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Abstract4

Modeling and predicting protein-ligand interactions have a wide range of applications in5

drug discovery and biological research. Appropriate and effective protein feature representa-6

tions are of vital importance for developing computational approaches, especially data-driven7

methods, for predicting protein-ligand interactions. However, existing sequence-based protein8

representation methods often fail to explicitly learn the spatial features of proteins, while cur-9

rent structure-based methods do not fully investigate the ligand-occupying regions in protein10

pockets. In this work, we propose a novel structure-based protein representation method,11

named PocketAnchor, for capturing the local environmental and spatial features of protein12

pockets to facilitate protein-ligand interaction-related learning tasks. We define “anchors”13

as probe points reaching into the cavities and those located near the surface of proteins,14

and we design a specific message passing strategy for gathering local information from the15

atoms and surface neighboring these anchor points. Comprehensive evaluation of our method16

demonstrated that it can be successfully applied to detect the ligand binding sites on a pro-17

tein surface and greatly outperform existing baseline methods. Our anchor-based model also18

achieved state-of-the-art performance in the protein-ligand binding affinity prediction task and19

exhibited great generalization ability for novel proteins. Further analyses illustrated that the20

anchor features learned by PocketAnchor can successfully capture the geometric and chemical21

properties of subpockets. In summary, our anchor-based approach can provide effective pro-22

tein feature representations for developing computational methods to improve the prediction23

of protein-ligand interactions.24

1 Introduction25

Protein-ligand interactions are the molecular basis of many essential cellular activities, such as26

signal transduction, gene regulation, and metabolism [1]. Prediction and characterization of such27

interactions are important for understanding the biological functions of proteins and developing28

therapeutic agents against pathological protein targets [2, 3]. Despite the fact that many experi-29

mental techniques have been developed for measuring and analyzing protein-ligand interactions [4],30

there is a growing trend towards developing computational methods for solving this problem be-31

cause of their advantages in terms of cost, speed, and scalability [5].32

Although knowledge-based computer-aided drug design (CADD) approaches such as molecular33

docking methods have been applied to model protein-ligand interactions for decades [6, 7, 8, 9],34

emerging data-driven methods have also shown great advantages in solving such problems, mainly35

due to their high accuracy and speed [10]. In particular, an increasing number of machine learning36

and deep learning-based methods have been proposed to address different issues related to protein-37

ligand interactions, such as pocket detection (or binding site prediction) [11, 12, 13, 14], pocket38

classification [15], protein-ligand complex scoring [16, 17, 18, 19], binding affinity prediction (which39

is mainly used for virtual screening) [20, 21, 22, 23], and non-covalent interaction prediction [23].40

For these computational methods, representing the molecular features appropriately is one of the41
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key steps towards obtaining satisfactory performance. Small-molecule ligands can be efficiently42

represented by Morgan fingerprints, simplified molecular-input line-entry system (SMILES) strings,43

or graphs [24]. In comparison, proteins generally have larger sizes and more complex spatial44

structures, which makes it more challenging to design effective feature representations.45

Existing methods for representing protein features can be classified into two main categories,46

i.e., sequence-based and structure-based schemes. For sequence-based methods, the amino acid47

sequences of proteins are typically encoded by k-mers (i.e., fragments of length k), one-hot en-48

codings, and matrices containing evolutionary information from the blocks substitution matrix49

(BLOSUM) or position-specific scoring matrix (PSSM) [25, 26, 27]. Machine learning techniques,50

including representation learning, convolutional neural networks (CNNs), recurrent neural net-51

works (RNNs), and attention-based methods, can then be used to extract the intrinsic features of52

protein sequences [25, 26, 27]. Protein structures, on the other hand, contain more information53

about the spatial organization of the amino acid sequences, and thus are more directly associated54

with the corresponding biological functions and ligand binding properties. Structure-based meth-55

ods often encode proteins as contact maps (or distance maps), surface meshes, three-dimensional56

(3D) voxels, 3D points, or graphs containing spatial information [28, 29, 30, 31]. Correspondingly,57

2D and 3D CNNs, point cloud-based methods, and graph neural networks (GNNs) have been suc-58

cessfully applied to learn the structure-based feature embeddings of proteins [28, 29, 30, 31]. For59

example, DeeplyTough, a 3D CNN-based method for learning the feature embeddings of binding60

pockets, has been successfully applied in pocket matching [32]. MaSIF, which represents the pro-61

tein surface as meshes of triangles and calculates the chemical and geometric features of the protein62

surface, has shown superior performance in protein-protein interaction prediction and binding site63

classification tasks [31].64

Although these protein feature representation methods can learn useful embeddings for several65

prediction tasks, they still have certain limitations when applied to prediction tasks related to66

protein-ligand interactions. For example, the sequence-based representations generally fail to de-67

scribe the ligand binding pockets explicitly and ignore the informative 3D protein structures. On68

the other hand, existing structure-based methods focusing on the spatial arrangements of either69

protein atoms or the surface generally do not explicitly profile the local spatial regions within the70

protein pockets, whose environmental properties can actually affect the ligand-binding behaviors71

of the proteins directly.72

In this paper, we propose a novel 3D structure-based protein representation method, named73

PocketAnchor, for addressing protein-ligand interaction prediction problems. Our method em-74

ploys anchor-based protein feature representations, in which “anchors” are defined to represent the75

locations and features of the potential ligand-occupying regions. This method for the first time76

learns the substructure-level feature representations of protein pockets in an end-to-end manner.77

