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Abstract
Urban sprawl, also widely known as urbanization, is one of the signi�cant problems in the world. This research aims to assess and predict the
urban growth and impact on Land Surface Temperature (LST) of Lahore as well as Land-Use and Land-cover (LULC) with a Cellular–
Automata–Markov–Chain (CA–Markov–Chain). LULC and LST distributions were mapped using Landsat (5, 7, and 8) data from 1990, 2004,
and 2018. Long–term changes to the landscape were simulated using a CA-Markov model at 14-year intervals from 2018 to 2046. Results
indicate that the built-up area was increased from 342.54 (18.41%) km2 to 720.31 (38.71%) km2. Meanwhile, barren land, water and vegetation
area was decreased from 728.63 (39.16%) km2 to 544.83 (29.28%) km2, from 64.85 (3.49%) km2 to 34.78 (1.87%) km2 and from 724.53
(38.94%) km2 to 560.63 (30.13%) km2 respectively. In addition, Urban Index, a non-vegetation index, accurately predicted LST, showing the
maximum correlation R2 = 0.87 with respect to retrieved LST. According to CA–Markov Chain analysis, we can predict the growth of built-up
area from 830.22 km2 to 955.53 km2 between 2032 and 2046, based on the development from 1990 to 2018. As Urban Index as the predictor
anticipated that the LST 20–23°C, and 24–27°C, regions would all decline in coverage from 5.30–4.79% and 15.79–13.77% in 2032 and 2046,
while the temperature 36–39°C regions would all grow in coverage from 15.60–17.21% of the city. These �ndings are signi�cant for the
planning and development division to ensure the long-term usage of land resources for urbanization expansion projects in the future.

1. Introduction
According to the United Nations report of "World Organization Prospects 2014", almost half of the global population, approximately 3.7 billion,
lives in cities (Kowalski, 2018). It is projected that the current population decline and unplanned population development will hit 66%
(2.5 billion) by 2050 (Caselles et al., 1991; Lopez et al., 2001; Xue and Su, 2017). In recent decades, The rise in urban areas is about 90% of the
population in Asia and Africa, in which Asia has a population of around 60% (4.5) billion (Reddy et al., 2014). This rapid population
development is a historically anomalous problem because just 15% of the population living in Western Asian Regions by 1950 has risen to 35%
by 2000 and is expected to a 54% increase by 2030 (Ahmed and Ahmed, 2012). It is also projected that from 2017 to 2050, it will add
750 million people and make Asia the second most signi�cant contributor to the world's population. In developing countries, the urbanization
rate is comparatively low. In 2000, 76% of people lived in urban areas, and by 2030, it is expected to rise to 83% (Walter, 2004; Wang et al.,
2010). In 2000, just 40% of the population lived in cities and developed countries, increasing to 57% by 2030. Despite this rapid population
increase in less established cities areas, it is estimated that the urbanization rate will double with a growth rate of 2.4% per annum between
2000 and 2030. However, the urbanization rate is expected to decline from 0.83–0.41% in developing countries between 2000 and 2030 (Gilani
et al., 2020; Iram et al., 2012).

Despite their success in predicting trends of population development, only one analysis used indices of land cover to estimate projected
distribution of Land Surface Temperature (LST) (Saitoh et al., 1996). While, the Normalized Difference Vegetation Index (NDVI) has been used
to estimate residual city typical ecosystems and prospective LST values, the NDVI is thought to soak into large vegetation fractions, resulting in
minimal temperature variation. In previous research, the Normalized Differentiate Built-up Index (NDBI) and Impervious Surface Areas (ISA) are
better predictors of LST than the NDVI (Sobrino et al., 2013). The NDVI was calculated from a single satellite image (Ahmed et al., 2013), which
is a method that is vulnerable to error because the season might vary greatly depending on the type of land cover. It is also necessary to alter
the methodology by including seasonal estimates of land cover indices. Other analyses used linear regression to calculate LST on several
indices, resulting in the NDVI, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Area Index (NDBI), Urban Index (UI), Built-up-
Index (BI), and Normalized Differentiate Water Index (NDWI) (Hasanlou and Mosto�, 2015). If several variables are included in a linear
regression model, and the collinearity of the explanatory factors is high, the precision of the resulting dependent variable may be compromised
(Ahmed et al., 2013). Environment predictions are as signi�cant as they are dependable, but they suggest that a method for appropriately
estimating LST without collinearity errors must �rst be identi�ed.

Markov Chain Models (Ahmed and Ahmed, 2012; Araya and Cabral, 2010) have been used to predict LULC and urban expansion changes.
Markov Chain analysis for Doha, Qatar, predicted a 21% increase in built-up area growth by 2020 (Hashem and Balakrishnan, 2015).
Temperature predictions are made using both a global and a local model, which excludes metropolitan trends and considers their impact
(Saitoh et al., 1996; Wilson, 2020). These models require further downscaling because they are at a coarse resolution (Hoffmann et al., 2012).
Furthermore, global and regional models highlight temperature changes caused by greenhouse gas emissions, including temperature changes
due to the impact of LULC changes. A Markov Chain-dependent model provides insights into possible thermal surface features due to changes
in vegetation (Ahmed et al., 2013).

