3.1. Benchmark functions
To test the efficiency of the proposed COVIDOA, we utilized 30 benchmark functions. The first 20 are classical standard benchmark test functions (http://benchmarkfcns.xyz). We selected 5 functions from IEEE CEC 2019 Competition (https://www.mathworks.com/matlabcentral/fileexchange/72123-cec-06-2019-matlab implementation), while the remaining 5 are selected from CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems (Das & Suganthan, 2011) as follows:
I. Classical benchmark problems
Twenty standard optimization functions from the literature are discussed and used for testing the efficiency of the proposed algorithm. These functions are classified into 4 groups: unimodal, multimodal, fixed-dimension, and n-dimensional functions (Hussain et al., 2019; Jamil & Yang, 2013). In fixed-dimension problems, the number of design variables (problem dimension) is fixed, while the other n-dimension problems use any design variables. A multimodal function has multiple (at least locally optimum) solutions instead of a unimodal function with a single optimum solution (Hussain et al., 2019). As described in Table 1 in the appendix, the chosen optimization functions are described in terms of the function name, formula, problem dimension (D), range of possible values, the global optimum, and the group of benchmark functions to which it belongs.
II. IEEE CEC 2019 benchmark problems
In addition to the classical benchmark functions, 5 CEC benchmark functions are utilized for evaluation. These are a group of modern test functions known as "The 100-Digit Challenge" and intended to be used in single objective numerical optimization IEEE competitions (Abdullah & Ahmed, 2019). As shown in Table 2 in the appendix, these functions are described in terms of problem dimension, range of possible values, and the global optimum (https://www.mathworks.com/).
III. CEC 2011 Real World Problems
For further evaluation, COVIDOA applied to 5 real-world optimization problems. These are bound-constrained real-world optimization problems selected from the CEC 2011 Competition on Testing Evolutionary Algorithms on Real-World Optimization. These problems are as follows (Das & Suganthan, 2011):
Lennard-Jones Potential Problem.
Transmission Network Expansion Planning (TNEP) problem.
Tersoff Potential Function Minimization Problem for model Si(B).
Tersoff Potential Function Minimization Problem for model Si(C).
Spread spectrum radar polyphase problem.
The detailed description of these real-world problems is discussed in the 2011 IEEE Congress on Evolutionary Computation (IEEE-CEC 2011) (Das & Suganthan, 2011).
3.2. Experimental results
COVIDOA is implemented in MATLAB R2016a software. COVIOA is utilized to solve the previously mentioned test problems. The results are compared with 8 well-known and recent optimization algorithms: GA (Holland, 1992), DE (Rocca et al., 2011), PSO (Kennedy & Eberhart, 1995), FPA (Yang, 2012), GWO (Mirjalili et al., 214), WOA (Mirjalili & Lewis, 2016), SOA (Dhiman & Kumar, 2019), and CHO (Al-Betar et al., 2020). We selected this group of algorithms for many reasons:
-
Most of them are recent and published in reputable sources.
-
All of them have high performance in single-objective optimization on various benchmark functions.
-
Their MATLAB implementations are publicly available on the MATLAB website (https://www.mathworks.com/).
-
Some of them are evolutionary algorithms, such as GA and DE, which are the same category as COVIDOA.
CHIO algorithm simulates Coronavirus, as is COVIDOA, but each one has its inspiration.
In optimization algorithms, the obtained results change at each run due to the random process. The commonly used number of runs is 30, which would give acceptable statistical precision. So, the proposed algorithm and the state-of-the-art algorithms are run 30 times.
The proposed and state-of-the-art algorithms use Max_Iter = 500 and PopNo = 1000 for the classical benchmark functions. The comparison is made in terms of optimum cost, average cost, standard deviation (STD), and convergence speed. The authors downloaded the source code of the state-of-the-art optimization algorithms from the MATLAB website.
