
Mathematical Modelling of Drug Interaction on
Evolution of Antibiotic Resistance: An Analytical
Approach
Ramin Nashebi 

Bahcesehir University Medical School
Murat Sari 

Yildiz Technical University
Seyfullah Kotil  (  enesseyfullah.kotil@med.bau.edu.tr )

Bahcesehir University Medical School

Research Article

Keywords: Antibiotic resistance, Drug interaction, ordinary differential equation, equilibrium solutions

Posted Date: April 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1593972/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1593972/v1
mailto:enesseyfullah.kotil@med.bau.edu.tr
https://doi.org/10.21203/rs.3.rs-1593972/v1
https://creativecommons.org/licenses/by/4.0/


1 

 

Mathematical Modelling of Drug Interaction on Evolution of Antibiotic Resistance: An Analytical Approach 

 

Ramin Nashebi1,3, Murat Sari2,4, Seyfullah Kotil1,,5,* 

 

1 Department of Biophysics, Bahcesehir University Medical School, Istanbul, Turkey 

2 Department of Mathematics, Yildiz Technical University, Istanbul, Turkey, 

¶ These authors contributed equally to this work. 

*Corresponding author 

3 ramin.nashebi@std.yildiz.edu.tr, ORCID: 0000-0003-0208-6103 

4 sarim@yildiz.edu.tr, ORCID: 0000-0003-0508-2917   

5 enesseyfullah.kotil@med.bau.edu.tr, ORCID: 0000-0002-9588-3947 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:ramin.nashebi@std.yildiz.edu.tr
mailto:sarim@yildiz.edu.tr


2 

 

Statements and Declarations 

Competing Interests 

The authors declare no competing interests. 

Author Contributions 

R.N. and S.K. conceived of the presented idea. R.N. and S.K. developed the theory and performed the computations. 

R.N., M.S. and S.K. verified the analytical methods. All authors discussed the results and contributed to the final 

manuscript. 

Funding Declaration 

This work was funded by TUBITAK, 2232 – International Fellowship for Outstanding Researchers, Project number 

118C244.  

Acknowledgement 

We thank Huseyin Tunc for valuable discussions. Huseyin Tunc was involved in some of the preliminary results that 

are related to this work. 

Abstract  

The rapid spread of antibiotic-resistant pathogens has prompted drug combinations to maintain clinical efficacy and 

combat the development of resistance. Drugs interact to increase (synergistic) or decrease (antagonistic) the effect of 

the combined therapy. Furthermore, the interactions of the two drugs can change as the bacteria evolves from the 

wild type (W.T.) to the mutant type (M.T.). Experimental studies have shown that the evolution of resistance is 

impeded if drugs interact antagonistically in the W.T. In contrast, other studies have shown that antagonistic 

interactions in the M.T. speed up the resistance's emergence. Theoretical works investigated the effect of W.T. drug 

interactions on resistance. A fundamental question is how the different combination of drug interactions in W.T. and 

M.T. influences antimicrobial resistance. Here we analyze a mathematical model that captures any combination of 

drug interactions in W.T. and the M.T. The novelty of this work is to examine the association between synergistic 

and antagonistic interaction of antibiotics for wild-type (sensitive bacteria) and mutants (resistant bacteria) on the 

growth rate of resistant strains. The most important contribution is to clarify that antagonistic interaction against the 

wild type has a more critical role in slowing the growth rate of resistant bacteria. The antagonistic interaction in the 

M.T. speeds up evolution but minimally. Our results suggest that it would be more appropriate to consider the nature 

of the drug interactions for the W.T. when designing combination therapy. 

Keywords: Antibiotic resistance, Drug interaction, ordinary differential equation, equilibrium solutions  
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1. Introduction 

Antibiotic-resistant bacteria are a complex and growing public health problem worldwide. Infections caused by them 

are more challenging to treat than infections caused by non-resistant bacteria and can lead to more extended hospital 

stays, additional costs, and increased mortality. One of the mechanisms by which bacteria acquire antibiotic 

resistance is through mutation in the chromosomal gene (Pirommas Techitnutsarut and Farida Chamchod 2021). 

