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Abstract 

Purpose: To explore the performance and intelligibility of machine-learning and 

deep-learning models on end-stage renal disease (ESRD) prediction, based on readily-

accessible clinical and laboratory features of patients suffering from chronic kidney 

disease (CKD). 

Materials and Methods: This single-center retrospective study included 2,382 

patients diagnosed with CKD, of which 1,765 were included in the modelling 

analysis. Eight models (Logistic Regression (LR); Ridge Regression Classification 

(RRC); Least Absolute Shrinkage and Selection Operator (LASSO); Support Vector 

Machine (SVM) with a Gaussian kernel (SVM-RBF); and a linear kernel (SVM-

Linear); Random Forest (RF); XGBoost; and Deep Neural Network (DNN)) were 

used to predict whether one person suffering from CKD would progress to ESRD 

within three years based on basic demographics, and clinical and comorbidity 

information. LASSO, RF, and XGBoost were introduced to screen the most 

significant markers to ESRD from the input features. For the DNN model, we 

introduced four advanced attribution methods (Integrated Gradients, DeepLIFT, 

GradientSHAP, and Feature Ablation) to enhance model intelligibility.  

Results: Age, follow-up duration, and 17 biochemical test outcomes (for instance, 

serum creatinine and hemoglobin) showed significant differences between patients in 

four CKD stages. The DNN model achieved an area under the receiver operating 

characteristic curve (AUC-ROC) of 0.8843, which was significantly higher than that 

of baseline models. Nonlinear machine learning models (SVM-RBF, RF, XGBoost, 

and DNN) generally outperformed linear ones (LR, RRC, LASSO, and SVM-Linear). 

The interpretation generated by DNN with attribution methods, RF, and XGBoost 

were consistent with clinical knowledge, whereas LASSO-based interpretation was 

inconsistent. Hematuria, proteinuria, potassium, urine albumin to creatinine ratio 

(ACR) were positively associated with the progression of CKD, while eGFR and 

urine creatinine were negatively associated with the progression of CKD. Hematuria 

is the most important independent risk predictor for the progression of diabetic 

nephropathy and urolithiasis.  

Conclusion: The adopted DNN with attribution algorithms extracted intelligible 

features of CKD progression. In addition, the DNN model identified a number of 

critical, but under-reported features, such as hematuria, that may be novel markers for 

the progression of CKD. This study provides physicians solid data-driven evidence in 

using machine learning and deep learning models for CKD clinical management and 

treatment.  



Introduction 

Approximately 10.8% (10.2-11.3) of the population in China are suffering from 

chronic kidney disease (CKD) [1]. With population aging and the rising prevalence of 

chronic diseases such as diabetes, hypertension, and obesity, the number of people 

suffering from CKD is anticipated to increase in the next few years [2]. CKD carries a 

high risk of complications (such as cardiovascular events), as well as death. In early 

stage CKD, non-drug therapies (such as diet and lifestyle adjustments) and specific 

drugs (such as angiotensin-converting enzyme inhibitors or Angiotensin II receptor 

blockers) are commonly introduced to preserve kidney function [3]. However, due to 

the robust compensatory ability of the kidney, most people have no apparent 

symptoms in early stage of the disease [4]. Once CKD progresses into end-stage renal 

disease (ESRD), sufferers develop typical renal insufficiency symptoms. By this 

stage, the available treatments are largely limited, including hemodialysis, peritoneal 

dialysis, or kidney transplantation [5]. 

Early diagnosis and prediction of CKD progress within a given duration are critical to 

ensure personalized treatment, which could improve patients’ quality of life and 

prolong survival time. However, due to the heterogeneity of CKD sufferers and the 

impact of confounding factors, it is difficult to predict when CKD will progress into 

renal failure [6]. Inaccurate prediction of CKD progression may lead to delays in 

treatment for people who are likely to progress to renal failure, and unnecessary 

treatment for people whose condition may not progress.  

Percutaneous kidney biopsy is helpful to determine the pathological types of CKD, 

guide treatment, and identify the degree of fibrosis, which is the gold standard in 

defining prognosis [7]. However, percutaneous kidney biopsy is an invasive 

procedure that may induce bleeding, infection, or other damage. Non-invasive 

biomarkers such as estimated glomerular filtration rate (eGFR) are used to detect the 

progress of CKD and provide an individualized prognosis which in turn can provide 

clinicians roadmaps of early intervention [8, 9].  