We design a new information aggregation strategy for anchor-based protein feature representa-78

tions, in which neighboring messages from both protein surface and atom features are integrated79

into environmental feature representations of protein pockets. Our method demonstrates superior80

performance and better generalization ability over state-of-the-art baseline methods in predicting81

ligand binding sites and protein-ligand binding affinities.82

2 Results83

2.1 PocketAnchor learns the subpocket-level features of protein pockets84

A small-molecule ligand can bind to specific surface regions of its protein partners, which are85

called protein pockets or binding sites. The protein pockets generally have different characteristics,86

including different geometric and chemical properties, compared with other non-pocket regions of87

the protein surface. These properties, which are determined by local protein substructures, can88

impact ligand binding. For example, the hydrogen-bond donors/acceptors in the pockets can89

interact with the corresponding acceptor/donor partners in the ligands, while the hydrophobic90

regions of pockets tend to interact with the hydrophobic functional groups of ligands. Therefore,91

effectively representing the features of protein pockets is a critical and fundamental step in protein-92

ligand interaction prediction.93

We use an example to intuitively compare several feature representation approaches for protein94

pockets. As shown in Figure 1a, a binding pocket in the ALK kinase domain interacts with the95

small-molecule ligand entrectinib (PDB ID: 5FTO). Note that the 3,5-difluorobenzyl moiety of96

the ligand interacts with two residues (i.e., 1127F and 1256L) of ALK [33], which are colored in97

blue and red, respectively. Sequence-based algorithms are generally used to model the amino acid98
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sequence of the protein [21, 22, 23], which in this case the distance from 1127F to 1256L covers99

129 residues (Figure 1b). Capturing these kinds of long-range and indirect associations can be100

quite challenging when using sequence-based methods. Surface-based feature representation [31],101

on the other hand, focuses on the protein surface and usually converts the protein into meshes.102

Although the straight-line distance between 1127F and 1256L is only 8 Å, the geodesic distance103

along the protein surface is about 15 Å, as shown in Figure 1c. In such a scenario, it may also104

be difficult for the surface-based methods to directly model the collaborative effects of these two105

residues in the subpocket. Similarly, other structure-based feature representations (e.g., 3D grid or106

point cloud) [15, 16, 29, 30] may face the same challenge, as they do not represent the interspace107

regions of the subpocket explicitly, which contain information important for ligand binding.108

To fill this gap, we propose using an anchor-based method for learning the feature repre-109

sentations of protein pockets, named PocketAnchor (Figure 1d), to better model the local 3D110

environments of protein pockets. More specifically, we introduce imaginary points named anchors111

to probe into every potential ligand binding region of proteins to directly bridge the components of112

proteins that are spatially associated, but remote for each other along the sequence or surface. In113

this example, the 1127F and 1256L residues can both contribute to the same nearby anchor, result-114

ing in the anchor being an effective feature descriptor representing the properties of the subpocket115

region.116

Next, we describe how to gather and represent the environmental information for each anchor117

point using our PocketAnchor module, an anchor-based protein feature encoder (Figure 1e and118

Methods). First, anchors are generated by sampling and clustering points in a specific region of119

the protein pocket or the nearby protein surface (more details can be found in Methods). Then,120

the features of the generated anchors are learned through the PocketAnchor module. In particular,121

each anchor receives messages from nearby protein atoms and surface vertices within a radius of 6 Å122

through three steps of message passing and aggregation. First, a typical message passing operation123

is performed among protein atoms, that is, each atom receives messages from its neighboring atoms124

to update its features. Here, two atoms are considered neighboring atoms if they are connected125

by a chemical bond. Then, the surface vertices containing geometric and chemical characteristics126

(calculated using MaSIF [31]) collect messages from adjacent vertices to update the corresponding127

vertex features. The adjacent vertices are linked by edges of the surface mesh, which is also128

calculated using MaSIF [31]. After several iterations of atom and vertex feature updating, the129

updated features are aggregated into nearby anchors and the features of these anchors are obtained.130

More details about the PocketAnchor module can be found in Methods. In the remaining part of131

this paper, we will introduce two applications of our anchor-based protein representation method,132

namely protein-ligand binding site prediction and binding affinity prediction.133

2.2 The anchor-based model PocketAnchor-site accurately identifies lig-134

and binding sites135

Ligand binding sites or binding pockets are defined as the locations on the protein surface where136

ligands can bind to. Identifying the binding sites of a protein is essential for designing potential137

drugs that can activate or inhibit the functional activities of the protein. In this work, we propose138

using an anchor-based model, named PocketAnchor-site (Figure 2a and Methods), to accurately139

recognize the specific regions of binding pockets on the surface of a whole protein. More specifically,140

given a protein structure as shown in Figure 2a, anchors covering all the regions near the surface141

of the protein are generated. Then, the anchor features are extracted by the PocketAnchor module142

and scored using an extra ligand binding site prediction module (Methods). Finally, the predicted143

binding pockets are defined by clustering those anchors with high prediction scores. More details144

about the PocketAnchor-site model can be found in Methods.145

Two benchmark datasets (i.e., COACH420 [34] and HOLO4k [35]) were used to evaluate the146

performances of our model and baseline methods on the binding site prediction task. The scPDB147

v2017 dataset [36] (the training data used in DeepSurf [13]), which consisted of 9,444 training148

samples after excluding the proteins homologous to those in the test set, was used as training data.149