Tables (1–4) show the results of the best cost, average cost, standard deviation, and convergence speed, respectively, for the 20 classical benchmark functions. Table 1 and the pie chart in Fig. 10 show that the proposed algorithm reaches the optimum global cost in 18 of 20 problems and gets very close to the global optimum in the 2 remaining problems. Table 2 and the chart in Fig. 11 proved the COVIDOA algorithm's efficiency in terms of the average cost. It reaches the minimum average cost in 17 from 20 problems and the second minimum average cost in 3. The third criterion is STD, which shows how the cost values are far from the average cost. Low STD values mean that the cost values over the iterations are clustered closely around the average cost. Table 3 and Fig. 12 show that the COVIDOA algorithm reaches the minimum STD values in 17 from 20 problems, the second minimum in 2, and the third minimum in 2, which means that the results of COVIDOA are more reliable than the other algorithms with higher STD values.
Compared with the recently proposed algorithm, CHIO, which simulates the effect of herd immunity in tackling covid pandemic, COVIDOA is the best. As shown in tables (1–4) and figures (10–15), CHIO reaches the minimum optimum cost in 7 benchmark functions only from 25; in contrast, COVIDOA reaches the minimum optimum cost in 21 from 25 test functions. This indicates that COVIDOA has robust exploration capabilities in comparison with CHIO.
Compared with PSO, GWO, and WOA, COVIDOA is superior according to the best cost, average cost, and STD values in most of the test problems. It has a higher convergence speed as it reaches the global minimum after the first few numbers of iterations, as is the case in functions (F3, F8, F7, F15, and F16).
Table 1
Best Cost results of COVIDOA and the state-of-the-art algorithms
Problem | Algorithm |
No | Name | GA (Holland, 1992) | DE (Rocca et al., 2011) | PSO (Kennedy & Eberhart, 1995) | FPA (Yang, 2012) | GWO (Mirjalili et al., 214) | WOA (Mirjalili & Lewis, 2016) | CHIO (Al-Betar et al., 2020) | SOA (Dhiman & Kumar, 2019) | Proposed COVIDOA |
1 | Dixon-price function | 0.66667 | 0.40228 | 0.6667 | 4.9183 | 1 | 0.6667 | 1.694 | 0.6667 | 0.27378 |
2 | Happy Cat Function | 0.1386 | 0.014702 | 0.24166 | 231.478 | 0.0122 | 1.4353 | 0.2691 | 0.005142 | 0.0023146 |
3 | Crosslegtable Function | -0.08493 | -0.084778 | -0.07981 | -0.0006630 | -3.869e-04 | -0.0016362 | -2.606e-04 | -2.4310e-04 | -1 |
4 | Eggholder Function | -4886.18 | -7445.3819 | -5858.46 | -6292.2901 | -6.006 e + 03 | -6319.4385 | -6385 | -5441.7 | -7825.143 |
5 | Stybtang Function | -566.287 | -626.6587 | -626.658 | -530.9072 | -626.086 | -555.9751 | -619.1 | -605.2622 | -626.621 |
6 | Schwefel function | -837.965 | -837.9529 | -837.965 | -837.9657 | -837.965 | -837.9658 | -837.9548 | -837.9658 | -837.9658 |
7 | Keane Function | -0.67367 | -0.67367 | -0.67367 | -0.67367 | -0.6736 | -0.67367 | -0.6737 | -0.67367 | -0.67367 |
8 | Trid Function | -2 | -2 | -2 | -2 | -2 | -2 | -2.0000 | -2 | -2 |
9 | Schaffern4fcn Function | 0.2926 | 0.29258 | 0.29258 | 0.29258 | 0.2926 | 0.29258 | 0.2926 | 0.29258 | 0.29258 |
10 | Branin Function | 0.39789 | 0.39789 | 0.39789 | 0.39789 | 0.39789 | 0.39789 | 0.4071 | 0.39789 | 0.39789 |
11 | Wolfe Function | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | Zettl Function | -0.0037 | -0.0037 | -0.0037 | -0.0037 | -0.0038 | -0.0038 | -0.0037 | -0.0038 | -0.0038 |
13 | Alpine N. 2 Function | -14320.0 | -23700.87 | -14320.08 | -8649.361 | -2369 | -23700.7978 | -1.7386 | -14277 | -23563.73 |
14 | Cross-in-Tray Function | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 |
15 | McCormick Function | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 |
16 | Gramacy & Lee Function | -2.8739 | -2.8739 | -2.8739 | -2.8739 | -2.8739 | -2.8739 | -2.8739 | -2.8739 | -2.8739 |
17 | Testtubeholder Function | -10.8723 | -10.8723 | -10.8723 | -10.8723 | -10.8723 | -10.8723 | -10.8723 | -10.8723 | -10.8723 |
18 | Shubert Function | -186.7309 | -186.7309 | -186.7309 | -186.7309 | -186.7309 | -186.7309 | -186.7082 | -186.7309 | -186.7309 |
19 | Price 2 Function | 0.9 | 0.9 | 0.9 | 0.9004 | 0.9 | 0.9 | 0.9001 | 0.9 | 0.9 |
20 | Dejong5 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.9980 | 0.998 | 0.998 |
The curves in Figs. 14 and 15 represent the relationship between the iterations and the corresponding best cost for the classical test functions. The obtained results using the selected test problems are divided into two groups and displayed in Figs. 14 and 15. Figure 14 represents the test problems for which the COVIDOA algorithm outperforms the other algorithms. In contrast, Fig. 15 shows the results of test problems in which the COVIDOA algorithm has a performance very close to the others.