Deep learning technologies have already been introduced in many medical studies, 

which achieved significant improvement compared with traditional statistical and 

machine learning approaches [10, 11]. Logistic regression and Cox proportional 

hazards regression models are the most commonly-used clinical methods to predict 

CKD progression using non-invasive biomarkers [12, 13]. Tangri et al. used Cox 

proportional hazards regression models to establish the Kidney Failure Risk Equation 

based on age, sex, eGFR, and urine albumin/creatinine ratio (UACR) to predict CKD 

progression [14]. However, these studies were based on linear assumptions, and these 

models performed relatively poorly in the validation cohort. Furthermore, these 

studies mainly focused on people with advanced CKD, while ignoring the much 

larger group of people with early-stage CKD. Thus, establishing methods that provide 

more accurate predictions for people with earlier-stage disease is critical for 

personalized treatment. 



In the past few decades, machine learning and deep learning technologies have been 

widely used in many fields, such as translation and face recognition [15]. Some 

progress has been made in medical research, especially for the progression prediction 

of CKD. For example, deep learning models can be used to identify CKD and type 2 

diabetes from fundus images combined with clinical data [16]. They can also be 

applied to predict the risk of diseases whilst still in early stage [17]. However, 

although deep learning models could significantly improve prediction performance, 

they are nearly all black-box models, that humans cannot understand how the input 

features are being organized by the models to make predictions. 

In this paper, we aimed to apply a deep neural network (DNN) and compare it with 

classic machine learning models to predict CKD progression for people at different 

stages of the disease, based on demographic variables, laboratory and blood 

biochemical indicators, and comorbidity information. In addition, we introduced 

advanced attribution algorithms to enhance the intelligibility of DNN, and compared 

their outputs with those from other intelligible machine learning models. Our models 

and intelligibility analysis may assist clinicians to formulate more appropriate 

management and treatment plans to delay the progression of CKD and reduce patient 

burden. 

 

Materials and Methods 

Study population and data processing 

The Institutional Review Board of Tongji Hospital approved this retrospective study, 

and the requirement for patient-informed consent was waived. We retrospectively 

analysed data of 2382 people diagnosed with CKD from January 2009 to December 

2020. The database includes basic demographic and clinical characteristics such as 

liver and kidney function, blood routine test results, and comorbidity information. We 

excluded patients based on the following criteria: (1) those missing greater than 30% 

values; (2) those of people younger than 18 years old; (3) people with only one 

admission record or whose observation period was less than six months, or lost of 

follow-up; (4) people with acute renal insufficiency or congenital kidney diseases. 

Finally, 1765 people were included in this study. The flowchart of the study cohort is 

presented in Figure 1. 



Figure 1. The flowchart of the study cohort. 

The factors (input features) affecting the progression of CKD disease can be roughly 

divided into three categories: (1) basic demographics such as sex, age; (2) systemic 

comorbidity such as hypertension, diabetes, urolithiasis, hyperlipidemia; and (3) basic 

laboratory biochemical tests. For each subject, comorbidity information was collected 

from diagnosis records between the first diagnosis date and the date 30 days after the 

first kidney-related diagnosis record. For each laboratory biochemical test, we kept 

the earliest record of each test, and missing values of biochemical tests were replaced 

by the mean value calculated from all subjects. The basic statics of the features 

considered in this study are shown in Table.1, data are presented as mean ± standard 

deviation (SD), or n (percentage). 

 

ESRD definitions 

In this study, the end of CKD progression within three years (the positive label, 

denoted as 1) was end-stage renal disease (ESRD). This was defined as the initiation 

of renal dialysis treatment (including peritoneal dialysis and hemodialysis) or kidney 

transplantation, or eGFR was reduced by 50% over the observation period of an 

individual from the first time it was recorded. The eGFR values were calculated by 

using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation 

based on creatinine clearance [18]: 

eGFR (mL/min/1.73m2)=141×min(Scr×0.01131/κ, 1) α×max(Scr×0.01131/κ, 1)-

1.209×0.993age×1.018 [if female] ×1.159 [if African] 

where Scr stands for serum creatinine, κ is 0.7 for females and 0.9 for males, α is -

0.329 for females and -0.411 for males. 

CKD stage definitions 

We divided subjects into four groups according to their first eGFR values. People 

with eGFR between 15 to 60 ml/min/1.73m2 may develop ESRD at an estimated rate 



of 1.5% per year [19], thus we classified CKD stage 1 (eGFR≥90 ml/min/1.73m2) and 

stage 2 (eGFR, 60-89 ml/min/1.73m2) into one group in our study, and compared 

them with stage 3 (eGFR, 30-59 ml/min/1.73m2), stage 4 (eGFR, 15-29 

ml/min/1.73m2), and stage 5 (eGFR<15 ml/min/1.73m2). 