Mutations in infectious diseases lead to antibiotic resistance during treatment with a single drug (Jean-Baptiste 

Michel et al. 2008). Therefore, multidrug treatment can increase the efficacy of the therapy (Jean-Baptiste Michel et 

al. 2008). Unfortunately, some multidrug-resistant bacteria gain resistance to a multidrug cocktail (Jean-Baptiste 

Michel et al. 2008, Charlotte Genestet et al. 2018). Treating the disease caused by multidrug-resistant (MDR) 

bacteria became more complicated and increased patient mortality (Bin Zhao et al. 2016). The challenge is to 

identify the factors that lead to the evolution of single-drug and multidrug-resistant bacteria and develop drug 

combinations strategies to maintain clinical efficacy and combat the development of resistance (Joseph Peter Torella 

et al. 2010). 

When the two drugs are combined, they can interact and enhance each other's inhibitory effects compared to their 

respective inhibitory effects. This is called the synergistic interaction (Jean-Baptiste Michel et al. 2008, Joseph Peter 

Torella et al. 2010, Pamela J. Yeh et al. 2010) between the two drugs. In synergistic interactions, the drug can more 

effectively inhibit or kill wild-type (W.T.) bacteria in the same amount as used alone (Pamela J. Yeh et al. 2010). On 

the other hand, drugs interact and reduce each other's inhibitory effects compared to their respective inhibitory 

effects. This is called the antagonistic interaction (Jean-Baptiste Michel et al. 2008, Joseph Peter Torella et al. 2010, 

Pamela J. Yeh et al. 2010)  between the two medications. In this interaction, the drug cannot effectively suppress or 

kill W.T. bacteria in the same amount as when used alone [6]. The interaction is additive if the drugs interact and 

have the same effect as when used individually [6]. 

Moreover, the interactions of the two drugs can change as the bacteria evolves from the wild type to the mutant type 

(M.T.). At the beginning of combination therapy, drugs can synergistically affect the W.T. Nevertheless, when the 

bacteria evolve from W.T. to M.T., the interaction can change from synergistic to antagonistic (Rafael Pena-Miller 

et al. 2013). 

Experimental (Jean-Baptiste Michel et al. 2008, Joseph Peter Torella et al. 2010), numerical (Jean-Baptiste Michel 

et al. 2008, Joseph Peter Torella et al. 2010, Rafael Pena-Miller et al. 2013, Remy Chaitet al. 2007, Matthew 
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Hegreness 2008), and analytical [Pirommas Techitnutsarut and Farida Chamchod 2021, Eduardo Ibargüen-

Mondragón et al. 2014] studies have been done to investigate how the evolution of antibiotic resistance is affected 

by synergistic and antagonistic interaction of drugs in the case of multidrug therapy. Hegreness M. et al. (Matthew 

Hegreness 2008) and Remy Chait et al. (Remy Chaitet al. 2007) accomplished that the evolution of antibiotic 

resistance is faster in synergistic drug combinations than the antagonistic combination. They find that a synergistic 

interaction for the W.T. accelerates antibiotic resistance's development due to the selective advantage of resistance 

mutation. They concluded that an antagonistic interaction on the W.T. slows down the particular benefit of 

resistance mutation. However, Pena-Miller et al. (Rafael Pena-Miller et al. 2013) showed that synergistic interaction 

changes to antagonistic interaction. It can be seen from their work that antagonistic interactions in the M.T. speed up 

the resistance's emergence. However, it is unclear if the beneficial effect of antagonism in W.T. is more critical than 

the detrimental effect of antagonism in M.T. 

In this study, we purposed a mathematical model to analyze the impact of drug interaction on the evolution of antibiotic 

resistance. The main objective is to examine the presence of which interaction type; thus, the growth rate of resistant 

bacteria decreases. The novelty of this work is to analytically explore the association between the interaction of 

antibiotics for the W.T. and the M.T. on the antibiotic resistance. 