Table 2
Average Cost results of COVIDOA and the state-of-the-art algorithms
Problem | Algorithm |
No | Name | GA (Holland, 1992) | DE (Rocca et al., 2011) | PSO (Kennedy & Eberhart, 1995) | FPA (Yang, 2012) | GWO (Mirjalili et al., 214) | WOA (Mirjalili & Lewis, 2016) | CHIO (Al-Betar et al., 2020) | SOA (Dhiman & Kumar, 2019) | Proposed COVIDOA |
1 | Dixon-price function | 15.3545 | 126.5770 | 6.3509 | 1.0998e + 03 | 46.6686 | 30.0319 | 1.0734e + 03 | 9.897e + 03 | 5.23636 |
2 | Happy Cat Function | 0.6517 | 0.0445 | 0.2636 | 371.4819 | 0.0802 | 20.4486 | 0.2930 | 0.0477 | 0.0137 |
3 | Crosslegtable Function | -0.0683 | -0.0427 | -0.0427 | -0.7909 | -5.1528e-04 | -2.6865e-04 | -2.182e-04 | -0.0047 | -0.8980 |
4 | Eggholder Function | -4.70e + 03 | -6.75e + 03 | -5.628e + 03 | -5.681e + 03 | -5.2816e + 03 | -6.2799e + 03 | -5.679e + 03 | -4.262e + 03 | -7.23e + 03 |
5 | Stybtang Function | -393.6128 | -619.9509 | -619.2246 | -475.8865 | -577.2454 | -552.6846 | -572.8967 | -594.1131 | -622.7337 |
6 | Schwefel function | -835.3788 | -821.9348 | -837.8732 | -837.5112 | -837.5351 | -837.9275 | -835.5825 | -837.6662 | -837.9367 |
7 | Keane Function | -0.673659 | -0.673667 | -0.673667 | -0.67359 | -0.673661 | -0.673633 | -0.6736 | -0.673519 | -0.673667 |
8 | Trid Function | -1.9999 | -1.9999 | -1.9999 | -2 | -1.9999 | -1.9999 | -1.9996 | -1.9993 | -2 |
9 | Schaffern4fcn Function | 0.2928 | 0.2930 | 0.2926 | 0.2930 | 0.2927 | 0.2928 | 0.2961 | 0.2947 | 0.2927 |
10 | Branin Function | 0.3980 | 0.3982 | 0.3979 | 0.3984 | 0.3987 | 0.3984 | 0.4673 | 0.4205 | 0.3981 |
11 | Wolfe Function | 0.0144 | 1.7214e-04 | 8.5733e-05 | 0 | 3.3785e-04 | 1.4367e-04 | 0.0055 | 3.7236e-04 | 0 |
12 | Zettl Function | -0.0038 | -0.0038 | -0.0038 | -0.0036 | -0.0038 | -0.0038 | -0.0028 | -0.0036 | -0.0038 |
13 | Alpine N. 2 Function | -1.32e + 04 | -2.114e + 04 | -1.402e + 04 | -5.826e + 03 | -1.2565e + 0 | -2.1515e + 04 | -9.569e + 03 | -2.014e + 03 | -2.18e + 04 |
14 | Cross-in-Tray Function | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 | -2.0626 |
15 | McCormick Function | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9105 | -1.9103 | -1.9105 | -1.9105 |
16 | Gramacy & Lee Function | -2.87389 | -2.87384 | -2.87389 | -2.87389 | -2.87389 | -2.87389 | -2.8739 | -2.87385 | -2.87389 |
17 | Testtubeholder Function | -10.8718 | -10.8720 | -10.8721 | -10.8718 | -10.8721 | -10.8717 | -10.8697 | -10.8638 | -10.8721 |
18 | Shubert Function | -186.6132 | -186.6495 | -186.6853 | -186.4929 | -186.6285 | -186.6954 | -186.4249 | -186.2621 | -186.7009 |
19 | Price 2 Function | 0.90037 | 0.900945 | 0.900233 | 0.902144 | 0.9006 | 0.90033 | 0.9031 | 0.91701 | 0.90004 |
20 | Dejong5 | 1.0115 | 1.0065 | 0.9987 | 1.0218 | 1.0122 | 1.0100 | 1.1783 | 1.2333 | 0.9980 |