The research is suitable for predicting LST changes at the same spatio-temporal resolution with changes in LULC patterns, hence is able to
model local and regional processes such as urban surface dynamics. Because of its prior successes in quantifying LULC alteration-related
�exibility, effects, parsimony, and usefulness, the Markov Chain model has enormous predicting possible for future LST. By looking at past
urban development patterns, this research can help us better understand how to predict future thermal city conditions. Many studies worldwide
imply that development contributes to LST changes, but Pakistan currently lacks a body of knowledge on the subject. For the most part, the
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country's meteorological research has relied on large-scale climate models and in-situ meteorological data, focusing primarily on precipitation
and its agricultural implications (Charles et al., 2014; Manatsa et al., 2017; Mazvimavi, 2010). This area has had very few attempts to use
remote sensing technology for climate research, especially at the microclimate levels found in metropolitan settings. Furthermore, urban
development estimations based on remote sensing have focused on assessing the latest alterations in the LULC over the long term (Ahmed and
Ahmed, 2012).

In Punjab, Pakistan, population development is rising and is weaker than in the other provinces. Lahore is the second-largest city in Pakistan
after Karachi. Economic growth is increasing steadily due to certain factors such as industrialization and enhanced residential facilities that are
a pull factor in the city's urban expansion (Nowak and Walton, 2005). Therefore, the rapid growth pace, its effect on vegetation, agricultural land,
and quick change identi�cation in Lahore city require testing. Local government and community planning can bene�t this town's sustainable
growth work. This work is essential to �gure out the change in urban areas, the transformation of different land uses, and change detection of
the urban sprawl in twenty-eight years. This study identi�es the landcover-indices ( NDVI, NDWI, SAVI, NDBI, and BI) using Landsat (TM, ETM+,
and OLI) data representing correlations between LST and LULC changes in Lahore city from 1990–2018. Furthermore, the research found out
which speci�c indices work well with the CA-Markov-Chain to predict the LULC and LST.

2. Material And Methods

2.1. Study area
Pakistan's second-largest city is Lahore which is located between 31°15′ to 31°45′N and 74°01′ to74°39′ E. According to shape�le, the estimated
area is 1860.55 km2, with 217 meter elevations above sea level (Fig. 1) (Mumtaz et al., 2020). The District of Sheikhupura is in the north and
west of the city of Lahore, bounded by Wagha at east and the district of Kasur in the south. Lahore became the capital of the province of West
Punjab as the Indian subcontinent achieved independence in 1947. In 1955 it became the capital of the newly created province of West
Pakistan which in 1970 was known as Punjab (Mosammam et al., 2017). Lahore has a tropical semi-arid climate with humid, long, and low
summers, dry winter, monsoon, and dust storms. Lahore's environment becomes intense during the May, June, and July as temperatures
increase to 36–42℃. The monsoon seasons commence from late June until August, with heavy rainfall throughout the northern and western
provinces. The highest average temperature in town was reported on May 30, 2013, at 48.3 ℃ (118.9°F) and on June 10, 2016, 48 ℃ (118°F)
(Tariq et al., 2020). The heat index in direct sunlight was recorded at 55°C (131°F) when the weather service in the shade o�cially recorded this
temperature. The minimum temperature reported at Lahore city on January 13, 1967, is − 1.1 ℃ (30°F). The maximum reported 24-hour rainfall
in the city is 221 mm (8.7 in), which occurred on August 13, 2008 (Tariq et al., 2020).

2.2. Data acquisition and Image Processing
Remote Sensing data combined with satellite imagery provides spectral, spatial, and temporal analysis for urban sprawl investigations and
identi�es LULC, LST, and spectral indices. Medium resolution multispectral satellite images were needed to measure the extent of the urban
sprawl, LST, and LULC transition. Therefore, Landsat 5, 7, and 8 imagery were obtained from the online site of USGS-EROS (United States
Geological Survey-Earth Explorer) website (https://www.usgs.gov/) with a cloud cover of less than 10% (Tariq and Shu, 2020). Table 1 displays
the path, row, and acquisition dates of downloaded USGS datasets, accessible and readily available. We used the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module to make the atmosphere correction in ENVI v5.4 (Bernstein et al., 2005). Image
analysis was performed after retrieving the images from the satellite, and image processing was conducted to use such images. Layer staking
had been the �rst step in image processing. In ERDAS Imagine 2016, layer staking was performed to unite all the bands to shape a multispectral
image. Landsat 7 data has missing data in straps form that should be removed before use. The 2004 satellite images SLC re�ectors collected
information from the surrounding pixels focal analysis from the spatial toolbox to �ll the missing data (Weng et al., 2007). Land surface
variations were predicted using satellite images from 1990, 2004, and 2018. These data were used to make the actual prediction. We used the
same satellite images for the model e�ciency according to Table 1. LULC and LST distributions were predicted using only one satellite image
each year, which allowed the calculation of LST and non-urban indices. 

Table 1
Landsat and ancillary data were used in this study.

Acquisition Date Path Row Sensor AT (°C) RH (%) Processing Level

1990-05-29 150 038 TM 34.4 54.0 TIER 1

2004-05-30 150 038 ETM+ 36.3 56.0 TIER 1

2018-06-16 150 038 OLI/TIRS 38.7 57.0 TIER 1

(Note: AT: Air Temperature, RH: Relative Humidity).
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2.3. Land Use Land Cover (LU LC) mapping and accuracy assessment
Statistical grouping or grouping data image values (spectral pattern identi�cation) into thematic groups or feature groupings are de�ned as
classi�cation. This technique aims to assemble and position all pixels with the same value in a single category/class. LULC maps for 1990,
2004, and 2018 were obtained from Landsat data using Maximum Likelihood Classi�cation (MLC) algorithms. Four LULC categories: barren
land, vegetation, built-up area, and water were acquired from each image as shown in Table 2 (Mushore et al., 2017). 