 

2. Materials and Methods 

 

2.1 Model formulation  

We model a situation where an individual receives a multidrug treatment against bacteria (as with Mycobacterium 

tuberculosis (Eduardo Ibargüen-Mondragón et al. 2014, Charlotte Genestet et al. 2018 ). Let us denote by S(t) and 

R(t) the population sizes of sensitive (or W.T.) and resistant (or M.T.) bacteria to M and N antibiotics at time t, 

respectively; and by C1(t), C2(t) the concentration of the M and N antibiotics, respectively. We assume that bacteria 

follow a logistic growth (cell competition) with carrying capacity K. Let βs, βr represent the birth rate of sensitive 

and resistant bacteria, respectively. Specific mutations that confer resistance to chemical control have an inherent 

fitness cost which may be manifested through reduced reproductive capacity or competitive ability (Justino Alavez-

Ramírez et al. 2006). We measure fitness cost as a reduction in the reproduction rate of the resistant strain. 

Therefore βr ≤ βs. Resistant bacteria can emerge due to mutations of sensitive bacteria, and we model this situation 

by the terms q1S and q2S , where q1 and q2 are the mutation rate of sensitive bacteria, respectively. The immune 

system kills sensitive and resistant bacteria with rates μs and μr , respectively. Sensitive and resistant bacteria also 

die due to the action of antibiotics. To consider the combined effect of antibiotic M and N interaction to kill sensitive 

and resistant bacteria, we incorporate a simple function as follows 𝑋𝑠̅̅ ̅ = (𝛼11̅̅ ̅̅ 𝐶1 + 𝛼12̅̅ ̅̅ 𝐶2 + 𝜆1𝛼11̅̅ ̅̅  𝛼12̅̅ ̅̅ 𝐶1𝐶2) 𝑋𝑟̅̅ ̅ = (𝛼21̅̅ ̅̅̅𝐶1 + 𝛼22̅̅ ̅̅̅𝐶2 + 𝜆2𝛼21̅̅ ̅̅̅ 𝛼22̅̅ ̅̅̅𝐶1𝐶2) 
(1) 
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where 

𝛼11̅̅ ̅̅ = 𝐸𝑚𝑎𝑥𝑀,𝑠𝐼𝐶50𝑀,𝑆  ,  𝛼12̅̅ ̅̅ ̅ = 𝐸𝑚𝑎𝑥𝑁,𝑠𝐼𝐶50𝑁,𝑆 

and 

𝛼21̅̅ ̅̅̅ = 𝐸𝑚𝑎𝑥𝑀,𝑟𝐼𝐶50𝑀,𝑅  ,  𝛼22̅̅ ̅̅ ̅ = 𝐸𝑚𝑎𝑥𝑁,𝑟𝐼𝐶50𝑁,𝑅 

In here, E.M.,S max  𝑎nd EN,S max  represent the maximal killing rate of antibiotic M and N of sensitive bacteria. E.M.,R max  

and EN,R max    represent the maximal killing rate of antibiotic M and N  of resistant bacteria. ICM,S 50  and ICN,S 50   

signify the half-maximal inhibitory concentration of the antibiotic 𝑀 and N for sensitive bacteria. ICM,S 50  and ICN,S 

50   denote the half-maximal inhibitory concentration of the antibiotic M and N  for resistant bacteria.  

The λ1 and λ2  are the interaction parameters for sensitive and resistant bacteria, respectively. They range between -

1.5 and 1.5 (-1.5≤ λ1,λ2 ≤1.5) (Joseph Peter Torella et al. 2010), where negative values indicate antagonistic 

interactions, positive values indicate synergistic interactions. Finally, the M and N antibiotic concentration is 

supplied at a constant rate θ1 and θ2 , and are removed at a constant per capita rate μ1 and μ2, respectively. 