Additionally, to prove the results' statistical significance, the test results of the 20 classical benchmark functions are compared using Wilcoxon rank-sum test at the %5 significance level (Derrac et al., 2011). A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis (Szucs & Ioannidis, 2017). A null hypothesis is a type of hypothesis used in statistics that assumes there is no significant difference between the two methods' averages values. Table 5 introduces the p values computed by Wilcoxon rank-sum test that compares the COIDOA with eight well-known metaheuristic algorithms for the 20 classical benchmark functions. We observed from Table 5 that all p values are less than a 5% significance level for all comparative algorithms, strong evidence against the null hypothesis. Therefore, we conclude that the COVIDOA is better than all other comparative algorithms.
Table 3
STD results of COVIDOA and the state-of-the-art algorithms
Problem | Algorithm |
No | Name | GA (Holland, 1992) | DE (Rocca et al., 2011) | PSO (Kennedy & Eberhart, 1995) | FPA (Yang, 2012) | GWO (Mirjalili et al., 214) | WOA (Mirjalili & Lewis, 2016) | CHIO (Al-Betar et al., 2020) | SOA (Dhiman & Kumar, 2019) | Proposed COVIDOA |
1 | Dixon-price function | 269.8620 | 1.1364e + 03 | 62.4047 | 3.545e + 03 | 894.3655 | 451.6185 | 4.0605e + 03 | 7.220e + 03 | 52.7791 |
2 | Happy Cat Function | 0.1139 | 78.6462 | 46.1026 | 109.0887 | 0.0522 | 0.0406 | 0.0390 | 0.2955 | 0.0294 |
3 | Crosslegtable Function | 0.0321 | 0.0392 | 0.0357 | 1.557e-04 | 4.8352e-05 | 2.212e-04 | 3.1194e-05 | 2.6201e-05 | 2.8268e-05 |
4 | Eggholder Function | 380.0907 | 878.5967 | 426.2801 | 574.4192 | 450.2399 | 236.1962 | 701.8892 | 979.6934 | 425.3867 |
5 | Stybtang Function | 36.0487 | 42.5232 | 13.4428 | 45.6925 | 26 | 21.2045 | 49.1493 | 50.9105 | 18.6986 |
6 | Schwef Function | 3.5750 | 0.3603 | 0.2791 | 1.9761 | 0.6225 | 2.0103 | 3.2773 | 6.3983 | 0.1706 |
7 | Keane Function | 9.276e-05 | 4.1333e-06 | 3.492e-06 | 0.0011 | 1.242e-04 | 7.286e-04 | 7.1552e-05 | 0.0033 | 6.6663e-08 |
8 | Trid Function | 0.0015 | 9.1279e-04 | 8.566e-05 | 3.721e-04 | 5.869e-04 | 0.0023 | 7.1631e-04 | 0.0023 | 1.9900e-05 |
9 | Schaffern4fcn Function | 9.484e-04 | 0.0033 | 0.0469 | 0.0016 | 6.954e-04 | 0.0031 | 0.0050 | 0.0041 | 5.6588e-04 |
10 | Branin Function | 0.0016 | 0.0013 | 3.902-04 | 0.0035 | 0.0063 | 0.0023 | 0.4256 | 0.0246 | 3.6041e-04 |
11 | Wolfe Function | 0.0393 | 0.0027 | 0.0019 | 0 | 0.0076 | 0.0032 | 0.0303 | 0.0083 | 0 |
12 | Zettl Function | 1.696e-04 | 2.3912e-04 | 6.959e-05 | 0.0011 | 8.467e-04 | 1.704e-04 | 0.0034 | 0.0015 | 1.1646e-04 |
13 | Alpine N. 2 Function | 5.807e + 03 | 2.1124e + 04 | 1.247e + 03 | 2.4308e + 03 | 6.94e + 034 | 3.901e + 03 | 5.3061e + 03 | 2.3812e + 03 | 1.7739e + 03 |
14 | Cross-in-Tray Function | 3.718e-05 | 2.8873e-05 | 4.8930e-06 | 3.0880e-04 | 3.903e-05 | 3.9988e-05 | 1.4093e-04 | 0.0012 | 4.5473e-06 |
15 | McCormick Function | 6.450e-05 | 1.3749e-04 | 1.361e-06 | 8.3451e-05 | 0.0013 | 7.382e-04 | 0.0013 | 0.0041 | 2.6101e-07 |
