and dry (Ri = 0) days

of year t. Also analogous to the case of IRt, a positive (negative) value of ITt indicates a positive
(negative) relationship between both variables.

3. Results And Discussion

3.1. Rt(T25) and Rt(T75) indices
Figure 2 shows the empirical distribution functions of the Rt(T25) and Rt(T75) indices for the four selected
stations during winter. As expected, both distribution functions show a decreasing behavior, except for the
Rt(T25) in Valencia, which shows an uniform behavior, with slight variation between R = 0 and R = 100%.
This result shows that the precipitation percentages during cold days can cover the whole possible range
of R values in the Mediterranean station, while the contribution of warm days is limited to the lowest
percentages of precipitation. In this station, the relationship between temperatures and precipitation is
negative, with values practically null from R = 20% for warm days. In A Coruña and Seville, both located in
the western half of the Peninsula, the relationship is positive, with higher Rt(T75) values above this
percentage.

On the other hand, Madrid, located in the central plateau of the IP, shows a very similar behavior of both
indexes, indicating it is a transition station between the western and the Mediterranean stations. Figure 3
shows the contribution indexes of the four stations, where these results are more clearly seen: in A
Coruña with significant contribution to Rt(T75); in Seville, the contribution of Rt(T75) predominates except
in the case of higher values of R, which indicates a more complex relationship. In the case of Valencia
and Madrid, the main contribution corresponds to Rt(T25) for the highest percentages of precipitation.
Table 2 shows the intervals corresponding to cold and warm days. Where the relationship is positive (A
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Coruña), the contribution of warm days covers a wide range of R values, while the opposite occurs in
stations where the relationship is negative (Madrid and Valencia) as it is limited to the lower R value
intervals.

Table 2
R interval values (%) corresponding to cold days (A-A∩D) and warm days
(D-D∩A) for the four stations and seasons during the period 1951–2019
Season Station Cold days Hot days

Winter A Coruña [0,20] (20,70]

Madrid (10,30], (40,50], (60,90] [0,10], (30,40], (50,60]

Seville [0,30], [80,90] (30,80]

Valencia (20,100] [0,20]

Spring A Coruña (30,70] [0,20]

Madrid (20,30], (40,100] [0,20], (30,40]

Seville (20,100] [0,20]

Valencia (30,100] [0,30]

Summer A Coruña (40,100] [0,30]

Madrid (20,100] [0,10]

Seville (10,100] [0,10]

Valencia (20,30], (40,100] [0,20]

Autumn A Coruña (20,80] [0,20]

Madrid (10,80] [0,10]

Seville (10,90] [0,10]

Valencia (10,30], (40,60], (70,80] [0,10], (30,40]

Figure 4 shows the contribution indices corresponding to spring (due to space limitations, the distribution
functions corresponding to spring, summer, and autumn are not shown), with a clear predominance of
the Rt(T25) index for all R values except the lowest percentages (between 0 and 20%, Table 2) in the four
stations studied. Similar results are found for summer and autumn (Figs. 5 and 6, Table 2). Special
mention should be made of the case of Valencia in autumn, where the contribution of warm days is not
negligible for the interval of R(%) = (30,40]. We will discuss this result in a later subsection.

The results show a negative relationship between precipitation and temperature in the four localities
studied and in the year's four seasons, except in winter's two westernmost stations (A Coruña, Seville).
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This result corresponds, in general terms, with what is expected in mid-latitudes, although the cases of A
Coruña and Seville in winter merit further research.

3.2. IRt and ITt indices
Table 3 shows the basic statistics of the IRt index for the four locations under study and the four seasons
of the year. As a consequence of the results found in the previous subsection, negative index values are
found in the four seasons and in the four locations studied, except in winter for A Coruña and Seville,
where the mean value of the IRt index, as well as the median, are positive. In addition, the 95% confidence
interval for the mean value is also shifted towards positive values in both cases. However, the standard
deviation is very high, indicating the wide variability of the index, as is also reflected in the coefficient of
variation and the range, which covers practically all possible values between − 100% and + 100%.
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Table 3
Main statistics of the IRt index for the four stations and seasons during the period 1951-2019.1

Season Station Mean (%) C.I. (%) Median (%) S (%) VC Range (%)

Winter A Coruña + 7 [1;13] + 5 26 3.7 [-56;+58]