Under the assumptions revealed above, we obtain the following system of ordinary differential equations: 𝑑𝑆𝑑𝑡 = 𝛽𝑠𝑆 (1 − 𝑆 + 𝑅𝐾 ) − (𝑞1 + 𝑞2)𝑆 − (𝑋𝑠̅̅ ̅ + 𝜇𝑠)𝑆 𝑑𝑅𝑑𝑡 = 𝛽𝑟𝑅 (1 − 𝑆 + 𝑅𝐾 ) + (𝑞1 + 𝑞2)𝑆 − (𝑋𝑟̅̅ ̅ + 𝜇𝑟)𝑅 𝑑𝐶1𝑑𝑡 = 𝜃1 − 𝜇1𝐶1  𝑑𝐶2𝑑𝑡 = 𝜃2 − 𝜇2𝐶2 

With the following change of variables 

𝑠 = 𝑆𝐾  ,   𝑟 = 𝑅𝐾 ,   𝑐1 = 𝐶1𝜃1 𝜇1⁄  ,    𝑐2 = 𝐶2𝜃2 𝜇2⁄  

the system (1) is written as 𝑑𝑠𝑑𝑡 = 𝛽𝑠𝑠(1 − (𝑠 + 𝑟)) − (𝑞1 + 𝑞2)𝑠 − (𝑋𝑠 + 𝜇𝑠)𝑠 𝑑𝑟𝑑𝑡 = 𝛽𝑟𝑟(1 − (𝑠 + 𝑟)) + (𝑞1 + 𝑞2)𝑠 − (𝑋𝑟 + 𝜇𝑟)𝑟 𝑑𝑐1𝑑𝑡 = 𝜇1 − 𝜇1𝑐1  

(4)   

(6) 

(5) 

(2) 

(3) 
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𝑑𝑐2𝑑𝑡 = 𝜇2 − 𝜇2𝑐2 

Where, 𝛼1𝑖 = 𝛼1𝑖̅̅ ̅̅ (𝜃𝑖 𝜇𝑖⁄ ),  𝛼2𝑖 = 𝛼2𝑖̅̅ ̅̅ (𝜃𝑖 𝜇𝑖⁄ )  

for i=1,2 and  𝑋𝑠 = (𝛼11𝑐1 + 𝛼12𝑐2 + 𝜆1𝛼11 𝛼12𝑐1𝑐2) 𝑋𝑟 = (𝛼21𝑐1 + 𝛼22𝑐2 + 𝜆2𝛼21 𝛼22𝑐1𝑐2) 

The region of biological interest of system (6) is given by Ω = {(𝑠, 𝑟, 𝑐1, 𝑐2) 𝜖 𝑅+4 ∶  0 ≤ 𝑠, 𝑟, 𝑐1, 𝑐2 ≤ 1,   0 ≤ 𝑠 + 𝑟 ≤ 1 } 
The following lemma assures that system (6) is well-posed because solutions with initial conditions in Ω  

remain there for all t ≥ 0. 

Lemma 2.1. The set Ω defined in (8) is positively invariant for the system (6). See (Eduardo Ibargüen-Mondragón et 

al. 2019) for proof of the above lemma. 

 

2.2 Qualitative analysis of the model 

This part will find the equilibrium points, analyze their stability, and give some numerical simulation. 

 

2.2.1 Equilibrium solutions 

The equilibria of the system (6) are given by the solutions of the system of algebraic equations 𝛽𝑠𝑠(1 − (𝑠 + 𝑟)) − (𝑞1 + 𝑞2)𝑠 − ((𝛼11𝑐1 + 𝛼12𝑐2 + 𝜆1𝛼11 𝛼12𝑐1𝑐2) + 𝜇𝑠)𝑠 = 0 𝛽𝑟𝑟(1 − (𝑠 + 𝑟)) + (𝑞1 + 𝑞2)𝑠 − ((𝛼21𝑐1 + 𝛼22𝑐2 + 𝜆2𝛼21 𝛼22𝑐1𝑐2) + 𝜇𝑟)𝑟 = 0 𝜇1 − 𝜇1𝑐1 = 0 𝜇2 − 𝜇2𝑐2 = 0 