Deep Learning Model with Intelligible Mechanisms  

Deep neural networks (DNN) [20] are artificial neural networks with multiple layers 

between the input features and output predictions. Each linear layer is connected by 

non-linear activation functions to learn non-linear relationships between the input 

features. In this study, we utilized a three-layer neural network with BatchNorm [21] 

and Dropout [22] modules for better performance. The last layer is a sigmoid layer for 

a binary prediction. We also introduced both 𝑙! and 𝑙" regularizations to overcome 

the over-fitting problem. Since deep learning models are mostly black box models 

which are lack of interpretability, we introduce several attribution algorithms [23] to 

enhance the intelligibility of DNN. These algorithms computed the gradient of the 

model's prediction concerning each feature to show how the output value changes, 

given small changes due to perturbations of input features. Here we applied four 

attribution algorithms, including Integrated Gradients [23], DeepLIFT [24], Gradient 

SHAP[25], and Feature Ablation [26]. All four algorithms generated a score for a 

specific feature based in the trained model, denoting the contribution of this feature to 

the positive label. Specifically, high positive scores can be interpreted as positively 

related to ESRD. Instead, high negative scores would be interpreted as a higher value 

of this feature, a lower possibility of progressing to ESRD. A brief description of four 

attribution algorithms is as follows: 

Ø Integrated Gradients is an axiomatic attribution method that satisfies two 

fundamental axioms – sensitivity and implementation invariance. 

Ø DeepLIFT has similar attribution scores as Integrated Gradients but costs lower 

execution time.  

Ø Gradient SHAP adds Gaussian noise to each input sample multiple times, selects a 

random point along the path between baseline and input, and computes the gradient 

of outputs to those selected random points. 

Ø Feature Ablation replaces each input feature with a given baseline to compute the 

difference in output. 

Experimental Settings 

Suppose the features of an individual 𝑖 is denoted as 𝑥#, with label 𝑦#, where 𝑦# = 1 

represents that this person progressed to ESRD within three years, or vice versa. All 

our models aimed to learn a function 𝑦(# = 𝑓(𝑥#|𝑦#), where 𝑦(# denotes the probability 

of whether one person would progress to ESRD within three years. We formulated the 

following loss function for our DNN model: 



𝕃 =.ℒ(𝑦# , 𝑦(#)
#∈%

+ λ!2 4|Θ|4! +
𝜆"
2 4|Θ|4"

"

 

where ℒ(𝑦# , 𝑦(#) = −𝑦# log 𝑦(# − (1 − 𝑦#) log(1 − 𝑦(#) is the binary-cross-entropy loss, 

𝑦(# is the predicted label, Θ denotes the model parameters to be learned. The second 

and third terms are the regularizes to prevent over-fitting, where 𝜆! and 𝜆" are the 

hype-parameters for 𝑙! and 𝑙" regularizations, respectively. 

Baselines 

We applied seven machine learning models, which were classified into four 

categories. 

Ø Linear Model. We selected Logistic Regression (LR) [27], Ridge Regression 

Classification (RRC) [28], and Least Absolute Shrinkage and Selection Operator 

(LASSO) [29]. These are all linear models but with different regularizations on the 

parameters. Specifically, LR applies a logistic function to model binary dependent 

variables without any regularizations, widely used in medical research [30, 31]. 

LASSO introduces an 𝑙!  regularization to perform both variable selection and 

avoid over-fitting problem [29]. In contrast, RRC utilizes an 𝑙"  regularization 

which extends the robustness of the model but lacks variable selection ability [28].  

Ø Support Vector Machine (SVM) model. This model [32] aims to learn a non-linear 

relationship in the kernel space to make a classification. In detail, the SVM model 

depends on a kernel trick to implicitly map the features into high-dimensional 

feature spaces. In this study, we introduce two kernel tricks, a Gaussian kernel 

(SVM-RBF) and a linear kernel (SVM-Linear). 

Ø Decision Tree Models. Here we introduce two widely-used decision tree models, 

Random Forest (RF) [33] and XGBoost model [34]. XGBoost is a scalable end-to-

end tree boosting system that is fast and accurate and used in many medical tasks. 

Tuning of Parameters 

We utilized grid search to find the best setting for each model, which is conducted by 

optimizing the area under the receiver operating characteristic curve (AUC-ROC) 

metric on the validation set. The ratio of training, validation, and test set is 7:1:2. 