Madrid -7 [-15;0] -4 32 4.6 [-74;+51]

Seville + 10 [1;19] + 11 36 3.6 [-82;+79]

Valencia -38 [-46;-30] -40 35 0.9 [-96;+54]

Spring A Coruña -9 [-16;-2] -9 28 3.1 [-70;+74]

Madrid -20 [-26;-13] -20 27 1.3 [-90;+41]

Seville -34 [-41;-26] -32 30 0.9 [-89;+49]

Valencia -38 [-46;-30] -39 35 0.9 [-96;+54]

Summer A Coruña -15 [-24;-6] -19 37 2.5 [-90;+67]

Madrid -38 [-49;-27] -45 46 1.2 [-97;+89]

Seville -69 [-82;-56] -95 49 0.7 [-100;+100]

Valencia -34 [-45;-23] -43 45 1.3 [-99;+88]

Autumn A Coruña -14 [-20;-8] -17 25 1.8 [-72;+57]

Madrid -23 [-29;-18] -24 23 1.0 [-76;+49]

Seville -28 [-34;-22] -26 26 0.9 [-81;+53]

Valencia -12 [-20;-3] -10 35 2.9 [-83;+65]

1: CI: 95% confidence interval for the mean value; s = standard deviation. VC = coefficient of variation;
Range =[Minimum; Maximum]

Table 4 shows the correlation coefficients of the IRt index with the TPI index. The results show
coefficients with high correlation, significant at a 95% confidence level. The IRt index, whose definition is
based on the distribution functions of cold and warm days, and developed using half of the data (lower
and upper quartiles of temperature) as the TPI index (based on the median), but the resulting information,
as we can see, is very similar. Figure 7 shows some examples of this relationship. It can be seen how TPI
values above (below) 50% correspond to positive (negative) values of the IRt index.
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Table 4
Correlation coefficients between IRr and TPI for the four

stations and seasons during the period 1951–2019
Station Winter Spring Summer Autumn

A Coruña 0.89* 0.91* 0.87* 0.81*

Madrid 0.81* 0.83* 0.86* 0.72*

Seville 0.80* 0.77* 0.83* 0.65*

Valencia 0.76* 0.82* 0.73* 0.70*

1 *=significant at the 95% confidence level.

We can also compare the IRt index with the ITt index. In principle, the information provided by both
indices is different: IRt shows the sign of the temperature-precipitation relationship conditional on
extreme temperature values, while ITt shows the sign of this relationship conditional on the frequency of
dry and rainy days. Consequently, IRt expresses the influence of temperature on precipitation, while ITt

expresses the influence of precipitation on temperature. How and to what extent temperature changes if
precipitation does, or vice versa, is a problem that deserves thorough investigation (Du et al., 2013). Table
5 shows the basic statistics of the ITt index. If we compare these results with those corresponding to the
IRt index, we see that the range of variability and the values of the coefficient of variation of ITt are, in
general terms, lower than those of IRt. According to this interpretation, the influence of temperature on
precipitation is more significant than that of precipitation on temperature. However, the results obtained
are equivalent (Table 6 shows the correlation coefficients between the two indexes), with ITt showing a
negative relationship, except again in A Coruña and Seville in winter, where the relationship is positive.  
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Table 5
Main statistics of the ITt index for the four stations and seasons during the period 1951-2019.1

Season Station Mean (°C) C.I. (°C) Median (°C) S (°C) VC Range (°C)

Winter A Coruña + 0.2 [+ 0.1;+0.4] + 0.1 0.7 0.79 [-2.7;+2.3]

Madrid -0.1 [-0.4;+0.2] -0.1 1.1 11.0 [-2.9;+2.9]

Seville + 0.6 [+ 0.3;+0.8] + 0.5 1.1 1.83 [-2.1;+3.7]

Valencia -1.5 [-1.8;-1.2] -1.5 1.1 0.73 [-0.5;+0.7]

Spring A Coruña -0.9 [-1.1;-0.7] -1.1 0.9 1.00 [-3.2;+1.0]

Madrid -2.1 [-2.5;-1.7] -3.2 1.6 0.76 [-5.9;+1.0]

Seville -2.7 [-3.0;-2.4] -2.6 1.2 0.44 [-6.0;-0.5]