We mainly used the DCC (i.e., distance from the predicted pocket center to its nearest ligand150

center) and DCA (i.e., distance from the predicted pocket center to its nearest ligand atom) as151

the evaluation metrics (Figure 2b); these metrics have been widely used for evaluating binding152

site prediction methods [12, 13, 14]. The DCC- or DCA-based success rate is then defined as the153

proportion of successfully predicted binding pockets (i.e., DCC or DCA < 4 Å) among all the true154

pockets. As in previous studies [12, 13, 14], the success rates based on the top-n and top-(n + 2)155

predicted binding pockets were both evaluated, where n is the number of true pockets in each156

sample.157
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We compared PocketAnchor-site with several state-of-the-art baseline methods. Two of these158

methods, DeepSite [12] and DeepSurf [13], are 3D-CNN-based models that are specifically de-159

signed for grid-based protein feature representation, while another, P2Rank [14], uses a random160

forest classifier that mainly takes the descriptors of the solvent accessible surface as input. As161

shown in Figure 2c, our PocketAnchor-site model achieved the best performance on both datasets162

according to the DCC-based success rates, and it achieved the best DCA-based success rates on163

the COACH420 dataset and the best comparative DCA-based results on the HOLO4k dataset.164

According to its definition, DCC is a stricter metric than DCA, and our model achieved 9.7% and165

7.6% increases in the success rate defined by DCC-(n+2) over the best baseline method on the166

COACH420 and HOLO4k datasets, respectively.167

To illustrate the contributions of the two sources of information employed by our model, i.e.,168

the protein atom features and protein surface features, we conducted an ablation study in which169

the model performance was evaluated when using only one source of information. As shown in170

Figure 2d, the success rates dropped when removing the features from either protein atoms or171

surface vertices, indicating the importance of both sources for predicting binding sites using our172

PocketAnchor-site model.173

We also noticed that not all pockets of a protein were occupied by ligands, resulting in potential174

missing labels in the benchmark datasets. Through a case analysis, we observed that our model175

found additional binding sites that were not labeled in the benchmark dataset. Figure 2e shows176

the prediction results for the ricin protein, in which two pockets (colored in red) were predicted177

by our PocketAnchor-site model. One pocket was the ligand binding site originally labeled in the178

COACH420 dataset (ligand colored in blue). Although the other pocket was not labeled, it is179

also a true binding site (ligand colored in green), as reported in [37]. Manual inspection found180

that this was not the only case in which a true binding site that was not originally labeled in the181

benchmark datasets was identified by PocketAnchor-site, indicating that the reported performance182

may underestimate the true success rate.183

To examine the potential factors that may affect the performance of our model, we divided all184

the test samples in the HOLO4k dataset into two groups according to the DCC-(n+2) metric with185

a threshold of 4 Å, and compared the distributions of several protein- or ligand-related properties186

between those two groups of samples (Figure 2f). For each test protein, similarity to the training187

proteins did not have much effect on the performance, indicating that the model was not overfitted188

to similar proteins. As the true pockets in the two benchmark datasets were defined by the locations189

of observed ligands in the protein structures, we also analyzed the relationship between the ligand190

properties and model performance. Predictions of pockets with smaller ligands (molecular weight191

< 200) were more likely to fail (i.e., DCC-(n + 2) > 4 Å), which suggested that the features of192

small and shallow pockets were more difficult to capture. Further more, the logP (the logarithm193

of octanol-water partition coefficient) of ligands seemed to have little effect on model performance.194

In addition, ligands in the successfully predicted pockets (i.e., those with DCC-(n + 2) < 4 Å)195

tended to have smaller B factors in the crystal structures, which may indicate that the pockets196

with more stably bound ligands were easier to detect.197

In conclusion, our anchor-based method achieved the best performance in detecting the ligand198

binding sites of novel proteins, and is thus a useful tool for identifying potential ligand-binding199

pockets in structure-based drug design, especially for protein targets without known protein-ligand200

complex structures.201

2.3 The anchor-based model PocketAnchor-affinity generalizes well to202

novel proteins in protein-ligand binding affinity prediction203

Predicting the binding affinities of protein-ligand pairs is a fundamental problem in drug discov-204

ery. In particular, binding affinities can be quantified by several affinity or activity measurements205

including dissociation constant (Kd), inhibition constant (Ki), and half-maximum inhibitory con-206

centration (IC50). Structure-based molecular docking methods have been widely used to pre-207

dict protein-ligand binding affinities [7, 8, 9]. However, they are limited by the accuracy of the208

underlying energy functions used for modeling and often require tremendous computational re-209

sources. Recent advances in deep learning techniques have enabled and promoted the development210

of protein-ligand binding affinity prediction models. Yet most of them require high-quality struc-211

tures of protein-ligand co-complexes as input [16, 18, 19], thus limiting their application. On the212

contrary, a number of sequence-based deep learning methods taking the protein sequence and lig-213

and structure as separate inputs have exhibited satisfactory performance [21, 22, 23, 38]. However,214

there is a significant drop in performance when the test proteins are not seen during training [23],215
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indicating that the current protein representation methods may not generalize well to novel pro-216

teins.217

We speculate that our anchor-based representation method could directly extract the rich218

structural information from protein pockets, and thus help alleviate the current generalization219

issue. In this work, we design an anchor-based model, named PocketAnchor-affinity, for predicting220

protein-ligand binding affinities (Figure 3a and Methods). More specifically, given a protein pocket,221

anchors covering the potential ligand binding regions in the pocket were first generated. The anchor222

and ligand features were then extracted by the PocketAnchor module and a ligand encoder module,223

respectively. Finally, the protein-ligand binding affinities were predicted through a binding affinity224