Specifically, for our deep learning model, the number of neurons of each layer is 97-

194-97-1, where 97 is consistent with the number of input features. Each layer is 

connected by a ReLU activation function with a dropout rate equal to 0.3. For the two 

regularization terms, 𝜆! and 𝜆" are set to 0.005 and 0.001, respectively. The learning 

rate is set to 0.001, and all trainable parameters are optimized by the Adam algorithm 

with batch size as 128, and the number of epochs is set to 50 for training.  

For the linear models, the 𝑙! regularization parameter is set to 0.03 for LASSO and 

the 𝑙" regularization parameter is set to 0.65 for the RRC model. For two SVM 

models, the c values are set to 1.0 for both SVM-RBF and SVM-Linear, and γ = 0.4 

specifically for the SVM-Linear model. For the decision tree models, the number of 



estimators is 180 for RF and 170 for XGBoost, respectively, and the maximum depth 

of XGBoost is set to 4. All models are implemented with Python 3.7, PyTorch 1.6.0, 

NumPy 1.19.1, and scikit-learn 0.23.2.  

 

Results 

Study Cohort 

In total, 1765 people suffering from CKD were recruited into this study cohort. 

Detailed demographic characteristics, comorbid conditions, and laboratory data 

are shown in Table 1. There were significant differences within the four groups in 

age, follow-up duration, and 17 biochemical test values such as serum creatinine, 

hemoglobin.  

Table 1. Statics of demographics characteristics, comorbid conditions, and laboratory 

test data of the cohort. 

Characteristics Total  Stage 1 and 

2  

Stage 3  Stage 4  Stage 5  P value 

No. of 

participants 
1765	 964	 419	 212	 170	

< 0.0001 

Demographics 

Age (year) 44.89

± 15.46 

40.64

± 14.56 

50.12

± 14.99 

51.41

± 15.18 

47.92

± 14.36 

< 0.0001 

Sex Male (%) 0.59	 0.56	 0.65	 0.64	 0.6	 0.008 

End-stage 

ratio (%) 
0.41	 0.23	 0.49	 0.78	 0.84	

< 0.0001 

Follow time 

(days) 

1463.83

± 769.88	

1654.94

± 733.42	

1422.51

± 736.45	

1017.95

± 659.10	

1038.07

± 764.50	

< 0.0001 

Comorbid conditions 

Diabetes 606	(34%)	 254	(26%)	 170	(41%)	 102	(48%)	 80	(47%)	 < 0.0001 

Hypertension 637	(36%)	 199	(21%)	 216	(52%)	 131	(62%)	 91	(54%)	 < 0.0001 

Laboratory data 

eGFR 

(mL/min/1.73

m2) 

66.30

± 37.37	

94.87

± 22.75	

46.14

± 8.57	

22.38

± 4.15	
8.72 ± 3.63	

< 0.0001	

Serum 

creatinine 

(mg/dL) 

165.57

± 190.98	

79.05

± 48.78	

138.84

± 37.38	

255.53

± 70.36	

609.85

± 322.33	
< 0.00012	

BUN (mg/dL) 8.68

± 5.95	
5.62 ± 2.40	 8.74 ± 3.51	

13.61

± 4.71	

19.74

± 8.42	
< 0.0001	

Uric-acid 

(mg/dL) 

387.20

± 112.70	

351.89

± 95.14	

423.09

± 104.73	

445.21

± 110.05	

426.65

± 149.64	
< 0.0001	

WBC count 

(mm3) 

8.21

± 9.88	
8.28 ± 7.69	

8.81

± 15.96	
7.76 ± 5.74	 6.90 ± 2.58	 0.17	



RBC count 

(mm3) 

37.47

± 291.81	

46.20

± 258.64	

42.84

± 449.91	

9.52

± 30.92	

9.65

± 49.15	
0.21	

Hemoglobin 

(g/dL) 

125.23

± 26.56	

135.62

± 22.64	

121.54

± 23.08	

109.82

± 21.30	

94.71

± 25.85	
< 0.0001	

Albumin 

(g/dL) 

33.12

± 9.84 

32.36

± 10.45 

34.01

± 8.80 

33.13

± 8.61 

35.18

± 9.70 
0.008 

AST (U/L) 23.85

± 35.50 

24.57

± 22.39 

22.26

± 12.96 

27.54

± 86.34 

19.02

± 21.97 
0.08 

ALT (U/L) 23.90

± 43.84 

27.38

± 52.82 

19.95

± 16.19 

21.97

± 48.60 

16.29

± 19.33 
0.001 

Sodium 

(mg/dL) 