Table 2
LULC types from the �eld survey in Lahore City.

LULC types Details

Barren land Areas with very low vegetation, shrubs, sparse grass and soil areas.

Vegetation Areas covered with agriculture, grasslands, and thick trees characterized by high vegetation.

Built up area Areas covered with residential, industrial and commercial activities.

Water/Wetland Areas covered with wetland, lakes, ponds, river and all types of water bodies.

Assuming customarily distributed statistics for each class in each band, MLC estimates the likelihood that a given pixel belongs to one of many
classes. ERDAS Imagine 2016 was used to classify the land use categories. In the training stage, analysis for each class was used to develop a
statistical characterization signature editor (Hoffmann et al., 2012). These signatures are then used for supervised classi�cation through
signature allocation tools in the second stage. The �nal �ndings were then analyzed to examine twenty-eight years of improvements in LULC
(Xu et al., 2013). We identi�ed the changes of LULC and crossed match with Google Earth images. City shape�le were obtained from the Urban
Unit for 1990, 2004, and 2018. They were checked by Google Earth, marked as built-up, and then exported to Arc Map 10.8 (Yuan and Bauer,
2007). Classi�ed images for each year were assessed and displayed urban sprawl transition with its corresponding city boundary.

Thirty representative GPS locations per class were collected during an April-June 2018 �eld survey. We used training (70%) and testing (30%)
samples for the accuracy assessment of LULC. Using shape�les of each sample instead of points increases the accuracy of validation
samples. LULC data from earlier research, aerial photographs, and topographical maps were used to generate ground-truth regions for
assessing classi�cation accuracy. Kappa coe�cients (K) and Overall Accuracy (OA) were employed to evaluate the accuracy of LULC
classi�cations. Every land cover class in Lahore was analyzed using post-classi�cation (Jensen, 1983) variations between 1990 and 2018.
Overall accuracy was determined by separating the cumulative number of pixels correctly identi�ed from the cumulative number of pixels
(Mumtaz et al., 2020) that could be written as N and Xii. Therefore, Xii = number of correctly labeled pixels, or the diagonal value, and N =
cumulative number of pixels in the matrix. Kappa statistics incorporate the off-diagonal elements of the error matrices (Mushore et al., 2017). It
was calculated by using the following Eq. 1:

K =
N∑ i

i=1Xii − ∑r
i=1(xi+ × x +i)

N2 − ∑r
i=1(xi+ ∗ x +i)

(1)

Where r is the number of rows in confusion matrix Xii the number of observations in row i and column i (along the major diagonal); xi+ is the
marginal total of row i; x +iare the marginal totals of column i and N is the total number of observations.

2.4. Estimation of LST using Landsat data
Thermal bands from Landsat 5 and 7 (B# 6) and Landsat 8 (B# 10) were used to determine LST for each year. Images taken in May and June
were utilized to minimize the impact of seasonality. Landsat 8 has two thermal bands (B10 and B11). In this study, We used band 10 to
estimate LST (Datta et al., 2017). To acquire LST from brightness temperature maps, digital values have to be converted to radiances. Radiance
and emissivity data were used to adjust brightness temperature calculations (Jimenez-Munoz et al., 2014; Sobrino et al., 2004; Tariq et al.,
2020). When converting digital numbers (DN) to radiance (Lλ), an ArcMap 10.8 addition called the Re�ectance toolbox was utilized. The utility
used metadata �les to extract parameters and apply them to thermal data. Eq. (2), a single-channel Landsat estimate of Planck's blackbody
temperature, was used to obtain TB from thermal radiance (Deilami et al., 2018; Stathopoulou et al., 2006).

The Landsat Surface Temperature (LST) was calculated using geometrically corrected Landsat satellite images taken in 1990, 2004, and 2018.
The LST was calculated using Eq. 2 (Weng et al., 2004). For each pixel, digital number (DN) was converted into the radiance (Lλ) as follows:
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Lλ =
Lmaxλ − Lminλ

QCalmax − QCalmin
× (QCal − QCalmin) + Lminλ(2)

where Lmaxλ and Lminλ are the maximum and minimum radiance values, QCALmax the maximum quantized calibrated pixel value
(corresponding toLmaxλin DN (255)), QCALminis the minimum quantized calibrated pixel value (corresponding to Lminλ in DN (01))
respectively; and their values were available from the metadata of the Landsat images. Secondly, the Lλ values were converted into brightness
temperature (TB) as follows:

TB =
K2

ln
K1

Lλ
+ 1

− 273.5(3)

Where K1 and K2 are constant and available from the United States Geological (See Table 3). From every thermal band, we identi�ed from
spectral radiance and black body the pixel-based land surface emissivity map (ε), as developed (Yang, 2004) and also applied recently
(Mushore et al., 2018). Ultimately, real LST was obtained using Eq. (3) after emissivity correction (ε) was applied to the brightness temperature
(Weng et al., 2007). 

Table 3
Thermal band rescaling and calibration constants of Landsat data were used in this

study
Sensor K1 Watts (meter2 *ster *µm) K2 (meter2 *ster *µm) Rescaling

TM 607.76 1260.56  

ETM+ 666.09 1282.71  

OLI/TIRS 774.8853 1321.0789 ML 0.0003342

AL 0.10

LST =
TB

1 +
λTB

p lnϵ

(4)

The sign λ denotes the wavelength of the emitted thermal radiance (11.5µm), and the symbol p denotes the wavelength of the emitted thermal
radiance 1.438 × 10 −2mk. We collected LST data for all dates corresponding to the images shown in Table 3 below.

