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Abstract
The essential step of successful brachytherapy would be precise applicator/needles trajectory detection,
which is an open problem yet. This study proposes a two-phase deep learning-based method to automate
the localization of high-dose-rate (HDR) prostate brachytherapy catheters through the patient's CT
images. The whole process is divided into two phases using two different deep neural networks. First,
brachytherapy needles segmentation is accomplished through a pix2pix Generative Adversarial Neural
Network (pix2pix GAN). Second, a generic Object Tracking Using Regression Networks (GOTURN) was
used to predict the needle trajectories. These models were trained and tested on a clinical prostate
brachytherapy dataset. Among the total 25 patients, 5 patients that consisted of 592 slices was
dedicated to testing sets, and the rest were used as train/validation set. The total number of needles in
these slices of CT images was 8764, of which the employed pix2pix network is able to segment 98.72%
(8652 of total). Dice Similarity Coe�cient (DSC) and IoU (Intersection over Union) between the network
output and the ground truth were 0.95 and 0.90, respectively. Moreover, the F1-score, Recall, and Precision
results were 0.95, 0.93, and 0.97, respectively. Regarding the location of the shafts, the proposed model
has an error of 0.41 mm. The current study proposed a novel methodology to automatically localize and
reconstruct the prostate HDR brachytherapy interstitial needles through the 3D CT images. The presented
method can be utilized as a computer-aided module in clinical applications to automatically detect and
delineate the multi-catheters, potentially enhancing the treatment quality.

Introduction
Prostate cancer is the second most frequently occurring cancer in men, accounting for nearly 7.3% of new
cancer diagnoses yearly (based on 2020, the global cancer statistical report1). Surgery, systematic
therapy, and radiation therapy are the treatment options in terms of prostate cancer management.
External beam radiotherapy (EBRT) has been accepted as an effective treatment option for low-risk
prostate cancer. However, optimum biochemical control will not be achieved using conventional EBRT
alone to treat patients with intermediate to high-risk prostate malignancies2. Therefore, dose escalation is
needed to improve biochemical relapse-free survival (bRFS) and overall survival (OS).

Brachytherapy (BT) is an effective alternative or complementary treatment to EBRT for reaching higher
target doses and lower organs at risk (OARs) toxicity for the low-risk to locally advanced malignancies3, 4.
The radioactive source is placed into the prostate directly or through about 20 ± 5 plastic needles during
prostate brachytherapy. Therefore, these treatment techniques potentially improve radiotherapy's
conformity and the therapeutic ratio2.

Typically, there are two different types of prostate BT based on the source's duration of implantation and
dose rate: permanent low-dose-rate brachytherapy (LDR-BT) and temporary high-dose-rate brachytherapy
(HDR-BT). Some bene�ts were reported for each of these two BT modalities. During LDR-BT, tiny
radioactive seeds are inserted into the prostate permanently. However, in HDR-BT, a single high dose rate
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source (e.g., 192Ir or 60Co) dwells inside the array of transperineally interstitial catheters after treatment
planning evaluation and con�rmation are inserted into the prostate4.

The signi�cant advantages of HDR-BT over LDR-BT include the ease of the process and lower
dependency on operator skill, higher cost-effectiveness due to the feasibility of using one single
radioactive source for many treatment courses, lower risk of operator error, a higher chance of treatment
optimization, and feasibility of needle insertion outside the prostate gland to improve prescribed dose
coverage of extracapsular extension or seminal vesicle invasion, and elimination of source migration
risk5, 6.

Computed tomography (CT), magnetic resonance (MR), and transrectal ultrasound (TRUS) are the three
main imaging modalities that have been used for treatment planning after applicator insertion. There are
some reported pros and cons for each of these modalities: the power of soft tissue differentiation, cost,
physician and staff e�ciency, patient mobilization and reposition, and compatibility of treatment
planning systems2. However, CT knows as the pioneer imaging technique used in 3D treatment planning
and is still the most available modality in many brachytherapy centers worldwide.