16 | Gramacy & Lee Function | 4.198e-04 | 0.0010 | 1.856e-05 | 7.1457e-06 | 4.162e-04 | 6.207e-05 | 4.8450e-05 | 4.3901e-04 | 4.1554e-08 |
17 | Testtubeholder Function | 0.0034 | 0.0018 | 0.0015 | 0.0065 | 0.0038 | 0.0058 | 0.0103 | 0.0207 | 0.0021 |
18 | Shubert Function | 0.6984 | 0.5832 | 0.4346 | 1.2720 | 1.2720 | 0.3873 | 0.7193 | 0.7625 | 0.2339 |
19 | Price 2 Function | 0.0034 | 0.0068 | 0.0045 | 0.0063 | 0.0054 | 0.0050 | 0.0096 | 0.0375 | 1.4613e-04 |
20 | Dejong5 | 0.1339 | 0.1025 | 8.7297e-05 | 0.1555 | 0.1185 | 0.1910 | 0.4304 | 0.7947 | 3.4653e-05 |
Table 4
Convergence speed of COVIDOA and the state-of-the-art algorithms
Problem | Algorithms |
No | Name | GA (Holland, 1992) | DE (Rocca et al., 2011) | PSO (Kennedy & Eberhart, 1995) | FPA (Yang, 2012) | GWO (Mirjalili et al., 214) | WOA (Mirjalili & Lewis, 2016) | CHIO (Al-Betar et al., 2020) | SOA (Dhiman & Kumar, 2019) | Proposed COVIDOA |
1 | Dixon-price function | Moderate | Moderate | Moderate | slow | Moderate | Moderate | Moderate | slow | Moderate |
2 | Happy Cat Function | Moderate | Slow | Moderate | slow | slow | slow | slow | slow | Moderate |
3 | Crosslegtable Function | Moderate | Moderate | Moderate | slow | slow | slow | slow | slow | Fast |
4 | Eggholder Function | Slow | Slow | Slow | slow | slow | slow | Slow | slow | Moderate |
5 | Stybtang Function | Slow | Slow | Slow | slow | slow | fast | Fast | slow | Fast |
6 | Schwef Function | Fast | Fast | Fast | fast | fast | fast | Moderate | fast | Fast |
7 | Keane Function | Fast | Fast | Fast | fast | fast | fast | Fast | fast | Fast |
8 | Trid Function | Fast | Fast | Fast | fast | fast | fast | fast | slow | Fast |
9 | Schaffern4fcnFunction | Fast | Fast | Fast | fast | fast | fast | fast | moderate | Fast |
13 | Alpine N. 2 Function | Slow | Moderate | Slow | slow | moderate | slow | moderate | Slow | Moderate |
14 | Cross-in-Tray Function | Fast | Fast | Fast | fast | fast | fast | fast | slow | Fast |
15 | McCormick Function | Fast | Fast | Fast | fast | fast | fast | fast | fast | Fast |
18 | Shubert Function | Fast | Fast | Fast | fast | fast | fast | fast | fast | Fast |
19 | Price 2 Function | Fast | Fast | Fast | moderate | fast | fast | fast | fast | Fast |
20 | Dejong5 | Fast | Fast | Fast | fast | fast | fast | fast | moderate | Fast |
CEC benchmark functions, COVIDOA, and state-of-the-art algorithms search for the optimum cost for 250 iterations with 1000 solutions in each generation. The results of the best cost, average cost, and STD values are discussed in Table 6, and the convergence curves are shown in Fig. 16. COVIDOA is superior to the other algorithms in CEC01, CEC06, and CEC01. The CEC03 problem reaches the minimum best cost and the second minimum average cost ad STD value. In the case of CEC07, however, it is not the best; it achieves excellent results compared to GA, FPA, GWO, WOA, SOA, and CHIO algorithms.