138.72

± 11.85 

139.11

± 9.41 

138.91

± 12.14 

139.53

± 3.03 

135.05

± 23.78 
0.001 

Potassium 

(mg/dL) 

4.28

± 0.66 
4.11 ± 0.46 4.27 ± 0.58 4.73 ± 0.70 4.72 ± 1.12 < 0.0001 

Calcium 

(MG/dL) 

1.75

± 1.09 
1.76 ± 1.10 1.82 ± 1.05 1.78 ± 1.04 1.54 ± 1.12 0.04 

Phosphorus 

(mg/dL) 

1.09

± 0.42 
1.02 ± 0.36 1.06 ± 0.33 1.24 ± 0.41 1.36 ± 0.72 < 0.0001 

Chloride 

(mg/dL) 

102.98

± 9.36 

102.88

± 7.47 

103.38

± 9.47 

105.01

± 4.19 

100.03

± 18.32 
< 0.0001 

Cholesterol 

(mg/dL) 

5.88

± 2.84 
6.42 ± 3.03 5.57 ± 2.54 5.32 ± 2.50 4.25 ± 1.73 < 0.0001 

Triglyceride 

(mg/dL) 

2.37

± 1.99 
2.42 ± 2.03 2.46 ± 2.08 2.46 ± 1.87 1.71 ± 1.47 0.0003 

Glucose 

(mg/dL) 

27.29

± 10.68 

28.24

± 8.08 

27.39

± 11.06 

26.30

± 13.73 

22.85

± 15.81 
< 0.0001 

Urine albumin-to-creatinine ratio (mg/g) Median (IQR) 

<30 0.00(0.00

− 0.00) 

0.00(0.00

− 0.00) 

0.00(0.00

− 0.00) 

0.00(0.00

− 0.00) 

0.00(0.00

− 0.00) 
0.0002 

30-299 123.90(72.35

− 205.18) 

126.30(72.20

− 206.00) 

101.60(65.75

− 180.03) 

154.00(114.85

− 199.90) 

132.60(98.03

− 174.75) 
0.88 

≥300 2002.80(900.50

− 4000.20) 

1819.90(842.15

− 3951.30) 

2081.60(865.95

− 4163.60) 

2285.10(1352.88

− 3751.48) 

2012.35(926.98

− 3398.97) 
0.70 

Outcome 

Dialysis 257	(15%)  24	(2%) 79	(19%) 83	(39%) 71	(42%) < 0.0001 

Kidney 

Failure 
239	(15%) 24	(2%) 75	(18%) 80	(38%) 60	(47%) < 0.0001 

Transplantatio

n 
57	(3%) 11	(1%) 11	(3%) 7	(3%) 28	(16%) < 0.0001 

   

 

 

 



Performance of Deep Learning  

Performance was evaluated by five metrics: accuracy, precision, recall, AUC-ROC, 

the area under the precision-recall curve (AUC-PR), and F1 score. Each model was 

trained ten times, and the average performance and standard deviation were reported. 

In general, as shown in Table 2, the DNN model outperformed all baselines given all 

the metrics, which reached a mean AUC-ROC value of 0.8843 (3.5% higher than the 

second-best finding). Furthermore, the DNN model also achieved much higher recall 

and PR-AUC metrics compared with other models, indicating that the DNN model 

can identify the patients who will progress to ESRD within three years more precisely 

and sensitively. Combining these findings, the DNN model shows a better 

performance in capturing the non-linear relationships within the input features, and 

generates a better prediction.  

For the other models, two decision tree models – XGBoost and RF performed second-

only after the DNN model. All the linear models (LASSO, LR, RRC, and SVM-

Linear) performed more poorly than the non-linear models, which indicates that the 

non-linear functions better describe the relationships between the predicted features 

and the outcome. Compared within three linear regression classification models, RRC 

performs best, LASSO followed, and LR last, in line with the number of 

regularization terms. The SVM-RBF, which utilizes a Gaussian kernel, generates a 

higher AUC-ROC value among two SVM-based models.  

To test the robustness of each model, we trained all the models ten times with 

different random seeds, and the box plots of AUC-ROC values are shown in Figure 2. 

(c). The DNN model is the most robust (with the slightest standard deviation of 

0.0026) of all the models. Except for the two decision tree models, other machine 

learning models have similarly larger standard deviation values. 

Table 2. Performance metrics of all the models. Average performance over 10 

trainings was reported. The values in the brackets denote standard deviations. The 

bold values indicate the best performance. 