Valencia -1.6 [-1.9;-1.3] -1.7 1.3 0.81 [-5.1;+1.1]

Summer A Coruña -0.5 [-0.7;-0.3] -0.5 0.8 1.60 [-2.8;+1.0]

Madrid -2.8 [-3.4;-2.3] -2.4 2.3 0.82 [-9.2;+3.9]

Seville -5.1 [-6.1;-4.2] -4.7 3.3 0.65 [-17.7:+0.3]

Valencia -1.4 [-1.8;-1.1] -1.3 1.3 0.93 [-4.1;+1.9]

Autumn A Coruña -1.4 [-1.7;-1.0] -1.5 1.4 1.00 [-5.1;+2.5]

Madrid -2.4 [-3.0;-1.8] -1.5 1.4 0.58 [-8.5;+7.7]

Seville -2.6 [-3.0;-2.2] -2.7 1.8 0.69 [-7.7;+0.9]

Valencia -1.2 [-1.6;-0.7] -1.1 1.8 1.50 [-6.0;+2.3]

1: CI: 95% confidence interval for the mean value; S = standard deviation. VC = coefficient of variation;
Range =[Minimum; Maximum]
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Table 6
Correlation coefficients between IRr and ITt for the four
stations and seasons during the period 1951–20191

Station Winter Spring Summer Autumn

A Coruña 0.35* 0.47* 0.64* 0.64*

Madrid 0.58* 0.54* 0.69* 0.42*

Seville 0.51* 0.34* 0.51* 0.61*

Valencia 0.37* 0.69* 0.65* 0.64*

1 *=significant at the 95% confidence level.

3.3. The role of atmospheric circulation: NAO, EA, and
WeMO patterns.
We now ask ourselves what factors influence the IRt index to be positive in winter in A Coruña and Seville.
We hypothesize that atmospheric circulation can modify the relationship between temperatures and
precipitation, altering the negative relationship based on the laws of thermodynamics. To test this
hypothesis, we studied the possible influence of the EA and NAO circulation indices. The EA pattern is
characterized by a low-pressure center located to the west of Ireland at approximately 55°N and 20-35°W
(Hall and Hanna, 2018), so that the positive phase of the EA causes advection of moist and relatively
warm air masses from the south and southwest over the IP, leading to increased temperatures and
precipitation. In the negative phase, the behavior is the opposite. Numerous studies report a strong
relationship between the EA index and temperature variations in the IP throughout the year (see, for
example, Ríos-Cornejo et al., 2015). The NAO is defined by the meridional dipole of sea level pressure
between the Icelandic Low and the Azores High (Hurrell et al., 2003). Its role in the precipitation variability
of the western sector of the IP is well known (see, for example, López-Bustins et al., 2008): the positive
phase determines the predominance of anticyclonic conditions and low precipitation, while the negative
phase is related to the advection of Atlantic squalls that increase precipitation, especially in winter.

In this work, a monthly average of the EA and NAO indices obtained a seasonal index for the analysis
period, 1951–2019. To determine the different phases (positive or negative) of the index, the median of
each index (EAm and NAOm) was determined, defining the EA phases as follows:

EA + = {EAt /EAt >EAm; t = 1,…,n} (9a)

EA- = {EAt/EAt<EAm; t = 1,….n} (9b)

This was also done for the NAO phases. Although this criterion includes "normal" and extreme values of
the index in each phase, it facilitates subsets with sufficient data to allow statistical approximations.
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Next, the winter IRt index at the stations of interest was divided into two "composite" subsets, IRt(EA+)
and IRt(EA-), comprising the set of IRt values corresponding to the positive and negative phases,
respectively, of the teleconnection pattern. The aim is to apply the same methodology applied previously
to these subsets, thus quantifying the contribution to each possible IRt value range, from [-100%, -90%] to
(+ 90%, + 100%]. We can also determine the intersection between both subsets IN = IRt(EA+) ∩ IRt(EA-),
and determine the contribution of each phase separately, applying relation (6) to the sets IR(EA+)-IN and
IR(EA-)-IN (analogously for the NAO index). The results for the winter series of A Coruña and Seville are
shown in Fig. 8. The influence of the EA pattern, which shows the relationship between the positive
(negative) IRt values and the EA+ (EA-) phase, is evident, verifying our hypothesis, i.e., the advection of
warm and humid air masses during the positive phase of the EA determines that the relationship between
temperatures and precipitation is positive at these stations. In contrast, the opposite relationship occurs
in the case of the negative phase of the EA. Indeed, the correlation coefficients between IRt and winter EAt

are positive and significant at the 95% confidence level (+ 0.65 and + 0.40 for A Coruña and Seville,
respectively). The results for Madrid and Valencia (not shown) are similar, but in these cases, the
influence of EA does not seem sufficient to counteract the predominant negative relationship, from which
it can be deduced that the influence of EA is more significant toward the west of the Peninsula.