To predict LST, training models use long-term temperature �uctuations as a visual cue. Thermal data for 1990, 2004, and 2018 were used to
calculate the LST (Table 1). To see if urbanization was still raising the LST, and if so, what kind of development might be on the horizon, this
study was carried out in the �rst place.

2.5. Calculation of urban and non-urban indices
Temperature �uctuations across the season were explained using the LST. The average LST for 1990, 2004, and 2018 was calculated using
Table 1. This experiment was conducted to see if LST changed due to urban expansion (Xu et al., 2013). The approach (Smakhtin and Hughes,
2007) estimated barren land, vegetation, built-up area, and water bodies. Fu's approach created the land cover index maps (Fu and Weng, 2016).
LST was computed using Landsat satellite images taken in 1990, 2004, and 2018 that had been geometrically adjusted (Hasanlou and Mosto�,
2015). The indices of urban an dnon-urban indices formulas in Table 4were used to corelatewith the LST. 

( )

( ( ) )

[ [ ] ]
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Table 4
Calculation of urban and non-urban indices was used in this study area.

Abbreviations Indices Formulation (Landsat 5 and 7) Formulation (Landsat 8) References

NDVI Normalized
Difference
Vegetation
Index

( Band4−Band3)
( Band4+Band3)

( NIR −Red)
( NIR +Red)

( Band5−Band4)
( Band5+Band4)

( NIR −Red)
( NIR +Red)

(Tucker,
1979)

NDWI Normalized
Difference
Water
Index

( Band3−Band5)
( Band3+Band5)

( Red−SWIR1)
( Red+SWIR1)

( Band4−Band6)
( Band4+Band6)

( Red−SWIR1)
( Red+SWIR1)

(McFeeters,
1996)

SAVI Soil
Adjusted
Vegetation
Index

( Band4−Band3)
( Band4+Band3+L ) × (L + 1)

( NIR −RED)
NIR +RED+L × (L + 1)

( Band5−Band4)
( Band5+Band4+L ) × (L + 1)

( NIR −RED)
NIR +RED+L × (L + 1)

(Huete,
1988)

NDBI Normalized
Difference
Built-up
Area Index

( Band5−Band4)
( Band5+Band4)

( SWIR1−NIR )
( SWIR1+NIR )

( Band6−Band5)
( Band6+Band5)

( SWIR1−NIR )
( SWIR1+NIR )

(Zha et al.,
2003)

BI Bare Soil
Index

( Band5+Band3) − ( Band4+Band1)
( Band5+Band3) + ( Band4+Band1)

( SWIR1+RED) − ( NIR +Blue )
( SWIR1+RED) + ( NIR +Blue )

\frac{\left(Band6+Band4\right)-
\left(Band5+Band2\right)}
{\left(Band6+Band4\right)+\left(Band5+Band2\right)}

\frac{\left(SWIR1+RED\right)-\left(NIR+Blue\right)}
{\left(SWIR1+RED\right)+\left(NIR+Blue\right)}

(Mann and
Whitney,
1947)

2.6. Temperature prediction using various parameters
The LST computation requires a strong correlation between the LST and the predictor selected variables, with no collinearity among them. It
was determined by using the indices listed in Table 4. A linear regression model was used to predict LST using spectral indicators with the
highest correlation. The correlation between such variables was also examined to avoid tightly clustered predictors, which could cause
collinearity-related mistakes. To create a multivariate linear model, we picked indicators that were substantially connected with LST and poorly
correlated with each other. We used the model to test its performance to predict 2018 observed LST. Accuracy was measured using Mean-
Absolute-Percentage-Error (MAPE) shown in Eq. (5) (Mann and Whitney, 1947).

MAPE \left(\text{\%}\right)=\frac{1}{N}\sum _{i=1}^{N}{\left(\left|\frac{{T}_{predicted- }{T}_{observed }}{{T}_{observed
}}\right|\right)}_{i}\times 100

(5)

where {T}_{observed }is the real ith pixel of LST reported and{T}_{predicted } is the model surface temperature from Landsat info. Error is
expressed in percentages using the absolute mean percentage of the accuracy statistic. It was determined that the model's accuracy in
predicting temperature could be quanti�ed by calculating the Root Mean Square Error (RMS), Nash-Sutcliff performance, Agreement-Index (A-I),
and Mean Bias Error (MBE). LST distribution for 2032–2046 was predicted using a model evaluated for accuracy. The 14 years were chosen
since the analysis demonstrated signi�cant changes at the same points in time.

2.7. LULC changes and modeling for 2032 and 2046
The LULC has been represented using various predictive models (Triantakonstantis and Mountrakis, 2012). CA-Markov chain analysis can
forecast the possible distribution of LULC and LST based on remote sensing data (Mumtaz et al., 2020; Tariq and Shu, 2020) indicated in Fig. 2.
It was compared to a genuine 2004 map for comparison. A 2018 state simulation was run during this study to verify that the expected LST
distribution was in line with the actual distribution. Detailed explanations of the proposed actions can be found in sections 2.7.1 and 2.7.2.