Model Accuracy Precision Recall AUC-ROC PR-AUC F1 score 

DNN 0.8266 

(0.0060) 

0.7985 

(0.0056) 

0.7804 

(0.0176) 

0.8843 

(0.0026) 

0.8533 

(0.0070) 

0.7880 

(0.0088) 

LR 0.7791 

(0.0128) 

0.7496 

(0.0345) 

0.6961 

(0.0333) 

0.8392 

(0.0119) 

0.7788 

(0.0251) 

0.7208 

(0.0199) 

LASSO 0.7919 

(0.0153) 

0.7803 

(0.0384) 

0.6893 

(0.0244) 

0.8516 

(0.0131) 

0.7975 

(0.0177) 

0.7311 

(0.0179) 

Ridge 0.7874 

(0.0140) 

0.7792 

(0.0310) 

0.6753 

(0.0290) 

0.8504 

(0.0120) 

0.7943 

(0.0209) 

0.7226 

(0.0168) 

SVM-

RBF 

0.7832 

(0.0135) 

0.7648 

(0.0367) 

0.6844 

(0.0230) 

0.8614 

(0.0105) 

0.8068 

(0.0158) 

0.7215 

(0.0165) 



SVM-

Linear 

0.7892 

(0.0123) 

0.7866 

(0.0350) 

0.6697 

(0.0269) 

0.8511 

(0.0119) 

0.7996 

(0.0180) 

0.7226 

(0.0185) 

RF 0.7966 

(0.0133) 

0.7899 

(0.0312) 

0.6828 

(0.0277) 

0.8697 

(0.0124) 

0.8115 

(0.0146) 

0.7317 

(0.0172) 

XGBoost 0.7985 

(0.0098) 

0.7701 

(0.0308) 

0.7212 

(0.0275) 

0.8688 

(0.0110) 

0.8131 

(0.0177) 

0.7440 

(0.0143) 

 

Figure 2. a. The Precision-Recall curves of all the models. b. The ROC curves of all 

the models. c. The box plots of the AUC-ROC metric of all the models. The blue lines 

and red stars denote the median and mean values, respectively. 

  



The features of the ESRD driver 

Of all the models used in this study, the DNN model with attribution algorithms, 

LASSO, Random Forest, and XGBoost can generate a score of each feature which 

denotes its importance to the positive prediction (ESRD). The score is shown as the 

normalized contribution weights in our study. As shown in Figure 3, DNN with 

attribution algorithms and LASSO can generate both positive and negative 

contribution weights, where the positive weights denote that the higher value of this 

feature, the higher risk to drive ESRD. In contrast, two decision tree models can only 

generate contribution weights without directions which indicates how much the 

feature contributes to the positive label regardless of directions. 

In this study, we define “critical features” as the features with the top 20 highest 

contribution weights (absolute value) to ESRD. The critical features identified by the 

DNN model are consistent with other intelligible/explainable machine learning 

models. For example, 14 features such as hematuria and eGFR are captured by both 

DNN-DeepLIFT and machine learning models. Two decision tree models generate 

almost the same top 20 critical features (14 in common), where a difference exists in 

the order of these features. For example, eGFR is identified as second-importance in 

RF, while it is the most important in XGBoost. Hematuria and Ucr (urine creatinine) 

are identified as the most significant positive and negative critical features by DNN-

DeepLIFT, respectively, whilst LASSO, monocytes (%) and red cell distribution 

width (RDW) are identified as the most significant positive and negative critical 

features, respectively. Serum creatinine and eGFRare identified as the most critical 

features by RF and XGBoost, respectively. Comparison within the four attribution 

algorithms shown in Figure 3. (e), except for the GradientSHAP algorithm, the other 

three algorithms generate similar results. For example, all three algorithms identified 

Ucr as the most significant negative critical feature to ESRD. However, 

GradientSHAP assumes that Ucr is positive, which is not consistent with clinical 

knowledge [35].  

Combining the critical features identified by all these models, we conclude the 

positive critical features to the progression of CKD are: hematuria, potassium, 

proteinuria, urine albumin to creatinine ratio (ACR), cystatin C. Negative critical 

features for the progression of CKD are eGFR and Ucr. 

 



 



Figure 3. Top 20 important features identified by DNN with Integrated Gradients (a), 

LASSO (b), Random Forest (c), and XGBoost (d). The contribution weights (absolute 

value is larger than 0.01) of all the features generated by five attribution algorithms 

for the DNN model (e). The full names of the abbreviation of these features are as 

follows: TP: total protein; ALT/AST: the ratio between the concentrations of the 

enzymes aspartate transaminase (AST) and alanine transaminase, aka alanine 

aminotransferase (ALT); HDL: high-density lipoprotein; LDL: low-density 

lipoprotein; Ucr: urine creatinine; ACR: urine albumin to creatinine ratio; ALP: 

alkaline phosphatase; RBC: red blood cell; RDW: red cell distribution width; ALT: 

alanine transaminase; FAA: first admission age; LDH: lactate dehydrogenase; UTP: 

urinary total protein; UMA (24h): urine microalbumin in 24 hours; I-Bil: indirect 

bilirubin; MCV: mean corpuscular volume; RDW-CV: red cell distribution width cv. 