Applicator digitization (also known as reconstruction) and de�ning source track relative to the target and
OAR is recognized as the second cause of uncertainty in prostate brachytherapy dosimetry7. There is
some prede�ned applicators' library in the treatment planning systems database from which a user can
load and allocate the inserted applicators to the image series of patients. However, using these libraries is
more valuable and practical for the rigid applicator set. Plastic needle tracking and de�ning all of their
trajectories is still a mandatory task that is time-consuming, labor-intensive, and prone to inter/intra-
observer variability as users should do through the patient's image slices. Therefore, it is highly subjective
and dependent on the user's skill and experience. This task becomes more challenging, especially when
needles touch and cross each other in some of the reconstructed image slices during their path in the
patient's body. Automatization of needles reconstruction was investigated previously. An electromagnetic
(EM) sensor-based navigation system was proposed for fast and accurate HDR catheter reconstruction.
However, the proposed method needs an EM tracking system installed beneath the BT table and some
DOF EM sensors to be attached at the stylet tip and inserted into the needles to help their detection8. All
these technical and mechanical requirements can be used as a logical excuse for refusing the routine use
of this method.

Machine learning and deep learning have been attractive tools for solving (proved as a state-of-the-art
solution for) optimization, image segmentation, radiomics, and prediction problems during a reasonable
time in medical science9, 10. Some valuable publications developed deep learning algorithms for
brachytherapy treatment planning, automatic organ segmentation, and applicator digitization11, 12.
Arti�cial intelligence and deep learning-based algorithms are proposed to automatically reconstruct
different brachytherapy applicators through CT, MRI, and TRUS images11. Some arti�cial intelligence-
based algorithms were proposed for 3D CT- and MRI-based gynecological HDR-BT rigid applicator
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automatic reconstruction13, 14. Deep learning was also successfully used for automatic needle
segmentation of TRUS-guided prostate brachytherapy15, in which a deep learning-based model is
proposed to segment and reconstruct the applicators automatically.

An automatic HDR-BT needle reconstruction algorithm is still needed due to the abundant CT-based
treatment planning application. This research study proposes a new two-phase, deep learning-based
models, for auto-localization of interstitial HDR prostate brachytherapy needle trajectories through the
patients' CT image set. The proposed method consists of two phases: �rst, CT images are segmented
using the Generative Adversarial Networks (Pix2Pix) based on U-Net generator; next, the segmented
images are passed to a tracking network (GOTURN) in a sequence of slides to extract the path of each
needle.

Results
As mentioned earlier, 5 patients (592 slices) have been selected for testing to evaluate the performance of
the proposed method. The average DSC and IoU of our model for these cases are equal to 0.95 and 0.90,
respectively. Furthermore, the mean F1-score, Recall, and Precision were 0.95, 0.93, and 0.97, respectively.
Additionally, among the 8764 needle locations in the CT slices, only 112 of them have been missed in
segmentation.

The results of four test data samples have shown in Fig. 1 in axial view (images have zoomed in for
better visualization). In this �gure, the �rst, second, and third rows are the model's input, its corresponding
ground truth, and the output of the proposed model, respectively. The difference between the ground truth
and the model's segmentation results has been presented in the last row. Moreover, in Fig. 2, one of the
few missing catheter locations has been presented. The DSC of the test samples (2D slices) in Fig. 1 is
0.91, 0.97, 0.96, and 0.91, respectively. Additionally, the DSC of Fig. 2 that one miss occurs is equal to
0.90.

The results of the GOTURN model are shown in Fig. 3. Among the 592 test images, 20 consecutive slices
are selected for visualization of the tracker network output. There are nine catheters in this series of
slices, and the tracker must be capable of following the path of each separately. Figure 3.a. and Fig. 3.b
shows the predicted path for these catheters and the true path for those 20 consecutive slices. In this
�gure, the stars represent the center of the catheter number i, in the slice number j, and the continuous
lines indicate the predicted path of that catheter by a tracker. The shaft localization error of the catheters
equals 0.4056mm by this model, which is acceptable considering the amount of available data.
In order to evaluate the performance of our proposed model in contouring the catheters of a 3D CT image,
the results of a speci�c patient have shown in the 3D view in Fig. 4. In this �gure, the ground truth
reconstructed catheters of the image, and their fusion has presented that, as can be seen, they are well
matched. Eventually, obtained results for the Shaft Error, Tip Error, and DSC compared to the13, which are
the two most recent studies in this �eld on CT images, are presented in Table 1. Meanwhile, for better
assessment, the model results for each patient in the test set in terms of DSC, IoU, Precision, Recall, and
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F1-score have been presented in Fig. 5. The results of our model for shaft error and tip error for each have
been presented in Fig. 6. 