prediction module (More details can be found in Methods).225

To thoroughly evaluate the prediction performance as well as the generalization ability of our226

binding affinity prediction model, we designed three comprehensive evaluation scenarios with dif-227

ferent train-test splitting schemes (Figure 3b). In the first splitting scheme, named original CASF228

split, the core set of PDBbind v2016 was used as the test set (the same test set as in the CASF-2016229

benchmark [7]), which contained 285 compound-protein pairs related to 57 protein families, and230

the general set of PDBbind v2016 was used as the training set. The original CASF split cannot231

be applied to evaluate the generalization ability of the data-driven models, because proteins that232

were the same as or similar to those in the test set were also included in the training data, and we233

thus cannot examine the model performance on novel proteins. We employed the original CASF234

split because it has been widely applied for evaluating the machine learning-based methods on this235

task [16, 18, 19], and it can also serve as a baseline for comparing with the two additional split-236

ting schemes. To design new evaluation scenarios especially for generalization ability evaluation,237

we employed a hierarchical clustering algorithm (the same one reported in [23]) to cluster all the238

proteins in the dataset, and the training proteins located in the same clusters as the test proteins239

were all grouped into a subset named “CASF-similar”. Compared with the remaining training240

proteins, the “CASF-similar” subset exhibited significantly higher similarity with the test proteins241

(i.e., proteins in the CASF-2016 set) as shown in Figure 3c. Through visualization of the training242

and test proteins (Figure 3d), it was also obvious that the “CASF-similar” subset clustered with243

the test proteins, while the remaining training proteins were relatively well separated from both244

the test and “CASF-similar” proteins. Therefore, we introduced a new-protein split by removing245

the “CASF-similar” subset from the training data. The training data in this new-protein split246

were derived from the PDBbind v2020 general set. In addition, a third splitting scheme named247

expanded CASF was introduced by also including the CASF-similar subset in the test set to take248

full advantage of samples in the dataset. This expanded set contained 4916 test samples, which249

was much more than the 285 test samples in the original CASF and new-protein CASF splits. The250

three splitting schemes are illustrated in Figure 3b.251

We compared PocketAnchor-affinity with several state-of-the-art baseline methods for predict-252

ing protein-ligand binding affinities (Figure 3e). These baseline methods, namely DeepDTA [21],253

GraphDTA [22], and MONN [23], mainly employ SMILES or graph representations for ligands and254

sequence-based representations for proteins. Using the original CASF split, which was expected255

to be the easiest in terms of making predictions, as most of the tested proteins were also in the256

training data, almost all the methods achieved relatively high Pearson’s correlation coefficients257

(PCCs). GraphDTA, MONN, and PocketAnchor-affinity exhibited comparable results with PCCs258

above 0.7. However, we observed significant decreases in performance using the other two splits259

for all the prediction methods. Although MONN achieved the best PCC (0.781) on the original260

CASF split, its performances on the new-protein and expanded CASF splits were only 0.615 and261

0.536, with a decrease of 0.166 and 0.245, respectively.262

Making predictions using the new-protein and expanded CASF splits was generally more chal-263

lenging compared with the original CASF split, and these two splits were better for evaluating264

the generalization ability of models required in practical scenarios. The best performances on265

the new-protein and expanded CASF splits were achieved by PocketAnchor-affinity, with PCCs266

of 0.675 and 0.588, respectively (Figure 3e). PocketAnchor-affinity also exhibited the smallest267

performance decrease from the original CASF split. To compare our method with the traditional268

molecular docking methods, we also tested the performances of docking scoring functions on the269

CASF-2016 test set from [7]. The PCCs achieved by these docking scoring functions ranged from270

0.21 to 0.63 (except for ∆VinaRF20, which was trained on data that included about 50% of the test271

samples), which were lower than those achieved using our method (Figure 3e). The ablation study272

demonstrated that removing features from either protein atoms or the surface slightly impaired273

the performance of our model (Figure 3f).274

The results indicate that, compared with most data-driven protein-ligand affinity prediction275

models, which suffer from decreased performance when applied to novel proteins, our anchor-276
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based model has a much better generalization capacity in practical scenarios. This suggests that277

our model generalizes well and can be potentially applied in real-world drug discovery scenarios278

for first-in-class protein targets.279

2.4 The subpocket-level representations learned by PocketAnchor are280

associated with protein and ligand properties281

In the previous sections, we demonstrated that our anchor-based protein representation methods282

performed well on the tasks related to protein-ligand interaction prediction. We speculate that this283

performance may have benefited from the subpocket-level anchor features learned by our model,284

which encoded the ligand-binding properties of the corresponding subpocket regions. To provide285

evidence to support this hypothesis, we examined whether the learned anchor features were highly286

associated with the ligand-binding patterns of the surrounding biophysical environment.287