As for the NAO, the results are less conclusive: the positive phase of the NAO is associated with lower
precipitation and higher daily maximum temperatures (Merino et al., 2018), with which the NAO + phase
would be related to a negative IRt index, as can be seen in the case of Seville, where the main
contributions to negative IR values are related to the positive phase of the NAO. In contrast, the negative
phase of the NAO, with cyclonic conditions and overcast skies, would be associated with higher
precipitation and daily minimum temperatures, resulting in a positive relationship. The fact that we are
working here with mean temperatures (and not with maximums and minimums) may explain the less
conclusive results in the case of the NAO, with contributions to positive and negative values of both
phases. In the case of A Coruña, this last result is even more evident, probably due to the lesser influence
that the NAO pattern exerts over the northwestern area of the PI (López-Bustins et al., 2008).

The case of Valencia, on the Mediterranean coast, is particularly interesting. In every season, the mean
value of the IRt and ITt indices is negative (Tables 3 and 5), reflecting the conditions of the Mediterranean.
However, in autumn, the magnitude of these indices is lower than in other seasons. The critical role of
convective rainfall in autumn in this area is well known (Ruiz Leo et al., 2013), so an increase in
temperatures would increase precipitation of this type, resulting in a positive relationship or, at least, in
lessening the negative relationship between temperatures and precipitation (Rodrigo, 2019). In addition,
this behavior could be intensified by atmospheric circulation so that the advection of warm and humid air
masses from the Mediterranean could contribute to this behavior.

The WeMO index (Martín-Vide and López-Bustins, 2006) can be used to study this problem. The positive
phase of the index is characterized by a high pressure center over the southwestern quadrant of the IP
and a low pressure center over the Ligurian Gulf, while the negative phase shows the opposite pattern.
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Consequently, the positive phase implies advection from the NW, while the negative phase implies
advection from the SE. The flows associated with the negative phase of the WeMO would lead to
increased precipitation in the eastern IP due to the advection of maritime and relatively warmer air from
the Mediterranean. It would, therefore, contribute positively to the relationship between temperatures and
precipitation. On the other hand, the positive phase of the WeMO would lead to the advection of cold and
humid air from the Atlantic and, therefore, a negative relationship.

In this case, we proceeded in the same way as in the previous cases, establishing the positive and
negative phases of the WeMO index based on the median value for the total period of analysis.
Subsequently, Valencia's autumn IRt index values were split into two subsets, IRt(WeMO+) and
IRt(WeMO-), and the contribution to IR values of both subsets was studied. The result is shown in Fig. 9.
The predominance of the negative (positive) phase of WeMO to the contribution of the positive (negative)
IR values is observed. The results are not as evident as in the winter EA cases presented above (the
correlation coefficient between the WeMO and the IRt indices, in this instance, is -0.38, significant at the
95% confidence level, reflecting a certain influence of this factor). Therefore, other possible causal factors
should be considered.

3.4. Fuzzy sets.
In the study of the IRt index, we have divided this set into two subsets, IRt(EA+) and IRt(EA-), according to
the phase (positive or negative) of the circulation index. It is found that the intersection of these subsets
is non-empty, i.e., IRt(EA+)∩IRt(EA-)≠∅, i.e., we can find similar percentage values in the two phases of the
circulation pattern. According to our definition of the contribution index, we have that CIR(EA+)(IR) + CIR(EA−)