All test results for the CEC benchmark functions compared using the Wilcoxon rank-sum test to prove their statistical significance. Table 7 shows the p values computed by Wilcoxon rank-sum test that compares the COIDOA with other well-known algorithms for CEC benchmark functions. It is evident from Table 7 that all p values are less than 5% which proves the statistical significance of COVIDOA.
Table 5
P values computed by Wilcoxon's rank-sum test compared the COVIDOA with other algorithms for 20 classical benchmark functions.
Problem | Algorithm |
No | Name | COVIDOA vs. GA | COVIDOA vs. DE | COVIDOA vs. PSO | COVIDOA vs. FPA | COVIDOA vs. GWO | COVIDOA vs. WOA | COVIDOA vs. CHIO | COVIDOA vs. SOA |
1 | Dixon-price function | 2.2242e-06 | 8.0835e-24 | 1.3497e-09 | 1.6207e-129 | 6.6181e-12 | 1.0616e-13 | 4.0517e-134 | 2.2667e-102 |
2 | Happy Cat Function | 2.3444e-41 | 2.9609e-142 | 4.6130e-59 | 7.0570e-151 | 7.8828e-78 | 6.2314e-153 | 3.3083e-158 | 2.3994e-168 |
3 | Crosslegtable Function | 3.8478e-147 | 2.6216e-149 | 1.2983e-131 | 5.9989e-71 | 8.8060e-112 | 3.0525e-168 | 1.7277e-168 | 2.1944e-5 |
4 | Eggholder Function | 1.5930e-08 | 3.5431e-35 | 4.7752e-101 | 6.9415e-107 | 4.2077e-102 | 1.2085e-97 | 7.0318e-99 | 1.8854e-169 |
5 | Stybtang Function | 3.5988e-89 | 3.8579e-92 | 9.8348e-156 | 3.5551e-160 | 1.3910e-150 | 4.2362e-151 | 4.8158e-148 | 7.4638e-172 |
6 | Schwefel function | 1.3895e-123 | 1.9569e-164 | 4.7482e-132 | 2.6478e-24 | 2.7706e-42 | 1.3129e-155 | 1.9594e-121 | 7.4398e-142 |
7 | Keane Function | 2.1931e-145 | 4.5728e-141 | 7.8435e-146 | 7.4084e-141 | 1.8957e-138 | 2.5242e-139 | 4.3658e-155 | 1.3654e-145 |
8 | Trid Function | 2.3005e-04 | 1.2665e-07 | 5.4793e-15 | 3.9880e-12 | 3.6942e-132 | 2.7804e-129 | 2.0510e-140 | 7.0287e-143 |
9 | Schaffern4fcn Function | 8.6497e-151 | 1.4164e-133 | 1.2696e-139 | 3.4423e-57 | 8.8837e-158 | 1.5795e-160 | 5.5992e-53 | 1.0205e-04 |
10 | Branin Function | 1.4628e-170 | 1.5300e-166 | 9.9148e-147 | 3.9973e-56 | 4.0798e-31 | 1.5096e-163 | 3.7413e-04 | 1.4814e-99 |
11 | Wolfe Function | 8.6069e-11 | 1.6745e-18 | 1.3438e-25 | 1.3438e-25 | 8.1128e-25 | 8.2198e-25 | 3.2408e-05 | 8.2198e-25 |
12 | Zettl Function | 2.4618e-47 | 3.7395e-48 | 7.9714e-46 | 4.2188e-51 | 8.4116e-43 | 2.6398e-43 | 6.3415e-64 | 2.3241e-60 |
13 | Alpine N. 2 Function | 1.1328e-63 | 2.1170e-87 | 4.9124e-160 | 9.4075e-169 | 2.3117e-98 | 5.4748e-96 | 5.4748e-96 | 3.0303e-170 |
14 | Cross-in-Tray Function | 2.9415e-190 | 6.3621e-190 | 9.4571e-165 | 2.9144e-118 | 1.6057e-167 | 4.4898e-185 | 8.7420e-20 | 7.1009e-30 |
15 | McCormick Function | 4.8145e-208 | 7.9734e-199 | 2.4157e-205 | 2.7981e-185 | 1.7211e-193 | 3.8569e-208 | 1.5483e-54 | 1.6457e-188 |