The references of ICD-10 codes are: I70: Atherosclerosis of aorta; E11: type 2 

diabetes mellitus; E78: disorders of lipoprotein metabolism and other lipidaemias; 

I63: cerebral infarction; N05: unspecified nephritic syndrome; K29: gastritis and 

duodenitis; J18: pneumonia, organism unspecified; I10: essential (primary) 

hypertension; E79: disorders of purine and pyrimidine metabolism; D64: other 

anaemias; N04: nephrotic syndrome; N02: recurrent and persistent haematuria; N28: 

other disorders of kidney and ureter, not elsewhere classified; N20: calculus of kidney 

and ureter; M10: Gout. 

To further validate the interpretability of the DNN model for the individuals with 

different etiologies, we divided all the individuals into four categories: individuals 

with CKD caused by hypertension, diabetes, urolithiasis, or chronic 

glomerulonephritis separately. The identified critical features are shown in Figure 4. 

We found that hematuria is the most important independent risk predictor for the 

progression of diabetic nephropathy (DN) and urolithiasis. Bicarbonate was the most 

important independent risk factor for predicting the deterioration of renal function in 

hypertensive patients with renal insufficiency. Furthermore, bicarbonate, hematuria 

and proteinuria are the most important independent risk factors for the progression of 

primary glomerulonephritis. 



 

Figure 4. Top 20 important features identified by DNN with DeepLIFT for the 

individuals with different etiologies: hypertension (a), diabetes (b), urolithiasis (c) 

and chronic glomerulonephritis (d).  

Performance for people at different stages 

We divided all subjects into four groups according to their first eGFR record to test 

the predictive ability of all models for people at different stages of CKD. The 

prediction accuracy and recall of all the models in this study are reported in Figure 5. 

It is noted that all the machine learning models achieved similar performances. These 

machine learning models achieved the lowest and highest accuracy for people 

suffering stage 3, and stages 1&2, respectively, and the recall increases from stages 

1&2 to 5. In contrast, the DNN model generally outperformed other machine learning 

models in view of both accuracy and recall, except for slighter lower accuracy for 

people at stage 1&2 and much lower recall for people in stage 5. More specifically, 

for people at stage 4, the DNN model gets the highest accuracy (0.9421) and the 

highest recall (1.0) at the same time, indicating that the DNN model not only 



accurately predicts whether these people might progress to ESRD, it also identifies 

these people more comprehensively.  

 
Figure 5. The accuracy (a) and recall (b) of all the models for people with CKD at 

different stages. The stages for people with CKD are determined by their first eGFR 

record.  

 

Discussion 

Hematuria, potassium and proteinuria were screened as important independent risk 

predictors for the progression of CKD patients based on machine learning model and 

deep learning model in this study. More importantly, hematuria was the most 

important risk factor for the progression of DN and urolithiasis in this study, which is 

inconsistent with clinicians' inherent knowledge. Even though the deep learning 

model used in our study is not specifically designed, this model still achieves superior 

performance compared with other machine-learning-based models (Table 1 and 

Figures 1 and 3). The reasons behind its superior performance are the complex non-

linear relationships between the input features and output predictions. We also 

observed that in the machine-learning-based models, the non-linear models better 

describes the ESRD prediction task, such as the better performance achieved by 

SVM-RBF compared with SVM-Linear. Considered together, these findings indicate 

that the relationship between the features of CKD patients and their impacts on ESRD 

cannot be described by simple linear equations, which were commonly used in 

previous studies [36].  

LASSO, widely adopted in many medical studies [37-40], has not shown reliable 

predictive power and intelligence in this study. The critical features identified by 

LASSO include more comorbidities while ignoring widely-used markers in clinical 

treatment, such as eGFR [41]. Previous studies have shown that eGFR and the 

reduction of eGFR is a solid marker of CKD progression [41]. In contrast, the critical 

features identified by DNN-DeepLIFT, RF, and XGBoost are more consistent with 

clinical knowledge, for example, they all identify eGFR as a critical feature of the 

progression of CKD. Furthermore, RF and XGBoost also identify serum creatine and 



cystatin C (both are within top three critical features), which are used to compute the 

value of eGFR, and show a high correlation with ESRD [42]. ACR is a commonly-

used marker for clinical evaluation of CKD progress and guiding treatment [43], 

which is also identified by RF and XGBoost. This further provides confidence in 

these models. 