Table 1
Obtained results from two recent similar along with our

model

  DSMC shaft error (mm) Tip error (mm)

[23] 0.89 0.50 0.80

[13] 0.93 - 0.63

Our model 0.94 0.41 0.72

Discussion
To have a perfect HDR prostate brachytherapy procedure, precise and accurate delineation of the position
of the needles is crucial. Generally, interstitial needle localization can be accomplished using ultrasound,
MRI, and CT images. Due to lower SNR, speckles, and artifacts, localization by transrectal ultrasound
(TRUS) images is challenging. MRI images are supreme in terms of soft-tissue contrast, which boosts the
visualization of the prostate. We proposed a method based on catheter reconstruction using CT images
which leads to optimal geometrical precision in needle position reconstruction16. Providing electron
density information for model-based treatment planning systems, higher availability, and lower cost of CT
compared to MRI are the main reasons for its popularity for imaging to post-implant treatment planning.
Therefore, automatization of applicator localization through CT images is reasonable. This issue is more
bene�cial for developing countries that mostly face higher workloads in brachytherapy departments due
to a lack of high-tech radiotherapy techniques such as IMRT/VMAT or SBRT. Commonly catheter
digitization procedure manually is both overwhelming and error-prone.

An automatic approach for the segmentation and localization of the CT images can be signi�cantly
bene�cial. This can be affordable since it takes approximately 10–20 minutes for an experienced
physicist to manually carry out these tasks in HDR prostate brachytherapy, while our model is able to do it
only in 16.16 sec on the Nvidia K80 / T4 (0.09 sec for preprocessing, 12.95 sec for segmentation, and
3.12 sec for tracking). The current study aimed to introduce and test a two-phase deep-learning-based
approach for the automatic interstitial plastic needle of CT-based HDR prostate brachytherapy.

Typically, clinicians put �ducial markers around the tumor targets to employ them as a reference for
target description. The intensity of the needles and these markers are similar in the CT images. Therefore,
straightforward segmentation methods like thresholding cannot discern between those markers and
desired needles, leading to inaccurate needle localization and wrong trajectories.

In this study, a new two-phase deep learning-based model has been proposed to automatically segment
and reconstruct BT needles in patients' CTs, which has achieved remarkable performance in the needle
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segmentation, shaft error, and tip error. Digitization of the needles is carried out through the Pix2Pix GAN
network, in which the segmented images are generated using a U-Net-based model. Another model is
used to improve the segmentation process performance alongside the U-Net, which is based on
PatchGAN. This network competes with the U-Net to achieve better results in the generated images.
Additionally, given that there is a limited number of patients, the robustness of the model is improved by
employing Data Augmentation. This model is able to bring down the treatment planning time severely.
The computation time can even be diminished by using a further e�cient network or implementing
methods like wight pruning. This saving time can lead to accelerating the procedure of clinical work�ow.
Eventually, the path of the catheters is obtained using a deep neural network named GOTURN, in which
the trajectory is calculated by comparing the current and previous frames.

In contrast to most previous studies that have employed U-Net for segmentation, Pix2Pix GAN has been
selected and implemented in this study. One of the most challenging issues in medical applications is the
problem of unbalanced pixel categories and small size of segmentation that U-Net cannot tackle with this
issue perfectly. Furthermore, Pix2Pix GAN updates its weights through two paths; the �rst uses skip
connections similar to the U-Net, and the other is through the external connection between Generator and
Discriminator. On the other hand, the GANs contain an additional network called Discriminator based on
the PatchGAN, as mentioned earlier. It divides the input into some portions and determines whether they
are actual or counterfeit individually. This gives rise to improving the resolution and quality of the
generated data and the performance of the Generator. This approach leads the Denerator and
Discriminator's total loss to diminish from 0.31 to 0.11 and 0.23 to 0.14, respectively.