2.7.1. CA-Markov chain analysis to predict LULC changes
The Markov model permits the structure to advance from the initial state i to j during a time period T (Hashem and Balakrishnan, 2015). Markov
Chain was chosen for its ability to anticipate time changes in LULC (Araya and Cabral, 2010; Triantakonstantis and Mountrakis, 2012). In
addition, the Markov Chain can predict complicated system �uctuations (Tariq and Shu, 2020; Triantakonstantis and Mountrakis, 2012). CA-
Markov chain models were used in IDRISI software Selva v 17.0 to forecast the distribution of LULC in 2018, 2032, and 2046 (Arsanjani et al.,
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2012; Hou et al., 2019; Mosammam et al., 2017; Sayemuzzaman and Jha, 2014). Future land cover distributions can be predicted using a
Cellular Automata (CA) model that incorporates probability derived from the Markov Chain analysis. As a result, the combination of Markov
Chain and Cellular Automata revealed changes in land change cover over time. A CA-Markov Chain was used to test their capacity to anticipate
future LULC trends in dynamic metropolitan environments. The 2018 LULC distribution was predicted using LULC shifts from 1990 to 2004, and
the distribution was compared to LULC transformations from 1990 to 2004. The MLC classi�cations were used to compare the expected land
use and land cover with the actual shape in 2018. For 2018, the Kappa-Agreement-Index (KIA) measured the degree of agreement between
maps of the same instance from 1990 to 2004 (Arsanjani et al., 2012). The KIA was used to evaluate the CA-predicting Markov's ability by
comparing the 2018 MLC classi�cation map to the 2018 predicted map. After assessing the accuracy of the CA-Markov-Chain model, we
employed LULC patterns from 2004 and 2018 to predict the terrain for the years 2032 and 2046, to no avail.

2.7.2. CA-Markov of indices for the prediction of LST
Section 2.7 de�nes the Urban Indices (UI) as the most robust predictor variable of LST distribution. Table 8 in section 3.3 shows the success of
various land-cover indices in predicting LST and how that contributes to UI selection through land-cover indices. Satellite images were taken in
May and June in 1990, 2004, and 2018, resulting in an average user interface (UI) each year (Table 1). Data from 1990 and 2004 average UIs
were used to generate change probability matrices for the CA model, which predicted the possible condition of the index for 2018. Results from
CA-Markov chains also employed 1990 and 2018 means of urban indices to estimate the UI status in 2032 and 2046. Predictions of LST for
2018, 2032, and 2046 were made using a linear regression model (section 3.4). Urban Indices maps were reclassi�ed into a model to predict the
temperature classes of 20–23°C, 24–27°C, 28–31°C, 32–35°C, and 36–39°C as predicted by CA-Markov Analysis. LST predictions for Lahore
city for 2032 and 2046 were the results of this phase.

2.7.3. Statistical importance of examining LULC and LST
Predicted changes in LULC and LST distribution were examined for their statistical signi�cance. Coded LULC readings and temperature levels
produced from 300 locations were tested. Each period, the LST groups were classi�ed 1–5, whereas the LULC levels were coded 1–4 according
to Markov analysis criteria and performance. The Shapiro-Wilk statistic was employed to assess for regularity in the earliest stages of the study
(Shapiro And Wilk, 1965). A Mann Whitney test was used to determine the signi�cance of LULC and LST deviations (Birnbaum, 1956; Mann and
Whitney, 1947). We veri�ed that the Ha hypothesis concerning LULC and LST spatial distributions is distinct from the alternative Hb theory: in
2018 and 2046, the pairs of LULC and LST were not identical (Mushore et al., 2017).

3. Results And Discussion

3.1. Spatio-temporal LULC changes with accuracy assessment
Results in Fig. 3 indicates the LULC variations of the Lahore region for the years 1990, 2004, and 2018. Figure 3a clearly explains signi�cant
changes in the built-up area in the middle of the city in 1990, while growth in a built-up area and low vegetation index for 2004 (Mallick et al.,
2008). Figure 3b indicates that the built-up area was concentrated in the district's center. However, tiny pockets of built-up areas could still be
found simultaneously in substantial numbers across the map. Similarly, a lower vegetation index, high built-up area were observed for 2004. It
was likely due to reduced rainfall. Figure 3c demonstrates the 2018 area of land use separation. During 2018, the built-up area ampli�ed
considerably due to establishing housing schemes in Lahore and other cities from 2004 to 2018 (Butt et al., 2015). Our results indicate that
vegetation cover decreased in Lahore and other neighboring cities.

As seen in Table 5, there have been signi�cant changes in LULC distribution between 1990 and 2018 using the MLC algorithm. Most of the
changes in agriculture/vegetation and the urban environment. It should be noted that from 1998 to 2004, the rise in the built-up area was very
high, but after that, the development in the built-up area was slow until 2018. The above data were validated by previous knowledge and Google
Earth images (Mumtaz et al., 2020; Tariq et al., 2020). The built-up area was increased from 342.54 (18.41%) to 720.31 (38.71%) km2.
Meanwhile, barren land, water and vegetation area was decreased from 728.63 (39.16%) to 544.83 (29.28%) km2, from 64.85 (3.49%) to 34.78
(1.87%) km2 and from 724.53 (38.94%) to 560.63 (30.13%) km2 respectively (Table 5). 
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Table 5
Spatio-temporal changes of LULC from 1990–2018.