(IR) = 1, i.e.CIR(EA+)(IR) = 1 - CIR(EA−)(IR), ∀ IR∈[-100,100], both sets are complementary, but their
intersection is not the empty set. Consequently, the contradiction principle of classical logic, according to
which the intersection of two complementary subsets must be the empty set, is not verified, implying that
we can interpret these as fuzzy sets and the contribution index as the membership function associated
with these sets. The interpretation of the values of the contribution index as a measure of the "possibility"
that a certain value of the variable belongs to one set or another is along these lines (Zadeh, 1978).
According to this interpretation, relation (5) is one of the basic t-norms for the intersection of two fuzzy
sets (Klement et al., 2013). There are different methods to compare fuzzy sets, one of them is the
possibility, defined as

Poss(A, B) = max
x∈X

{min(A(x), B(x))}

10
In our case, if we identify x with the class mark of each of the IRt intervals, A with IRt(EA+), B with IRt(EA-),
and the contribution indexes with the membership function, we obtain as a result 0.3 in A Coruña (for
x=-5%), 0.4 in Madrid (for x=-5%), and 0.5 in Seville (for x=-55%, -25%, and + 45%), and in Valencia (for x =
-65%). The possibility provides the maximum value of the membership function of the intersection
between the two sets under comparison, and the value of x for which it occurs, thus measuring to what
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degree the two sets overlap. We see how the lowest value is obtained for A Coruña, for x =-5% (i.e., when
the contributions of the warm and cold days are very similar), so this is the meteorological station where
the differences between the two EA phases are the greatest, and, consequently, the most influenced by the
EA phases, a physically plausible result given the geographical location of this station.

Fuzzy logic is a suitable method for modeling systems that are difficult to represent through an exact
mathematical model and has been used in many meteorological studies (see, for example, Bardossy et
al., 2002; Asklany et al., 2011; Rahman, 2020; Silver et al., 2020; Ferreira Filho and Pessoa, 2022).
Therefore, it offers an interesting possibility to address the study of our problem, which will be explored in
future works.

4. Conclusions
The main aim of this work has been to present a set of indices that attempt to explain, in a simple way,
the complex relationships between precipitation and temperature at a seasonal level, based on daily data
for each variable. The Rt(T25) and Rt(T75) indices have been defined to express the percentage of
precipitation corresponding to the cold and warm days of a specific season. The contribution of cold and
warm days to each of these percentages has been quantified using what we have called the contribution
index. The IRt index has been defined, which expresses the difference between the two indexes. This
index has shown good agreement with the TPI index and the ITt index, which expresses the difference
between the average temperature of rainy and dry days.

The application of these indices and the contribution index to four meteorological stations in the PI has
allowed us to investigate the role of atmospheric circulation by studying its relationship with the EA, NAO,
and WeMO patterns, analyzing how these circulation patterns modulate the negative relationship
between both variables.

These results suggest extending this methodology to other stations and geographical areas to study the
spatial variability of the defined indices. We can also use the daily maximum and minimum temperatures
to deepen our understanding of some of the results (e.g., the influence of the NAO index). Furthermore,
from a methodological point of view, we can identify the contribution index with the membership function
associated with fuzzy sets and apply the fuzzy logic methodology to the problem posed. These will be
the objectives of future works.
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Figures

Figure 1

Map with the four meteorological stations studied.
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Figure 2

Empirical distribution functions of the índices Rt(T25) (blue) and Rt(T75) (red) for (a) A Coruña; (b) Madrid;
(c) Seville, and (d) Valencia.



Page 22/28

Figure 3

Winter contribution indices for Rt(T25) (blue) and Rt(T75) (red) for a) A Coruña; (b) Madrid; (c) Seville, and
(d) Valencia.
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Figure 4

As Figure 3, for spring.
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Figure 5

As Figure 3, for summer.
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Figure 6

As Figure 3, for autumn.
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Figure 7

Comparison between IR and TPI índices: (a) A Coruña, Winter; (b) Madrid, Spring; (c) Valencia, Autumn.
Linnear regression equation and correlation coefficient r are included (r*= significant at the 95%
confidence level).
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Figure 8

Winter contribution índices for IR(EA+)-IN (red) and IR(EA-)-IN (blue) for (a) A Coruña and (b) Seville, and
winter contribution índices for IR(NAO+)-IN (red) and IR(NAO-)-IN (blue) for (c) A Coruña, and (d) Seville.
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Figure 9

Contribution índices for IR(WeMO+)-IN (blue), and IR(WeMO-)-IN (red) for Valencia in autumn 

 