Generally, our model can detect 98.72% of needle localization in each slice with the shaft error, tip error,
and DSC equal to 0.41mm, 0.68mm, and 0.95, respectively. The precision and recall metrics are an
indicator of the number of false positives and negatives of our model, which are equal to 0.97 and 0.93.
Consequently, as can be seen in Figs. 7 and 8, the number of false positives is less than the number of
false negatives. Moreover, according to Fig. 2, it can be �gured out that our results show that missed
localizations occur mainly for needles with low intensity in the CT image, which may be improved by
rede�ning the CT protocol. As shown in Fig. 3, the tracker network can track each catheter's path well in
different slices, and even dense areas have not caused the target to be missed or track the incorrect ones.

There are two recent studies11, 13 for auto-segmenting of rigid gynecological tandem and ovoid
intracavitary applicators. Segmentation of these applicators through patients' CT images was performed
using the U-Net architecture13. The input of this network comprises three successive CT slices to the 3D
shape information that would be captured. The segmented voxels that are the U-Net output are clustered
using deep learning methods and divided into different categories for each needle. Then a smooth curve
is de�ned to place the voxels in each cluster as the needle trajectory13. This model has attained the DSC,
HD95%, and tip error of 0.93, 0.71 mm, and 0.63 mm, respectively, under circumstances that its amount
of data through Data Augmentation has reached 95000. In another study carried out by11, segmentation
is also done by U-Net architecture, and clustering is performed using a density-based linkage clustering
algorithm. For each channel, the average coordinates of all points in a single slice were calculated.
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Therefore, the needles' central points and trajectory were obtained11. This method has attained the DSC,
HD95%, shaft error, and tip error of 0.89, 1.66mm, 0.50mm, and 0.80 mm, respectively, while it
approximately consists of 6100 slices. However, as mentioned earlier, our model comprises only 2041
data for training, and using Data Augmentation, it was converted to 44902 data. Therefore, having a
smaller population size, facing non-rigid �exible needles with smaller diameters, and a higher number of
objects to detect the current model performance is promising compared to the previously published
models. On the other hand, according to Table 1, our proposed model may potentially achieve better
results by accessing additional databases.

Automatic brachytherapy applicator reconstruction is an exciting area in this treatment domain due to its
practical applications and impacts on the accuracy of patient treatment. However, there were some
limitations during this pilot study. One of these limitations is the amount of data used despite the
satisfying results. Increasing the amount of data will lead to the reliability of the proposed model. By
training the model with a variety of cases and testing its performance with more data from several BT, the
validity of the proposed model will increase, and it can be used more reliably in clinical applications.
Besides the reliability and robustness, this can make the model able to deal with challenging situations
more e�ciently. As shown in Fig. 2, in our proposed model, some needles are missed through automatic
reconstruction. Even though only 1.28% misses, these pitfalls should be carefully considered and avoided
during a real clinical scenario. Meanwhile, this number of misses can demonstrate that our model
consists of few false-negative and should have an acceptable recall parameter. Therefore, every
automatic reconstruction should be double-checked through the CT slices. However, it is expected that
fewer misses occur by feeding the model with a higher number and verities of training sets, although this
number of misses (112) due to the number of our available data is acceptable compared with some
previously published research.

Methods

Database

HDR-BT of prostate cancer using 60Co
Clinical data of the current study was obtained from the radiotherapy department of Yas hospital, Tehran,
Iran. Applicator insertion has been done under regional anesthesia with the patient in the dorsal lithotomy
position. Endorectal ultrasound guidance has been utilized.

HDR-BT has been performed as a de�nitive or salvage monotherapy treatment or EBRT boost in four or
two treatment fractions, respectively. Two treatments were delivered with a single needles implant by 6
hours interval while assuring the labeled needles tip's exact position by checking and measuring their
remaining length out of the perineal surface.
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Dedicated brachytherapy CT markers have been inserted into the plastic needles. A pelvic CT image
(HiSpeed Dual Scanner, General Electric Company, Medical Systems Group, USA) with a maximum 2mm
slice thickness has been acquired. These images have been imported to the HDR PLUS brachytherapy
treatment planning system (Eckert & Ziegler BEBIG, Berlin, Germany), which uses a 60Co source database
of the same company.