LULC Land use classi�cation in Lahore (Area in Km2 (%)) Change detection (Area in Km2 (%))

1990 2004 2018 1990–2004 2004–2018 1990–2018

Barren Land 728.63 (39.16) 653.12 (35.10) 544.83 (29.28) -75.51 (-4.06) -108.29 (-5.82) -183.80 (-9.88)

Vegetation 724.53 (38.94) 650.25 (34.95) 560.63 (30.13) -74.28 (-3.99) -89.62 (-4.82) -163.90 (-8.81)

Built up area 342.54 (18.41) 501.25 (26.94) 720.31 (38.71) 158.71 (8.53) 219.06 (11.77) 377.77 (20.30)

Water 64.85 (3.49) 55.93 (3.01) 34.78 (1.87) -8.92 (-0.48) -21.15 (-1.14) -30.07 (-1.62)

Total Area 1860.55 (100) 1860.55 (100) 1860.55 (100) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Different measures were used to assess the accuracy of the MLC classi�cation to categorize into the four LULC types. The highest overall
accuracy (OA) value, i.e., 98%, was obtained from the 1990 LULC image, while the 2004 image had the lowest OA of 93%. The highest UA of the
vegetation area class was attained for the 2008 image, with 99.06%, while the lowest was 75.03% for the 'water' class for the image taken
during 2004. The OA and K for Lahore District as a whole are 0.98 and 0.97 (corrected samples, 201), 0.97 and 0.95 (�xed samples, 181), 0.93
and 0.89 (selected samples, 178) for 1990, 2004, and 2018, respectively (Table 6).

Table 6
Accuracy assessment of LULC from 1990–2018.

Classes 1990 2004 2018

UA PA OA K UA PA OA K UA PA OA K

Barren land 98.77 97.56 0.98 0.97 66.67 92.53 0.97 0.95 96.77 94.26 0.93 0.89

Vegetation 99.03 98. 08 98.37 96.80 99.06 97.22

Built up 98.08 95.30 96.30 95.65 95.12 97.50

Water 90.00 94.74 75.03 79.03 87.29 89.01

PA: Producer Accuracy, UA: users Accuracy, OA: Overall Accuracy, Kc: Kappa Coe�cient

3.2. Observed LST changes from 1990-to 2018 using Landsat data
There has been a signi�cant rise in Lahore's long-term LST since 1990. Figure 4 shows that in 1990, in contrast to succeeding years, the region
was primarily covered by temperatures between 20–23°C and 24–27°C. Although lower surface temperatures were found in several areas of the
main research area in 2018, the 36–39°C group was most prevalent in 2018. Temperature rises were more signi�cant in the built-up areas of the
center than in the surrounding areas of vegetation, water, and barren land. Figure 4a is satellite-derived land surface temperature. Figure 4a
shows that in 1990 built-up areas were not too much, so the temperature was also low towards the boundary. In most areas, the temperature
was between 20–23°C and 24–27°C.

Figure 4b shows that in 2004, the built-up area had increased so as the temperature was also high towards the boundary. Figure 4c shows that
in 2018, the built-up area had increased, so the temperature was also high towards the boundary. The temperature was between 32–35℃ to
36–39℃ in almost 1/3 area of the city. The low-temperature area had decreased over time, and the high-temperature area had been reduced
due to an increase in the urban area in the middle of the city. In 2018, temperature was 36–39℃ in Lahore city. In 1990, most of the area had a
temperature of between 20–23℃. The temperature is 32–35℃; the temperature has risen 12℃ because of urban areas for twenty-eight years.

Table 7 summarizes the variations in LST between 1990 and 2018. The percentage of LST in the 20–23°C temperature range declined by
roughly 37% as the city grew. A signi�cant changes and rise in the (35–42°C) high LST coverage over this time period suggests that Lahore city
is experiencing substantial warming of the earth. 
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Table 7
Average LST responses to urban expansion in Lahore city.

LST °C LST area in km2 (%)

1990 2004 2018

20–23 103.77 (5.58) 343.17 (18.44) 114.16 (6.14)

24–27 1026.36 (55.16) 399.41 (21.47) 325.68 (17.50)

28–31 614.91 (33.05) 344.38 (18.51) 405.51 (21.80)

32–35 110.75 (5.95) 639.27 (34.36) 761.85 (40.95)

36–39 4.77 (0.26) 134.33 (7.22) 253.35 (13.62)

3.3. Measurement of Coe�cient of determination for LST with Normalized
Satellite Indices
Table 8 shows the yearly variability in LST regarding multiple normalized satellite indices of the Lahore region for 1990, 2000, and 2018. The
results show that the annual variability in LST has increased in the last three decades. The LST exhibits substantial interannual variability
concerning yearly scales compared to the NDVI, NDWI, SAVI, NDBI, and BI variables. The yearly scale (between 1990 and 2004) revealed a
statistically signi�cant positive link between LST and SAVI, NDBI and BI for the regions located in the central portion of Lahore city, while NDVI
and NDWI have a negative association with LST. Negative trends have been seen in the western and the upper part of the Lahore city. A lack of
vegetation in these places has contributed to signi�cant changes in temperature. In contrast, an inverse link was detected in a small region
(NDVI) of the eastern continent, where it is challenging to evaluate LST patterns due to the lack of vegetation. There is a strong correlation
between LST and the many factors assessed every year. In 2018, LST and indices have shown a 77.2% increase in favorable trends (Das et al.,
2021).

Table 8
Coe�cient of determination for LST Normalized Satellite Indices.