From the last two equations of system (9), we have c1 = c2 = 1.  Replacing c1 and c2   in the first two equations of 

system (9), we obtain 𝛽𝑠𝑠(1 − (𝑠 + 𝑟)) − (𝑞1 + 𝑞2)𝑠 − ((𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12) + 𝜇𝑠)𝑠 = 0 𝛽𝑟𝑟(1 − (𝑠 + 𝑟)) + (𝑞1 + 𝑞2)𝑠 − ((𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) + 𝜇𝑟)𝑟 = 0 

It holds from the first equation of (10) that s=0 or 

(8) 

(7) 

(9) 

(10) 
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𝛽𝑠(1 − (𝑠 + 𝑟)) − 𝑚 − ((𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12) + 𝜇𝑠) = 0 

where  𝑚 = 𝑞1 + 𝑞2 

Assume s=0  replacing this value in the second equation of system (10) we obtain  𝛽𝑟𝑟 − 𝛽𝑟𝑟2 − ((𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) + 𝜇𝑟)𝑟 = 0 

which implies r=0 or 

𝑟 = 𝑅𝑟 − 1𝑅𝑟  

where  

𝑅𝑟 = 𝛽𝑟(𝛼21𝛼22𝜆2 + 𝛼21 +  𝛼22) + 𝜇𝑟 

Therefore, we obtain the solutions equilibrium solutions  𝑃0 = (0,0,1,1) 

𝑃1 = (0, 𝑅𝑟 − 1𝑅𝑟 , 1,1) 

From (14), it follows that a necessary and sufficient condition for the biological sense of P1 is 

Rr >1. Now, for s≠0 the first equation of (10) is reduced to 

𝑠 = 𝑅𝑠 − 1𝑅𝑠 − 𝑟 

where  

𝑅𝑠 = 𝛽𝑠𝑚 + (𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12) + 𝜇𝑠 

From (17), it is concluded that a necessary condition for the existence of sensitive and resistant bacteria is Rs >1  

Also, sufficient condition for 𝑠 to be positive is 𝑅𝑠 − 1𝑅𝑠 > 𝑟 

Substituting (17) in the second equation of (10) and solving for r we obtain 

𝑟 = 𝑚 (𝑅𝑠 − 1𝑅𝑠 )𝛽𝑟 ( 1𝑅𝑟 − 1𝑅𝑠) + 𝑚 

(13) 

(14) 

(15) 

(16) 

(12) 

(18) 

(17) 

(19) 

(20) 



8 

 

Replacing 𝑟 defined by (20) in the inequality (19), it is easy to verify that s > 0 is equivalent to  𝑅𝑠 > 𝑅𝑟 

Further, r > 0 if 1𝑅𝑟 > 1𝑅𝑠 

Therefore, a necessary condition for s and r to be positive is Rs > Rr These results are summarized in the following 

proposition. 

Proposition 2.2.1.1: Model (6) always has the infection-free equilibrium P0 = (0.0,1,1) contained in Ω. If Rr > 1, P1 

= (0, (Rr -1) / Rr ,1,1) is a second equilibrium in Ω. When Rs > 1 and Rs > Rr in addition to P0, and P1 there exists a 

third equilibrium in Ω, P2 (s̄, r̄,1,1) where s̄ and r̄  are given by the right-hand side of equations (17) and (20). 

 

2.2.2 Stability of equilibria points 

In this section, we determine the local asymptotic stability of the equilibrium solutions of the system (6). To this 

end, let us start with the trivial equilibrium P0 = (0.0,1,1). Linearization of system (6) around P0 is given by  𝑥⃗′ = 𝐽(𝑝)𝑥⃗,  

where   𝑥⃗ = (𝑠, 𝑟, 𝑐1, 𝑐2)𝑇 

and the matrix J evaluated at P is 

𝐽(𝑃) = [ 𝑗11(𝑃) −𝛽𝑠𝑠 −(𝑐2𝜆1𝛼11𝛼12 + 𝛼11)𝑠 −(𝑐1𝜆1𝛼11𝛼12 + 𝛼12)𝑠−𝛽𝑟𝑟 + 𝑚 𝑗22(𝑃) −(𝑐2𝜆2𝛼21𝛼22 + 𝛼21)𝑟 −(𝑐1𝜆2𝛼21𝛼22 + 𝛼22)𝑟0 0 −𝜇1 00 0 0 −𝜇2
] 