16 | Gramacy & Lee Function | 5.0302e-214 | 1.1779e-213 | 1.7334e-200 | 2.6517e-189 | 2.1106e-212 | 1.5681e-192 | 2.3659e-191 | 3.2889e-191 |
17 | Testtubeholder Function | 1.3355e-161 | 2.0663e-138 | 1.4054e-120 | 6.2333e-26 | 2.0588e-151 | 1.2910e-163 | 1.4419e-48 | 9.7121e-15 |
18 | Shubert Function | 7.8405e-182 | 4.1448e-96 | 2.8226e-121 | 3.6690e-18 | 5.0688e-103 | 1.7861e-161 | 4.6324e-105 | 1.9701e-164 |
19 | Price 2 Function | 5.8287e-19 | 2.4336e-06 | 1.7689e-07 | 2.1156e-119 | 1.6710e-31 | 1.1040e-24 | 3.8123e-70 | 3.1442e-18 |
20 | Dejong5 | 1.7349e-183 | 6.1675e-188 | 2.6969e-179 | 7.4328e-178 | 3.8529e-175 | 5.8155e-177 | 4.8973e-178 | 3.7030e-182 |
To test the impact of changing parameter values on the performance of OVIDOA, we used 9 different scenarios by changing the values of the parameters MR (Mutation Rate) and numOfProtiens. We utilized the values of 0.1, 0.01, ad 0.001 for MR, 2, 4, and 6 for numOfProtiens which produces 9 scenarios, as shown in Table 8. The results of each scenario on the selected 5 IEEE CEC benchmark problems are presented in Table 9. The best-obtained results are highlighted in bold. We noticed that scenario 1 (MR = 0.1 and numOfProtiens = 2) has better results, followed by scenario 4. The common between these two scenarios is MR = 0.1 which represents a higher mutation rate. This comparison shows that higher MR values are better for improving the performance of the proposed algorithm.
Table 6
Best, average, and STD results of COVIDOA and the state-of-the-art algorithms for CEC benchmark functions.
Problem | Metric | Algorithm |
GA (Holland, 1992) | DE (Rocca et al., 2011) | PSO (Kennedy & Eberhart, 1995) | FPA (Yang, 2012) | GWO (Mirjalili et al., 214) | WOA (Mirjalili & Lewis, 2016) | CHIO (Al-Betar et al., 2020) | SOA (Dhiman & Kumar, 2019) | Proposed COVIDOA |
CEC01 | Best | 4.79e + 07 | 8.067e + 09 | 2.130e + 08 | 2.525e + 09 | 6.58e + 06 | 4.585e + 09 | 7.011e + 06 | 7.35e + 10 | 1.25e + 06 |
AVG | 7.767e + 09 | 3.648e + 10 | 4.108e + 09 | 3.4008e + 10 | 4.260e + 09 | 1.623e + 10 | 2.2465e + 11 | 1.294e + 11 | 1.044e + 09 |
STD | 3.649e + 10 | 3.729e + 10 | 1.394e + 10 | 8.531e + 10 | 4.8333e + 10 | 5.6522e + 10 | 1.3991e + 11 | 1.755e + 11 | 6.249e + 09 |
CEC03 | Best | 12.7024 | 12.7024 | 12.7024 | 12.7024 | 12.7024 | 12.7024 | 12.7024 | 12.7024 | 12.7024 |
AVG | 12.7024 | 12.7025 | 12.7024 | 12.7026 | 12.7024 | 12.7024 | 12.7025 | 12.7028 | 12.7025 |
STD | 1.8779e-04 | 2.3779e-04 | 4.8999e-05 | 3.7993e-04 | 1.8226e-04 | 1.0041e-04 | 2.5001e-04 | 5.063e-04 | 9.8359e-05 |
CEC06 | Best | 10.0164 | 7.7598 | 8.5145 | 9.4978 | 9.2790 | 7.7528 | 9.3672 | 8.0529 | 7.6402 |