Years Indices LST NDVI NDWI SAVI NDBI BI

1990 LST 1.0000 −0.7133 0.6120 0.7191 0.8801 0.7461

NDV I −0.7133 1.0000 −0.7956 0.9138 −0.8556 −0.8148

NDWI 0.6120 −0.7956 1.0000 −0.8674 0.6455 0.5870

SAVI −0.7191 0.9138 −0.8674 1.0000 −0.9398 −0.9018

NDBI 0.8801 −0.8556 0.6455 −0.9398 1.0000 0.9828

BI 0.7461 −0.8148 0.5870 −0.9018 0.9828 1.0000

2004 LST 1.0000 −0.5353 −0.1700 0.6353 0.9907 0.7461

NDV I −0.5353 1.0000 −0.7157 1.0000 −0.7698 −0.8148

NDWI −0.1700 −0.7157 1.0000 −0.7157 0.1052 0.8151

SAVI −0.6353 1.0000 −0.7157 1.0000 −0.7698 0.4390

NDBI 0.9907 −0.7698 0.1052 −0.7698 1.0000 0.5870

BI 0.8462 0.3237 −0.7899 0.3237 0.2603 1.0000

2018 LST 1.0000 -0.0455 -0.7230 0.8962 0.6276 0.8918

NDVI −0.7157 1.0000 −0.9040 −0.8918 −0.1424 −0.8148

NDWI 0.3073 0.4390 1.0000 0.9541 0.1084 −0.0322

SAVI 0.1052 −0.0322 −0.1059 1.0000 0.1202 −0.7956

NDBI 0.8275 −0.3435 0.9098 0.7413 1.0000 −0.9040

BI 0.4324 −0.1059 0.8151 0.9316 0.3390 1.0000
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3.4. Calculation of LST from UI
Figure 5 depicts the linear regression model for predicting the LST based on the Urban Indices (UI). Since surface temperature and UI had R2

value of 0.87, the correlation was too signi�cant. Thus, LST and UI had improved and did not affect their association due to saturation that
disturb indices like NDVI, as the UI continuous to increase with abundant temperature.

In 2018, the linear regression model was tested using Landsat data. This was very much in line with the known trends of temperature (Fig. 6).
Tsat is the satellite-observed temperature, while Tmod is the derived temperature from the model. The UI temperature and Landsat 8 thermal
data were analyzed to compare the two results based on 300 sites in the area of research studied (Fig. 1).

3.5. LST and LULC prediction for 2032 and 2046

3.5.1. Accuracy Assessment of Cellular Automata Markov Chain LULC for 2032
and 2046
Analyzing the data visually revealed a correlation between the MLC classi�er's estimate for 2018's LULC distribution and the CA-Markov model's
prediction for 2018 (Fig. 7). A set of in-situ measurements drives the model to reproduce the MLC-de�ned spatio-temporal dispersion of LULC.
CA-KIA Markov's prediction for LULC was 0.88, while MLC's classi�er predicted a dispersal of 0.85 using KIAs (Table 9). Vegetation and water
classes on both maps agreed most strongly (KIA = 0.81), with the weakest (KIA = 0.79).

Table 9
Correlation analysis between MLC and CA-Markov

Chain based on 2018 prediction.
LULC Kappa Index of Agreement (KIA)

Barren land 0.85

Vegetation 0.81

Built-up area 0.86

Water/Wetland 0.79

3.5.2. Prediction and distribution of LULC and LST in Lahore before 2046
Figure 8 displays in 2032 and 2046, the CA-Markov-Chain model predicted an increase in built-up areas associated with barren land, vegetation,
and water. Buildings may eventually overtake parks if current trends continue, as they have in the past. Table 10 shows that the extent of built-
up area is probably to increase from where they are now until 2046. According to the CA-Markov model, built-up areas are likely to grow from
830.22 km2 to 955.53 km2, while vegetation area decreased from 478.91 km2 to 402.83 km2from 2032 to 2046. Based on model predictions,
expansion in built-up areas and decreases in water, vegetation, and barren land regions are the primary drivers of future development.

Table 10
Prediction of LULC types and LST between 2032 and 2046.

LULC LULC area in km2 (%) LST (°C) LST area in km2 (%)

2032 2046 2032 2046

Barren Land 478.91(25.75) 402.83 (21.66) 20–23 98.68 (5.30) 89.08 (4.79)

Vegetation 530.27(28.51) 487.42 (26.20) 24–27 293.80 (15.79) 256.22 (13.77)

Built up area 830.22 (44.63) 955.53 (51.37) 28–31 333.73 (17.94) 314.99 (16.93)

Water 20.68 (1.11) 14.30 (0.77) 32–35 844.10 (45.37) 880.09 (47.30)

Total Area 1860.08 (100) 1860.08 (100) 36–39 290.25 (15.60) 320.17 (17.21)
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Figure 8 illustrates the LST growing trend from 2032–2046. The model explained LST variations between 2032 and 2046 due to increased built-
up area. The size of high LST (more than 36°C) in (Figs. 8a–b) was projected to increase at the cost of lower LST classes. Thus, western and
northern areas with vegetation were cooler than built-up areas. Maximum area with low LST (20–23°C and 24–27°C) were moved to the high
LST class area (32–35°C and 36–39°C). Most of the areas, particularly in the northwestern and central areas, could shift towards high
temperature (more than 36°C), whereas the size of low LST classes (20–23°C and 32–35°C) may decrease (Table 10).