In previous studies, deep learning technologies are usually assumed to be black-box 

models [44], lacking interpretability even though achieving outstanding performance. 

We addressed this challenge by introducing novel attribution algorithms, such as 

Integrated Gradients and DeepLIFT. Three of four attribution algorithms achieve 

similar patterns of feature contribution weights, which is more consistent with clinical 

studies [35], except for GradientSHAP. In addition to common features such as eGFR 

and proteinuria, DNN-DeepLIFT also found some markers that were less reported in 

clinical studies compared with eGFR, such as hematuria, and considered hematuria to 

be the most important predictor of the progression of DN and kidney stones, and it is 

also an important predictor of primary glomerular disease. However, eGFR and 

proteinuria are clinically recognized as the most important independent risk factors 

for CKD progression, and hematuria is often ignored[45-47].. The reason for the 

differences may be that previous studies did not distinguish the etiology of CKD 

when evaluating the prognosis of CKD. Glomerular disease, one of the pathological 

types of CKD, can cause visible or invisible red blood cells in the urine 

(hematuria)[48]. DN is the main microvascular complication of diabetes, which can 

easily cause glomerulosclerosis and damage the glomerular filtration barrier, which 

may increase the risk of erythrocyte leakage in glomerulus [49]. In addition, 

bicarbonate and potassium are the most critical features for individuals with CKD 

caused by hypertension. Hypertension not only leads to decreased nephron mass, but 

also increases sodium retention and extracellular volume expansion [50], which may 

be the reason why electrolyte levels were found to be important factors affecting the 

progression of CKD due to hypertension. Our study may provide clinicians with a 

different perspective, hematuria may need to be considered as a more important factor 

in the progression of CKD in patients with diabetes and kidney stones, but this also 

requires larger cohort studies and external validation. 

Potassium and Ucr are identified as critical indicators screened by the three models in 

our study. Previous studies have shown that low urine potassium excretion is related 

to CKD progression [51]. The impaired function of the "sodium-potassium pump" in 

the renal tubules leads to decreased urinary potassium excretion. Wilsonet et al. found 

that the appearance of low Ucr is an important risk marker for the adverse 

consequences of CKD, which is also consistent with our research findings [35].  

Timely and accurate prediction of whether the individuals may progress to ESRD 

within a given duration is critical to determine the most appropriate treatment plan. 

Thus, for people in an early stage of CKD (stage 1-3), we should identify those who 

will progress to ESRD as soon as possible, to achieve early intervention and early 

treatment. Meanwhile, for people in the more advanced stages (stages 4 and 5), it is 

important to recommend development of good lifestyle and eating habits and to start 



using drugs such as angiotensin-converting enzyme inhibitors to slow the progression 

of CKD, in order to avoid premature initiation of hemodialysis treatment and kidney 

transplantation [52]. Among all the models used in this study, we found that people in 

stage 3 CKD were the most difficult for an accurate prediction (Figure 3 (a)), while all 

the models achieved the best performance for people in stage 4 disease. This 

phenomenon may be due to the strong compensatory ability of the kidneys [53]. Some 

people suffering from stage 3 CKD have no significant abnormalities in view of some 

clinical indicators. However, when entering CKD stage 4, compensatory mechanisms 

are overcome, and multiple test indicators showed significant changes. The DNN 

model continues to demonstrate better power compared with other machine-learning-

based models, except for people in stage 5. We took a careful look at the detailed 

predictions of these models and found that all the machine-learning-based models 

predicted that all people in stage 5 would progress to ESRD within three years, 

achieving a lower accuracy but a higher recall (nearly 1.0), which conflicts with real 

life. In contrast, the DNN model has been better trained and appeared to make more 

accurate predictions for each individual (a much higher accuracy of 0.90). The 

relatively lower recall value is possibly due to the limited number of people at stage 5 

CKD in the test dataset (n=34). 

Conclusions 

This study concluded that the DNN model has better performance in predicting the 

progression of CKD patients to ESRD compared with other machine learning-based 

models. Furthermore, it provides a potentially more important and different 

perspective for clinicians' understanding of CKD, that is, hematuria may be an 

important predictor of the progression of DN and urolithiasis. We compared the DNN 

model with other machine learning based models and found that the DNN model 

performed the best in all CKD stages.  
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