We first visualized the relationship between anchor features and local characteristics of protein288

pockets (Figure 4a). All the anchors that were close to a high-affinity ligand in the PDBbind-289

v2020 dataset were included in the visualization (i.e., anchors with distances to ligand fragment290

centers < 1 Å and affinities ≤ 100 nM). Among these anchors, we found that the anchor features291

were associated with certain protein surface geometric (i.e., shape index, reflecting the curvature292

of the local protein surface) and chemical (i.e., hydrophobicity) properties. In addition, the anchor293

features exhibited certain patterns related to protein atom features, such as the charge and the294

existence of hydrogen bond donors and acceptors in the amino acids close to the corresponding295

anchors.296

Next, we examined the feature distributions of the anchors that were occupied by different297

types of ligand fragments (Figures 4b). For those fragments that were widely found in the small-298

molecule ligands, including phenyl groups (SMILES: *c1ccccc1), methylene groups (SMILES: *C*),299

ether groups (SMILES: *O*), and amide groups (SMILES: *NC(*)=O), the features of anchors300

occupied by them exhibited a dispersed pattern, indicating that the preferential subpockets of301

these fragments are relatively universal. Phosphate groups (SMILES: *OP(=O)(O)O) tended to302

bind to the protein pockets in hydrophilic regions mainly because of their polarity. For certain303

fragments, such as sulfamine (SMILES: *S(N)(=O)=O) and amidine (SMILES: *C(N)=[NH2+])304

groups, the corresponding anchor features exhibited an aggregated pattern (Figure 4b). This can305

potentially be explained by the fact that these fragments are selectively bound to protein subpocket306

regions with specific properties. For example, according to Figure 4a and 4b, we assumed that the307

anchors occupied by the amidine group are likely to have a concave shape and be surrounded with308

negatively charged amino acids. Such geometric and chemical properties are well suited to these309

ligand fragments, which have only one attachment point and positive charges. To confirm our310

assumption about the properties of amidine-occupied anchors, we picked out three examples and311

examined the local subpocket environments. As expected, these anchors were located in the inner312

sides of protein pockets with concave shapes, and there was also at least one negatively charged313

amino acid (i.e., aspartic or glutamic acid) close to these anchors (Figure 4c). We also noticed314

that these anchors, though exhibiting similar patterns, were actually from three distinct proteins315

(furin, anti-dabigatran antibody, and urokinase-type plasminogen activator). This indicated that316

our model can capture similar local features from diverse proteins, suggesting that the learned317

patterns can be generalized to novel proteins for protein-ligand binding prediction.318

All these analyses demonstrated that our PocketAnchor method can effectively extract the319

subpocket-level anchor features and thus provide useful protein pocket representations for modeling320

protein-ligand interactions.321

3 Discussion and conclusion322

Selecting proper feature representation methods is crucial for developing machine learning and deep323

learning-based models for protein-ligand interaction-related learning tasks. The anchor-based rep-324

resentation proposed in this work can provide informative features for learning the intrinsic proper-325

ties of substructures in protein pockets. We have demonstrated that such a feature representation326

approach can achieve outstanding performance in two prediction tasks related to protein-ligand327

interactions. Despite the progress achieved in this work, the current anchor-based representa-328

tion scheme still has some limitations. Although our PocketAnchor-based models do not require329

co-complex structures of proteins and compounds as input, the limited number of proteins with330

solved structures may still narrow the application scope of current structure-based models. Never-331

theless, this issue can be largely resolved with recent advances in the protein structure prediction332
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field [39]. In addition, our current anchor-based representation framework depends on MaSIF [31]333

to calculate the surface features, which is relatively slow and occasionally fails for certain proteins.334

The generation of this framework can possibly be improved in the future by using alternative sur-335

face feature extraction strategies, e.g., an end-to-end feature learning strategy [40] for generating336

surface vertices.337

4 Methods338

4.1 Anchor-based protein pocket representation339

Here we introduce “anchors”, which are points sampled in the three-dimensional (3D) space within340

the protein pockets to represent the surrounding subpocket environment. More specifically, given341

a protein structure, evenly distributed grid points with an interval of dg are first sampled near the342

protein surface, and only those points with distances to the nearest protein atoms within the range343

of 2–4 Å (which are estimated according to the observed distribution of the distances between all344

pairs of ligand and protein atoms in the training dataset) are kept. Then, the remaining grid points345

are clustered using an agglomerative clustering algorithm [41] with the maximum linkage criterion346

and a distance threshold of da. Finally, the centers of all the clusters are defined as anchors. When347

predicting the ligand binding sites, the anchors are sampled to cover the full protein structures, and348

the distance parameters are set as dg = 2 Å and da = 6 Å. When predicting the binding affinities,349

the anchors are sampled to cover only the pocket region, which is defined by starting from the350

ligand center and then expanding to a maximum of 800 grid points, regardless of non-connecting351

points with distances larger than 8 Å to the nearest points considered. In this task, we choose352

dg = 1 Å and da = 4 Å to describe the pocket regions more precisely.353

4.2 The PocketAnchor module354

In this section, we describe how to obtain the anchor features using our PocketAnchor method.355

Basically, each anchor gathers the information from protein atoms and the surface within a sphere356

of radius 6 Å to represent the corresponding subpocket environment. More specifically, given a357

protein, let ai, i = 1, · · · , na denote the anchors, uj , j = 1, · · · , nu denote the atoms of the358

protein, and sk, k = 1, · · · , ns denote the vertices of the surface mesh, where i, j, and k stand for359

the indices, and na, nu, and ns stand for the numbers of anchors, atoms, and surface vertices in the360

protein, respectively. Let Fa, Fu, and Fs denote the feature vectors of anchors, atoms, and vertices,361

respectively. The initial feature vector F
(0)
uj ∈ R

131 of an atom uj is defined as a concatenated362

vector containing one-hot encodings of atom elements, residue types, secondary structure elements,363

and other properties, namely B factor, formal charge, Van der Waals radius, number of protons,364

geometric type, and valence, obtained using PyMOL [42]. The initial feature vector F
(0)
sk ∈ R

5
365

of a surface vertex sk is defined as a vector containing its geometric and chemical properties, as366

in MaSIF [31]. These features are learned and updated with message passing neural networks367