with 𝑗11(𝑝) = 𝛽𝑠(1 − (𝑠 + 𝑟)) − 𝛽𝑠𝑠 − 𝑚 − ((𝛼11𝑐1 + 𝛼12𝑐2 + 𝜆1𝛼11𝛼12𝑐1𝑐2) + 𝜇𝑠) 𝑗22(𝑝) = 𝛽𝑟(1 − (𝑠 + 𝑟)) − 𝛽𝑟𝑟 − ((𝛼21𝑐1 + 𝛼22𝑐2 + 𝜆2𝛼21 𝛼22𝑐1𝑐2) + 𝜇𝑟) 

By evaluating the (23) Jacobian J in P0 we obtain 

𝐽(𝑃0) = [𝑗11(𝑃0) 0 0 0𝑚 𝑗22(𝑃0) 0 00 0 −𝜇1 00 0 0 −𝜇2
] 

(21) 

(22) 

(23) 

(24) 

(25) 
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The eigenvalues of J(P0) are given by 

𝜑1 = 𝑗11(𝑃0) = 𝛽𝑠 − 𝑚 − ((𝛼11 + 𝛼12 + 𝜆1𝛼11𝛼12) + 𝜇𝑠) = 𝛽𝑠 (𝑅𝑠 − 1𝑅𝑠 ) 

𝜑2 = 𝑗22(𝑃0) = 𝛽𝑟 − ((𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) + 𝜇𝑟) = 𝛽𝑟 (𝑅𝑟 − 1𝑅𝑟 ) 

𝜑3 = −𝜇1 𝜑4 = −𝜇2 

Sinceφ1 and φ2 are negative for Rs < 1 and Rr < 1 respectively, then P0 is locally and asymptotically stable. Since α11, 

α12, μs, and βs are positive, there are three conditions for Rs < 1 if λ1 > 0. λ1 < 0, or λ1 = 0. If λ1 > 0, λ1 < 0 the 

necessary condition for Rs < 1  is 𝛽𝑠 − 𝜇𝑠 − 𝑚 < 𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12 

and if λ1 = 0, the necessary condition is 𝛽𝑠 − 𝜇𝑠 − 𝑚 < 𝛼11 + 𝛼12 

Analogously, since α21, α22, μr, and βr  are positive, there are three condition for Rr > 1, if λ2 > 0, λ2 < 0, or λ2 = 0. If 

λ2 > 0, λ2 < 0 the necessary condition for Rr > 1 is 𝛽𝑟 − 𝜇𝑟 < 𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22 

and if λ2 = 0 the necessary condition is 𝛽𝑟 − 𝜇𝑟 < 𝛼21 + 𝛼22 

This result is summarized in the following proposition.  

Proposition 2.2.2.1: If Rs < 1 and Rr < 1, then the trivial equilibrium P0 is locally and asymptotically stable in Ω. If 

Rs > 1  or Rr > 1, then P0 is unstable. 

Now, we will determine the conditions for which the equilibrium P1 is locally and asymptotically stable. To this end, 

let us observe that the Jacobian given in (23) evaluated in P1 is given by  

𝐽(𝑃1) = [  
  𝑗11(𝑃1) 0 0 0−𝛽𝑟 (𝑅𝑟 − 1𝑅𝑟 ) + 𝑚 𝑗22(𝑃1) −(𝜆2𝛼21𝛼22 + 𝛼21) 𝑅𝑟 − 1𝑅𝑟 −(𝜆2𝛼21𝛼22 + 𝛼22) 𝑅𝑟 − 1𝑅𝑟0 0 −𝜇1 00 0 0 −𝜇2 ]  

  
 