OARs, including the rectum, urethra, and bladder, have been delineated by an experienced radiation
oncologist. Clinical target volumes (CTV) (both low- and high-risk ones) also have been contoured getting
insight from the patient MRI especially T2w, diffusion-weighted (DW), and dynamic contrast-enhanced
MRI. A brachytherapy medical physicist has done applicator reconstruction by allocating the needle's
trajectory from their tip to the ends out of the patient's perinea using TPS related applicator module.

Treatment planning has been done to reach the CTV V100 (percentage of the prostate receiving 100% of
the prescribed dose) > 95% and D90 (dose to 90% of the prostate gland) > 100% of the prescribed dose
(PD) as the optimum treatment goals. BT DVH parameters such as D2 , D0.1 , D10, and D30,

representing the minimum dose to maximum irradiated tissue volumes of 2cm3 and 0.1cm3 and 10% and
30% of tissue volume, respectively. Therefore, considered rectum dose constraints are D2 75, and

urethral dose constraints are D0.1  120 Gy, D10 120 Gy, and D30 105 Gy
17.

This study was conducted in accordance with the Declaration of Helsinki. The study protocol was
evaluated and approved by the Ethics Committee of the Clinical Research Development Unit of
Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Science (Ethics Committee ID:
IR.SBMU.RETECH.REC.1399.527). The need for consent was waived by Ethics Committee. Patients'
information was anonymized.

Dataset processing
The datasets used in this study were selected from the twenty-�ve patients' 3D CT images for whom
interstitial HDR brachytherapy plastic needles were inserted. Patient's images and corresponding
radiotherapy structures �les (RT structures �les), which comprise ground truth labels, were exported from
the treatment planning system. A physicist checked all the ground truth labels to ensure that all the
needles have been appropriately segmented and there are no missing contours among different slices.
Following, needle masks were extracted from RT structures �les and converted to binary masks. This
database comprises 25 patients (5467 slices) with a slice thickness of 2 mm and pixel spacing of
0.84mm. The average number of needles in the training and validation set is equal to 17.35, and for the
testing, the set is 16.4, while the number of slices for each of the test case patients is 18, 16, 15, 17, and
16. After cleaning datasets, among the 25 patients, 17 patients (2041 slices), 3 patients (391 slices), and
5 patients (592 slices) were selected for training, validation, and testing, respectively. Due to the lack of a
su�cient available database, different data augmentation techniques have been used to deal with the
over-�tting problem. In order to expand the variation of data, different augmentation methods, including
random rotating between + 7 to + 15, +20 to + 30, -7 to -15, and − 20 to -30 degrees around the x-axis and
y-axis, vertical and horizontal �ip, random translation between + 7 to + 15, +20 to + 30, -7 to -15, and − 20

cm3 cm3

cm3 ≤ 

cm3 ≤  ≤   ≤ 
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to -30 along the x-axis and y-axis, and two times cropping, have been employed. Eventually, the overall
training dataset will be increased 22 times relative to the initial training dataset (i.e., 44902 augmented
data for training).

Proposed Model
The segmentation algorithm was an image-to-image translation algorithm that learns the mapping from
input to output domain18. Pix2Pix Conditional GANs (cGAN) consists of two networks called Generator
and Discriminator, in which the Generator and Discriminator are conditioned on additional information19.
A Deep Tracker Network called GOTURN is presented to estimate the catheters' trajectories from the 3D
CT images. An overview of the brachytherapy needles segmentation and routing process is given in Fig.
7. The proposed method comprises pre-processing, segmentation, and tracking, which will be discussed
thoroughly in the following sections.

Preprocessing
Before feeding the dataset into the model, a series of preprocessing has been applied to the CT images.
The intensities of the images were normalized between − 1 to 1. A region of interest (ROI) selection has
been applied to the images to crop the location of needles in CT images, as it has been illustrated in Fig.
9 as an example. Finally, this area has been cropped and fed to the model with a 256×256 matrix size, as
represented in Figs. 2 and 3.