(MPNNs). Specifically, the protein atom features Fuj
of atom uj and the surface features Fsk of368

vertex sk are updated through MPNNs (also see Figure 1e), according to the following formulas:369

F (h)
uj

= MPNNh
u

(

F (h−1)
uj

,
{

F (h−1)
ui

, ui ∈ Nru(uj)
}

)

,

F (h)
sk

= MPNNh
s

(

F (h−1)
sk

,
{

F (h−1)
si

, si ∈ Nrs(sk)
}

)

,

where MPNNh
u(·) and MPNNh

s (·) stand for the MPNN layers for updating atom and surface fea-370

tures, respectively, the superscript h = 1, · · · , H stands for the layer number in the MPNNs, H371

stands for the number of message-passing iterations, and Nr(·) stands for the set of neighbor-372

ing atoms, vertices, or anchors. Then, the atom and surface features from all the iterations are373

combined, that is,374

Fuj
= Wu · Cat

(

F (0)
uj

, · · · , F (H)
uj

)

, Fsk = Ws · Cat

(

F (0)
sk

, · · · , F (H)
sk

)

,

where Wu and Ws stand for the learnable parameters and Cat(·, ·) stands for the concatenation375

operation. Finally, the anchor features Fai
of anchor ai are aggregated from both the protein376

atoms and surface, that is,377
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Fai
= Cat

(

∑

uj∈Nru(ai)

Fuj
· wij ,

∑

sk∈Nrs(ai)

Fsk · wik

)

,

wij =
exp(6−Dist(ai, uj))

∑

uk∈Nru(ai)
exp(6−Dist(ai, uk))

, wik =
exp(6−Dist(ai, sk))

∑

sj∈Nrs(ai)
exp(6−Dist(ai, sj))

,

where wij and wik stand for the normalized distances as weights, Dist(·, ·) stands for the Euclidean378

distance function, and exp(·) stands for the exponential function.379

4.3 The ligand feature encoding module380

The ligand features can be represented hierarchically at three levels, i.e., the global, fragment, and381

atom levels. Fragments can be generated by splitting the ligands and breaking the non-ring single382

bonds as in [43]. A ligand feature encoder module is adopted from the graph convolution module383

of MONN [23] and slightly modified in this work to learn the three levels of ligand features. More384

specifically, given a ligand, let gi, i = 1, · · · , ng denote its fragments, and tj , j = 1, · · · , nt denote385

the atoms in the ligand, where i and j stand for the indices, and ng and nt stand for the numbers386

of fragments and atoms in the ligand, respectively. Let Fc, Fg, and Ft denote the global, fragment,387

and atom-level feature vectors, respectively. The initial feature vector of an atom is defined as a388

concatenated vector containing one-hot encodings of atom elements, atom degrees, valence, and389

aromatic features. Then, the atom features Ftj and global features Fc are extracted and updated390

through the graph warp modules as in [23]. The features Fgi of fragment gi are calculated by391

averaging over all the atoms within the fragment, that is,392

Fgi =
1

|{tj |tj ∈ gi}|

∑

{tj |tj∈gi}

Ftj .

4.4 The ligand binding site prediction module393

The ligand binding site prediction module takes the anchor features extracted by PocketAnchor as394

input. More specifically, given an anchor ai, its features Fai
are first converted into an embedding395

space through linear projection followed by a leaky ReLU layer, that is,396

F
(site)
ai

= LeakyReLU

(

W
(site)
a

· Fai
+ b

(site)
a

)

,

where the superscript “site” stands for the notation of ligand binding site prediction, LeakyReLU(x) =397

max (0.1x, x) stands for the leaky ReLU activation function, and W
(site)
a and b

(site)
a stand for the398

learnable parameters of the linear projection layer. The binding site score ŝai
is then predicted399

through a linear projection followed by a sigmoid function, that is,400

ŝai
= σ(W (site) · F (site)

ai
+ b(site)),

where W (site) and b(site) stand for learnable parameters, and σ(·) stands for the sigmoid function.401

4.5 The binding affinity prediction module402

To predict the binding affinity between protein p and ligand compound c, the affinity prediction403

module utilizes the extracted features from both the atom level (i.e., protein and ligand atoms)404

and substructure level (i.e., protein anchors and ligand fragments). More specifically, at the atom405

level, the protein atom features Fui
, the ligand atom features Ftj , and the ligand global features406

Fc are first converted into the corresponding embedding spaces through linear projection followed407

by a leaky ReLU activation function, that is,408

F (atom)
ui

= LeakyReLU

(

W (atom)
u · Fui

+ b(atom)
u

)

,

F
(atom)
tj

= LeakyReLU

(

W
(atom)
t · Ftj + b

(atom)
t

)

,

F (atom)
c = LeakyReLU

(

W (atom)
c · Fc + b(atom)

c

)

,
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where the superscript “atom” stands for the notation of the atom-level features, LeakyReLU(x) =409

max (0.1x, x) stands for the leaky ReLU activation function, and W
(atom)
u , W

(atom)
t , W

(atom)
c ,410

b
(atom)
u , b

(atom)
t , and b

(atom)
c stand for the learnable parameters of the linear projection layers. The411

atom features are then updated through a self-attention layer to account for the importance score412

of individual atoms, that is,413

F̂ (atom)
u =

∑

ui

F (atom)
ui

· wi, F̂
(atom)
t =

∑

tj

F
(atom)
tj

· wj ,

where wi and wj stand for the weights for individual features, which are calculated as follows:414

wi = Softmax

(

W (att)
u · F (atom)

ui
+ b(att)u

)

, wj = Softmax

(

W
(att)
t · F

(atom)
tj

+ b
(att)
t

)

,

where Softmax(xi) = exp(xi)/
∑

j exp(xj), and W
(att)
u , W

(att)
t , b

(att)
u , and b

(att)
t stand for the415

learnable parameters of the self attention layers. The atom-level features are then obtained through416

the outer product between protein atom features and ligand atom features, that is,417

F (atom) = F̂ (atom)
u · Cat

(

F̂
(atom)
t , F (atom)

c

)⊤

.