The eigenvalues of J(P1) are given by 

𝜔1 = 𝑗11(𝑃1) =  𝛽𝑠 (1 − 𝑅𝑟 − 1𝑅𝑟 ) − 𝑚 − 𝜇𝑠 − (𝛼11 + 𝛼12 + 𝜆1𝛼11𝛼12) = 𝛽𝑠 ( 1𝑅𝑟 − 1𝑅𝑠) 

𝜔2 = 𝑗22(𝑃1) =  𝛽𝑟 (1 − 𝑅𝑟 − 1𝑅𝑟 ) − 𝛽𝑟 (𝑅𝑟 − 1𝑅𝑟 ) − 𝜇𝑟 − (𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) = 𝛽𝑟 (1 − 𝑅𝑟𝑅𝑟 ) 

(26) 

(28) 

) 

(27) 
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𝜔3 = −𝜇1 𝜔4 = −𝜇2 

We see that ω1 < 0 if and only if Rr > Rs and that ω2 < 0 if and only if Rr >1. Since 𝛼21, 𝛼21, 𝜇𝑟, and 𝛽𝑟  are positive, 

there are three conditions for Rr > 1, if λ2 > 0, λ2 < 0, or λ2 = 0. If λ2 > 0, λ2 < 0 the necessary condition for Rr > 1 is 𝛽𝑟 − 𝜇𝑟 > 𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22 

and if λ2 = 0 the necessary condition is 𝛽𝑟 − 𝜇𝑟 > 𝛼21 + 𝛼22 

From the above we have the following proposition 

Proposition 2.2.2.2: If Rr > Rs and Rr >1, then the equilibrium P1 is locally and asymptotically stable in Ω. If Rr < Rs  

or Rr <1, then P1 is unstable. 

Now, we will determine the conditions for which the equilibrium P2 is locally and asymptotically stable. To this end, 

let us observe that the Jacobian given in (23) evaluated in P2 is given by  

𝐽(𝑃2) = [ 𝑗11(𝑃2) −𝛽𝑠𝑠̅ −(𝜆1𝛼11𝛼12 + 𝛼11)𝑠̅ −(𝜆1𝛼11𝛼12 + 𝛼12)𝑠̅−𝛽𝑟𝑟̅ + 𝑚 𝑗22(𝑃2) −(𝜆2𝛼21𝛼22 + 𝛼21)𝑟̅ −(𝜆2𝛼21𝛼22 + 𝛼22)𝑟̅0 0 −𝜇1 00 0 0 −𝜇2
] 

where 𝑗11(𝑃2) = 𝛽𝑠(1 − (𝑠̅ + 𝑟̅)) − 𝛽𝑠𝑠̅ − 𝑚 − 𝜇𝑠 − (𝛼11 + 𝛼12 + 𝜆1𝛼11𝛼12) 𝑗22(𝑃2) = 𝛽𝑟(1 − (𝑠̅ + 𝑟̅)) − 𝛽𝑟𝑟̅ − 𝜇𝑟 − (𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) 

From (11), it follows 𝑗11(𝑃2) = 𝛽𝑠(1 − (𝑠̅ + 𝑟̅)) − 𝛽𝑠𝑠̅ − 𝑚 − 𝜇𝑠 − (𝛼11 + 𝛼12 + 𝜆1𝛼11𝛼12) = −𝛽𝑠𝑠̅ 

and from the second equation of (10), we have 

𝑗22(𝑃2) = 𝛽𝑟(1 − (𝑠̅ + 𝑟̅)) − 𝛽𝑟𝑟̅ − 𝜇𝑟 − (𝛼21 + 𝛼22 + 𝜆2𝛼21 𝛼22) = −1𝑟̅ (𝛽𝑟𝑟̅ + 𝑚𝑠̅) 

 

Substituting (31) and (32) in (29), J(P2) becomes 

𝐽(𝑃2) = [  
  −𝛽𝑠𝑠̅ −𝛽𝑠𝑠̅ −(𝜆1𝛼11𝛼12 + 𝛼11)𝑠̅ −(𝜆1𝛼11𝛼12 + 𝛼12)𝑠̅−𝛽𝑟𝑟̅ + 𝑚 −1𝑟̅ (𝛽𝑟𝑟̅ + 𝑚𝑠̅) −(𝜆2𝛼21𝛼22 + 𝛼21)𝑟̅ −(𝜆2𝛼21𝛼22 + 𝛼22)𝑟̅0 0 −𝜇1 00 0 0 −𝜇2 ]  