From 2032 to 2046, the model indicated that the temperature ranges from 24–27°C would decline by 293.80–256.22km2, while the LST ranges
from 36–39°C are expected to rise by 290.25–320.17km2. In the long run, temperatures in the high category (over 26°C) are anticipated to grow
at the expense of those in the lower category, as shown in Figs. 8 (a–b). There will be a signi�cant increase in temperature in the built-up area. It
is expected that most of the low LST (20–23°C and 24–27°C) would turn high LST (32–35°C and 36–39°C) locations. While the amount of
lower LST (20–23°C or 24–27°C) may diminish, many places, notably in the center and northwestern area, could shift toward warmer
temperatures (more than 36°C), as shown in Table 10.

The urban land use information is critical to city population activity monitoring, government policy-making, and urban management. However,
the density of urban systems makes it challenging to classify urban functional zones accurately. Most urban land use classi�cation studies
have used features extracted from social media data and high, medium, and low spatial resolution satellite images (Peña, 2008). Still, only a
few have used both features simultaneously because there are not any models available for them to use (Pal and Ziaul, 2017).

Land System Science (LSS) is at the forefront of research to generate much-needed knowledge that can help �nd land-related pathways to
sustainable development (Li et al., 2016). According to Land System Science, human use of land is a social-ecological system with several
interconnected components that in�uence each other (Baqa et al., 2021; Shi et al., 2019; Tariq et al., 2021). Land system scientists examine the
implications for sustainable development through the lens of inter and intragenerational justice, emphasizing the importance of incorporating
multiple actor perspectives (especially those of local communities) (Hamza et al., 2021). People need to have a good quality of life now and in
the future, but they also need to keep the environment safe.

To achieve many of these objectives, competing claims on land are at the heart of many related disputes (Elliott and Frickel, 2015; Hasanlou
and Mosto�, 2015). A variety of interests, ranging from residents to multinational corporations, vie for control of and access to land, including
the security of their livelihoods, sense of place, economic assets, preservation of natural habitats, and their claim to territorial sovereignty. These
competing interests range from the local to the international (Ahmed et al., 2013; Sayemuzzaman and Jha, 2014; Sultana et al., 2014). It is
possible to see the recent changes in Pakistan's land use and governance patterns as a manifestation of these actors' power dynamics. People
cut down trees, made big plantations for commercial monocultures, and set up special economic zones. More non-governmental organizations
(NGOs) concerned with forest conservation are some of the effects of these land-use changes in Pakistan, one of the world's biodiversity
hotspots (Ma and Tong, 2022; Prasad et al., 2022; Zahoor et al., 2022). This article's overall goal is to investigate the links between sustainable
development outcomes and recent land-use changes to identify leverage points and priority areas of concern for more sustainable land
governance in Lahore city, Pakistan. If Pakistan doesn't properly manage the many con�icting claims on land, it won't be able to meet its 2030
Agenda goals.

4. Conclusions
This research was carried out to evaluate urban growth phenomena and their impacts on vegetation land and change in temperature from 1990
to 2018. RS and GIS techniques were used to analyze the spatiotemporal patterns of land use. LST and LULC distributions in Lahore will be
predicted using a new CA-Markov-Chain developed in this research. For urban areas categorized using Landsat 5, 7, and 8 imagery, we observed
that the MLC method utilized obtained an overall accuracy of above 80% when applied. According to MLC classi�cations of LULC types, in situ
measurements could drive the model's ability to reproduce the LULC types' spatio-temporal distribution accurately. It was shown that the CA-
Markov model predicted a KIA of 0.88 and 0.85 between the LULC and the distribution obtained using the MLC classi�er. This analysis can
predict the growth of built-up area from 830.22 km2 to 955.53km2 between 2032 and 2046, based on the development from 1990 to 2018.
Considering the CA-Markov Chain models based on UI anticipated that the temperature 20–23°C and 24–27°C regions would all decline in
coverage from 5.30–4.79% and 15.79–13.77% in 2032 and 2046, while the temperature 36–39°C regions would all grow in coverage from
15.60–17.21% of the city.

As a result of increased urbanization in Lahore, the observed values between 1990 and 2018 in the categories 20–23°C and 24–27°C declined
by roughly 37% and 22%, respectively, indicating a severely biased trend of land heating in Lahore city. Only the effects of urban development
on temperature variations are considered in the model, which is limiting. However, there has been a minor shift in LST patterns due to
successful mitigation policies and innovative urban expansion methods. In general, the outcomes of this study show the utility of medium-
resolution satellite data in estimating possible land surface temperatures in urbanized areas. In the absence of control measures, we conclude
that urbanization will enhance warming and increase temperatures in the future. Urban planners must be warned of urban dwellers' potential
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temperature �uctuations and thermal comfort due to growth based on this study. Meanwhile, more research is needed to see if these methods
and procedures can be applied globally and nationally. The CA model and Markov Chain analysis were employed to identify spatial distribution
changes and forecast time resolution. This model will be used in the future by researchers and policymakers to develop new policies to control
and manage urban expansion.
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Figure 1

Geographical Location of Lahore City with validation points.
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Figure 2

Flowchart explains the methodology in this study.
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Figure 3

Land use map of Lahore from 1990-2018 and area in km2 (a) 1990 (b) 2004 (c) 2018.
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Figure 4

Spatio-temporal changes and mapping of LST were observed in (a) 1990, (b) 2004, (c) 2018.

Figure 5



Page 20/21

Using a linear model to predict LST from the UI.

Figure 6

Comparison of surface temperature derived from thermal band with UI.

Figure 7

2018 LULC mapping with (a) MLC and (b) CA-Markov-Chain prediction.
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Figure 8

Predicted LULC types and LST distribution in 2032 and 2046.