Needle Segmentation
The Generator is responsible for mapping CT images into their corresponding segmentation masks,
containing the needles' mask in each slice. The architecture of the Generator is based on a modi�ed U-Net
(mU-Net). U-Net is a well-known model used broadly in segmentation tasks and consists of an Encoder
and Decoder in which each block of the Encoder is connected to its corresponding block in Decoder20.
The Encoder encodes images to the different levels of feature, and the Decoder maps the lower
resolutions learned features by the Encoder into the target images such as translated images. Firstly,
considering that Pooling layers are lossy and do not preserve all the spatial information, these layers were
eliminated, and the Downsampling is done just by convolutional layers. Secondly, normalization layers
have been added to the network architecture to improve the model's performance and stability. Contrary
to the original U-Net, which used only the ReLU activation function, we used LeakyReLU to deal with the
dying ReLU problems, so all neurons become effective in predicting the �nal segmentation mask21.
LeakyReLU can solve this problem to some extent since its function does not have a zero slope for
negative inputs. Accordingly, both have been used to hold speeds of the ReLU and the ability of the
LeakyReLU. Moreover, since the Encoding part extracts the input features, it has considerable importance
since the output will be built according to these features. Accordingly, LeakyReLU has been used only in
the Encoder. The network architecture has been illustrated in Fig. 10.a. This model consists of two
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components named Downsample and Upsample, as mentioned earlier. Contents of each block have been
illustrated in Fig. 10.b.
Downsampling includes Convolutional layers with a stride of two, Instance Normalization, and a
LeakyReLU activation function. Unlike the Batch Normalization, which normalizes all existing data in a
batch, Instance Normalization normalizes each channel in a data in a batch, separately and resulting in
fewer computations and more speed. Upsampling consists of Transpose Convolution, Instance
Normalization, Dropout with probability ratio equal to 0.5, and ReLU activation function. A combination of
adversarial and L1 distance has been used as a loss function for the Generator network in Pix2Pix.
Generator G tries to minimize the existing gap between the generated and original data, and Discriminator
D tries to maximize this distance so as not to be defeated. This minGmaxD is presented in Eq. 1. In this
equation, z is random noise, x is the input of the G, and y is the desired output. Another loss function is
the L1 distance, which aims to enable the Generator to produce outputs as close as possible to the
desired output besides deceiving the Discriminator. This loss function is presented in Eq. 2.

The Discriminator is a PatchGAN which instead of determining whether the whole image is real or fake,
an image is divided into different blocks and sections, and the Discriminator speci�es whether each block
is real or fake. Thus, since the Discriminator considers only the local structures of the image, it will
produce high-frequency results and require far fewer parameters than concluding on the whole image. In
the PatchGAN, any individual image is divided into 70×70 blocks and is passed through a series of
convolutional layers, and an array with the size of 30×30 is generated in the output. The Discriminator
made its �nal decision about the whole image by averaging these arrays. The architecture of the
Discriminator is shown in Fig. 11. Discriminator comprises three Downsample blocks, two Zero-padding,
Leaky ReLU activation function, and Convolutional layers. The Discriminator cost function is a Binary
Cross Entropy whose task was to distinguish between generated images and Ground truth.
The proposed model is trained on 300 epochs. A stochastic gradient descent method called 'Adam' is
used based on the adaptive estimation of �rst and second-order moments. Furthermore, an early
stopping algorithm is used to prevent the model from over�tting. The initial learning rate was set to 0.001
and the Plateau algorithm is employed to facilitate and accelerate the training phase. According to this
algorithm, model training would be stopped if the losses in the experimental set did not improve by at
least 0.001 over ten epochs.