The substructure-level features F (sub) are obtained in a similar way by using the protein anchor418

features Fai
, the ligand fragment features Fgj , and the ligand global features Fc. Finally, the419

binding affinity â is predicted through a linear projection of the above feature vectors:420

â = W (aff) · Cat

(

F (atom), F (sub)

)

+ b(aff),

where W (aff) and b(aff) stand for the learnable parameters.421

4.6 Data processing and evaluation for the ligand-binding site prediction422

task423

We used the scPDB v2017-derived dataset [44] to train our PocketAnchor-site model as was done424

for DeepSurf [13]. During the training process, the anchors within a radius of 4 Å from any ligand425

atom were assigned as positive training samples while the rest were assigned as negative ones.426

During the evaluation process, to determine the centers of binding pockets based on the predicted427

scores of anchors, we first selected the anchor points with prediction scores that were two standard428

deviations above the average score for each protein. Then, we used a greedy strategy to cluster the429

selected anchors. That is, we started from the anchor with the highest score and then expanded430

the cluster by including those selected anchors within 3 Å. The above process was repeated until431

no anchor was left. The averaged anchor coordinate of each cluster was marked as a pocket center,432

and all the pocket centers in a sample were then ranked according to the number of anchors within433

the corresponding clusters.434

To evaluate the performance of PocketAnchor-site and baseline methods on the ligand-binding435

site prediction task, we used two benchmark datasets, COACH420 [34] and HOLO4k [35], as test436

sets, which contained 420 and 4,009 protein-ligand complexes, respectively. Homologous proteins437

in the benchmark test datasets were removed to prevent data leakage (20 and 475 samples were re-438

moved from COACH420 and HOLO4k, respectively). Two proteins were considered as homologous439

if their similarity score, calculated using the sequence alignment obtained by the Smith-Waterman440

algorithm [45], was greater than 0.9 [13]. The true pocket labels were defined based on the ligands441

provided from the original datasets [34, 35], and 181 samples that contained no ligand match-442

ing the list in HOLO4k were removed. The samples that failed to be processed and predicted443

by any method were also removed for fair comparison. Specifically, for the COACH420 dataset,444

PocketAnchor-site, P2RANK, DeepSurf, and DeepSite failed to generate prediction results for 0,445

4, 7, and 3 samples, respectively; for the HOLO4k dataset, the numbers were 7, 1, 853, and446

21, respectively. The final numbers of samples evaluated for COACH420 and HOLO4k were 391447

(511 pockets) and 2,523 (5,150 pockets), respectively. The prediction results of DeepSite [12] and448

P2Rank [14] were obtained from P2Rank [14], and the prediction results of DeepSurf were obtained449

using the trained model provided in the GitHub repository [13].450
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4.7 Data processing and evaluation for the binding affinity prediction451

task452

As described in the main text, we employed three train-test splitting schemes to evaluate the453

performance of PocketAnchor-affinity and baseline methods on the protein-ligand binding affinity454

prediction task. In the original CASF split, the PDBbind v2016 general set was used as the455

training set and the corresponding core-set was used as the test set [7]. The samples appearing in456

the test set were removed from the training set. For the new-protein and expanded CASF splits,457

the proteins in the PDBbind v2020 dataset [46] were clustered according to the similarity scores458

calculated using the Smith-Waterman sequence alignment algorithm [45]. Proteins with sequence459

similarities greater than or equal to 0.7 were assigned to the same cluster. The samples in the460

PDBbind v2020 dataset were used as the training set, and the proteins in the same clusters as461

those in CASF2016 were removed. The affinity label of a protein-ligand complex was normalized462

by − log10(affinity)[mol/L].463

For each protein-ligand pair, the protein and the ligand were pre-processed separately. The464

ligand information was extracted from the PDBbind v2020 database [46]. For each ligand, the465

fragments were obtained using RDKit [47] following the same rules as in [43]. For proteins, the466

protein-ligand complexes were first downloaded in .pdb format from the Protein Data Bank (PDB,467

https://www.rcsb.org). Then, all the solvent molecules (e.g., water) and ligands in the structures468

were removed. For each protein, the nearest biological assembly to the ligand center was obtained,469

and the atom and surface features were extracted using PyMOL [42] and MaSIF [31], respectively.470

The biological assembly information was retrieved from the lines of the .pdb files starting with471

“REMARK 350”.472

For the baseline methods, we followed the same pre-processing protocols and recommended473

hyper-parameters as in the original papers. Note that since the protein sequences were not provided474

by the PDBbind database, the sequences retrieved using distinct schemes might be different. Here,475

we trained the sequence-based baseline models using protein sequences from either PDB or the476

Uniprot database separately and reported the best performance. More specifically, to extract a477

protein sequence from its structure file obtained from the PDB, we first selected a chain with478

the largest number of atoms within the 8 Å neighborhood of the ligand. Then the sequence of479

the chain was used as the PDB sequence, in which the non-standard residues were marked with480