AVG | 10.7198 | 8.7656 | 9.7656 | 9.7070 | 9.5928 | 8.6969 | 9.6018 | 9.2519 | 8.6512 |
STD | 0.6542 | 8.6156 | 0.7421 | 0.5951 | 0.5048 | 1.2646 | 0.6372 | 0.8336 | 0.4291 |
ECE07 | Best | 296.0888 | 165.6218 | 242.9147 | 176.8028 | 305.1 | 546.7268 | 277.5 | 317.7 | 276.0837 |
AVG | 409.9065 | 265.9382 | 388.3867 | 334.7019 | 461.5165 | 570.3746 | 316.4750 | 566.4644 | 376.4779 |
STD | 231.6249 | 186.9450 | 266.6071 | 159.2303 | 168.3036 | 176.3487 | 119.4227 | 170.8287 | 163.8042 |
CEC10 | Best | 20.1179 | 20.0925 | 20.1074 | 20.3277 | 20.3589 | 20.0006 | 20.2471 | 20.1112 | 19.4927 |
AVG | 20.4208 | 20.1859 | 20.2848 | 20.3669 | 20.3789 | 20.0226 | 20.3975 | 20.2414 | 19.4976 |
STD | 0.0823 | 0.1245 | 0.1128 | 0.0686 | 0.0697 | 0.0863 | 0.0933 | 0.1412 | 0.0574 |
For testing COVIDOA on CEC real-world problems, we obtain our results over 500 iterations. The proposed and state-of-the-art algorithms were run 25 independent times as suggested by IEEE-CEC 2011 Competition (Das & Suganthan, 2011). Table 10 and Fig. 17 show the obtained results for the selected CEC real-world problems. The proposed algorithm achieves the optimum best cost, average cost, and STD values for all 5 selected problems.
Although the general steps of COVIDOA and other evolutionary algorithms, such as GA and DE, are very similar, COVIDOA is superior to them, as shown in tables (1–10). This progress is caused by the additional step proposed in the replication phase of COVIDOA, the frameshifting technique. Adding frameshifting technique in the replication process helps COVIDOA update solutions in each generation, helping to get to global optimum rapidly faster.
Table 7
P values computed by Wilcoxon's rank-sum test compared the COVIDOA with other algorithms for CEC benchmark functions.
Problem | Algorithm |
COVIDOA vs. GA | COVIDOA vs. DE | COVIDOA vs. PSO | COVIDOA vs. FPA | COVIDOA vs. GWO | COVIDOA vs. WOA | COVIDOA vs. CHIO | COVIDOA vs. SOA |
CEC01 | 2.0762e-19 | 3.9935e-44 | 4.0173e-28 | 1.2177e-28 | 7.4696e-24 | 3.5076e-25 | 9.3679e-33 | 9.7806e-73 |
CEC03 | 4.3959e-10 | 2.0317e-06 | 2.8802e-14 | 6.8629e-04 | 1.6530e-18 | 2.6432e-19 | 2.8370e-17 | 1.8324e-08 |
CEC06 | 9.1167e-05 | 7.2701e-19 | 1.7786e-05 | 4.3378e-31 | 7.0423e-26 | 2.0190e-23 | 1.8914e-35 | 2.6879e-18 |
ECE07 | 2.8384e-16 | 3.5116e-19 | 5.2696e-12 | 3.7006e-13 | 2.8596e-09 | 6.4990e-32 | 6.5814e-21 | 6.1956e-26 |
CEC10 | 6.4014e-13 | 1.8025e-19 | 1.0889e-28 | 5.0020e-28 | 3.9464e-26 | 8.7411e-19 | 4.3551e-32 | 1.4533e-20 |
Table 8
Scenarios of the tuning parameters
Scenario | Parameters |
MR | numOfProtiens |
1 | 0.1 | 2 |
2 | 0.01 | 2 |
3 | 0.001 | 2 |
4 | 0.1 | 4 |
5 | 0.01 | 4 |
6 | 0.001 | 4 |
7 | 0.1 | 6 |
8 | 0.01 | 6 |
9 | 0.001 | 6 |