Trajectory prediction
Following needles segmentation in CT slices, the GOTURN tracker was used to predict each
brachytherapy needle's path. This network is a fast tracker, a simple feed-forward that does not require
any online training and learns a general relationship between the object's body motion and appearance.
The GOTURN is a tracker algorithm that is based on image comparison. As depicted in Fig. 12, GOTURN
contains two equal convolutional networks that use two successive frames to �nd the target object's

L(G, D) = Ex, y [log D(x, y)] + Ex, z[log (1- D(G(x, y)))] (1)

LL1(G) = Ex, y, z [|| y - G(x, z) ||] (2)
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position in the current frame, and each of these frames is fed into a series of Convolutional layers to
extract their features. The search region for �nding the target object is restricted to a certain area around
its previous status since the position of this object in the previous image is determined. It can lead to
speed up the tracking process and enhance the performance of the model. Therefore, an area twice the
width and height of the object's bounding box in the prior frame will be cropped relative to its center in the
previous and current image. This is practical since the objects smoothly move, and it could be around
their prior status. As shown in Fig. 12, this model contains �ve Convolutional and three Pooling layers in
two groups which are based on the �ve initial layers of the CaffeNet22. The output of these layers is
combined and passed on a series of fully connected layers to compare the obtained features of the
current and previous frames. Each of these layers consists of 4096 neurons except for the last one, which
comprises four neurons representing the coordinates of the favorable object bounding box23.

Evaluation Metrics
The proposed deep-learning-based approach is evaluated using a series of Metrics. These evaluation
metrics included Dice Similarity Coe�cient (DSC), Intersection over Union (IoU), F1-score, Recall,
Precision, and Shaft Localization Error which are used to assess the proposed method. These metrics are
examined in the following.

DSC is a statistical metric that evaluates the similarity between the segmented image and ground truth.
DSC is twice the overlap area of the images divided by the total number of pixels in each target and
segmented surface (Eq. 3):

IoU, also known as the Jaccard Index, measures the percentage of the segmented image's overlap and its
equivalent ground truth. This metric calculates the number of common pixels in segmented and ground
truth images divided by common and uncommon pixels. IoU is presented below (i.e., Equations 4):

Precision, recall, and F1 score are the other quantitative metrics used to evaluate the algorithm's
performance regarding incorrect localizations and missed localizations. Their calculated as follow:

DSMC=    (3)
2×|target ∩ predict|

2×|target ∩ predict|+|target - predict|+|predict - target|

IoU =  (4)
|target ∩ predict|

|target ∩ predict|+|target - predict|+|predict - target|
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Shaft Localization Error evaluates the predicted position of the needles in each cross-sectional CT image.
In the needle shaft localization error, the contour for each segmented needle is elicited, and in the next
step, their centers were calculated. This metric is de�ned in Eq. 8. In this equation, M is the total number
of segmented needle centers, oi is the actual center, and ti is the predicted center of the desired needle.

In order to have a better illustration of the performance of the tracker model and visual comparison with
the actual routes, the results were presented in the polar r- instead of the Cartesian x-y system. Data are
offered in two forms: r-z and -z curves in which z is slice number. The relation between the pixel
coordinates in these two systems was given through Equations 9 and 10 as follow:
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Figure 1

Needles localization estimation results of a single patient's �ve different test CT slices. In this �gure, the
red and blue color indicates the regions in a needle that are more or less segmented relative to its ground
truths segmentation, respectively.
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Figure 2

One sample slice in which miss localization has occurred.

Figure 3

GOTURN results in which continuous lines are the needle's predicted route and the stars represent the true
locations of each needle in each slice, (a) r-z plane, (b) -z plane.
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Figure 4

Multiple catheters in 3D view. (a) Ground Truth, (b) reconstructed needle, (c) Their fusion.

Figure 5

The results of DSC, and IoU in 2D and 3D space, Recall, Precision, and F1-Score on the test dataset.
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Figure 6

Tip position (Blue circles), mean of shaft errors (red diamonds), and the standard deviations of the test
sets.

Figure 7

One two-dimensional sample of test set, (a) axial image with catheters, (b) its annotations, (c) catheter's
segmentation image.
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Figure 8

The general framework of the proposed method.
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Figure 9

A sample of data cropping.
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Figure 10

Generator structure, (a) Block Diagram of the Generator, (b) The context of the Downsample and
Upsample in the Generator of the Pix2Pix.
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Figure 11

The Pix2Pix Discriminator architecture.

Figure 12

The GOTURN architecture.
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