“X”. The sequences with non-standard residues making up more than 50% of the total length481

were considered abnormal and thus removed. We also adopted the mappings from the PDB IDs482

to UniProt IDs provided by PDBbind [46], and extracted the protein sequences from the Uniprot483

database [48]. Those samples that failed during the pre-processing procedure were removed.484

4.8 Training and hyper-parameter selection485

For the ligand binding site prediction task, cross-entropy loss was used for training. For the protein-486

ligand binding affinity prediction task, mean-square-error loss was employed. For each task, 20%487

of the training data were separated and used as a validation set in each repeat. The validation488

set was selected randomly for the original CASF split. For the new-protein and expanded CASF489

splits, the validation set was chosen based on the protein clusters, ensuring that the protein clusters490

were distinct from those in the training set. Because of a large number of hyper-parameters in our491

model, the hyper-parameters were selected empirically or based on the validation performance. In492

particular, the number of epochs was determined using an early stopping technique [49] with a493

patience parameter of 20 epochs on the validation set. In other words, the learning process would494

stop when the performance measured on the validation set was no longer improved after 20 epochs.495
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Figure 1: Illustrations of different feature representations of protein pockets and a description
of the PocketAnchor module for obtaining anchor-based protein feature representations. a. An
example of a protein-ligand complex (PDB ID: 5FTO). Residues close to the 3,5-difluorobenzyl
moiety of the ligand are colored by amino acid type (the colors of amino acids are consistent in
a–e). b. Protein feature representation based on the amino-acid sequence. c. Protein feature
representation based on protein surface descriptors. The geodesic path from 1127F to 1256L along
the protein surface is shown. d. Protein feature representation based on anchors (green balls),
which are sampled from points within the protein pocket (see the main text for more details).
Anchors can bridge the essential residues contributing to the properties of the local pocket regions.
e. Deriving the anchor feature representations using the PocketAnchor module. The protein pocket
is represented by anchors, whose features are aggregated from protein atoms and the surface in
three steps.
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Figure 2: PocketAnchor-site accurately predicts the ligand binding sites of proteins. a. The
architecture of the PocketAnchor-site model (see the main text and Methods for more details).
b. Illustration of the DCC and DCA criteria. c. Performance of PocketAnchor-site and baseline
methods on the binding site prediction task, evaluated in terms of the success rates determined
according to the criterion DCC or DCA < 4 Å. DCC/DCA-(n) and DCC/DCA-(n+ 2) stand for
the DCC/DCA scores measured using the top-n and top-(n+2) predicted binding pockets for each
sample, respectively, where n stands for the number of pockets in the sample. d. Performance
of the PocketAnchor-site model compared with models without information from either protein
surface or atom features, evaluated in terms of the DCC-based success rates as in c. e. An
example of a binding site prediction result. The ligand binding sites colored in red on the ricin
protein (PDB ID: 1BR6) were predicted by the PocketAnchor-site model. The ground truth ligand
from the COACH420 benchmark dataset is colored in blue. The other binding site predicted by the
PocketAnchor-site model was previously reported to be the binding site for another ligand [37],
which is colored in green (PDBID: 6URW). f. Distributions of protein or ligand properties for
two groups of samples, divided according to the DCC-(n + 2) criterion with a threshold of 4 Å.
The maximal similarity to the training proteins, ligand molecule weight, ligand logP, and ligand B
factor are illustrated. The curves of the corresponding estimated probability distribution functions
are shown.
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Figure 3: Performance evaluation of the protein-ligand binding affinity prediction task. a. The
PocketAnchor-affinity model architecture (see the main text and Methods for more details). b.
The definitions of the three train-test splitting schemes. c. The distribution of similarity scores
for proteins in different subsets. For a protein, the corresponding similarity score is defined as
its maximum sequence similarity with all the proteins in the CASF-2016 set. d. Visualization of
different subsets of proteins in the PDBbind dataset using t-SNE. e. Performance of PocketAnchor-
affinity and baseline methods on three splitting schemes for the protein-ligand binding affinity
prediction task, measured in terms of Pearson’s correlation coefficients (PCCs). The error bars
indicate the standard deviations over five repeats. The shaded regions for the original CASF
and new-protein CASF splits denote the range of performances achieved by the docking scoring
functions obtained from [7]. f. Performance of the PocketAnchor-affinity model compared with
the models without information from either protein surface or atom features, evaluated in terms
of PCCs as in e.
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Figure 4: PocketAnchor can learn the ligand-binding characteristics of protein subpockets. a.
Visualization of anchor features using t-SNE. Colors indicate the protein properties, namely the
shape index of protein surface, hydrophobicity, amino acid charge types, and hydrogen bond types.
The former two properties were obtained by averaging the corresponding properties of surface
points within a 6 Å distance from the anchor, while the latter two were collected from the amino
acid closest to each anchor. Here, the “H-bond acceptor” group represents the amino acids that
can only serve as hydrogen bond acceptors and do not contain any hydrogen bond donor atoms.
b. Visualization of anchor features using t-SNE, with those anchors occupied by specific types of
ligand fragments colored in red. The diagram and SMILES strings of these ligand fragments are
shown. The region covering the majority of the colored anchors in the last example is magnified,
and three anchors from three distinct samples are marked in different colors. c. The three selected
anchors from the zoomed-in panel in b, in which three anchors from different samples were occupied
by a specific ligand fragment. Only the corresponding ligands and the residues located within 4
Å of the selected anchors in the protein pockets are shown.
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