  
 

(29) 

(30) 

) 

(31) 

) 
) 

(32) 

) 

(33) 

) 
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The eigenvalues of J(P2) are  𝜏1 = −𝜇1 𝜏2 = −𝜇2 

and the eigenvalues of the matrix 

𝐴 = [ −𝛽𝑠𝑠̅ −𝛽𝑠𝑠̅−𝛽𝑟𝑟̅ + 𝑚 −1𝑟̅ (𝛽𝑟𝑟̅2 + 𝑚𝑠̅)] 
Since 

𝑇𝑟𝑎𝑐𝑒(𝐴) = −𝛽𝑠𝑠̅ − 1𝑟̅ (𝛽𝑟𝑟̅2 + 𝑚𝑠̅) < 0 

and 

𝐷𝑒𝑡(𝐴) = 1𝑟̅ (𝛽𝑠 𝛽𝑟  𝑠̅ 𝑟̅2 + 𝛽𝑠𝑚 𝑠̅2) + 𝛽𝑠 𝛽𝑟  𝑠̅ 𝑟̅  −  𝛽𝑠 𝑠̅ 𝑚 > 0 

the eigenvalues of A have a negative real part. We resume the above results in the following proposition. 

Proposition 2.2.2.3: If Rs > 1 and Rs > Rr, the equilibrium P2 is in Ω, and it is locally and asymptotically stable. 

 

2.2.3 Biological interpretation of equilibrium solutions and the stability analysis 

The Rs represent the average number of sensitive bacteria produced by the fraction of sensitive bacteria that escape 

the action of the combination of antibiotics and the immune system. 𝑅𝑠 defined in (18) is rewritten as 𝑅𝑠 = 𝜇𝑠𝑚 + (𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12) + 𝜇𝑠 𝑁𝑠 

Where Ns is defined as the product of the reproduction rate of sensitive bacteria βs and the average life 

span of sensitive bacteria1/μs. 𝛼1𝑖 = 𝛼1𝑖̅̅ ̅̅ (𝜃𝑖 𝜇𝑖⁄ ),  

for i=1,2 are the rate at which the M and N antibiotics eliminate sensitive bacteria at their equilibrium level.  𝜇𝑠𝑚 + (𝛼11 + 𝛼12 + 𝜆1𝛼11 𝛼12) + 𝜇𝑠 

The term represents a fraction of sensitive bacteria that do not present spontaneous mutations and escape to the 

action of the combination of antibiotics and the immune system. The Rr represent the average number of resistant 

bacteria produced by the fraction of resistant bacteria that escape the action of the combination of antibiotics and the 

immune system. Rr  defined in (15) is rewritten as 𝑅𝑟 = 𝜇𝑟(𝛼21 + 𝛼22 + 𝛼21𝛼22𝜆2  ) + 𝜇𝑟 𝑁𝑟 

(34) 

) 

(35) 

) 

(36) 

) 

(37) 

) 

(38) 

) 
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Where Nr  is defined as the product of the reproduction rate of resistant bacteria  βr  and the average life 

span of sensitive bacteria 1/μr. The 

 𝛼2𝑖 = 𝛼2𝑖̅̅ ̅̅ (𝜃𝑖 𝜇𝑖⁄ ),  

for i=1,2, are the rate at which the M and N antibiotics eliminate resistant bacteria at their equilibrium level. The  𝜇𝑟( 𝛼21 +  𝛼22 + 𝛼21𝛼22𝜆2) + 𝜇𝑟 

the term represents a fraction of resistant bacteria that do not present spontaneous mutations and escape to the action 

of the combination of antibiotics and the immune system 

When antibiotics eliminate the sensitive bacteria, and the resistant bacteria prohibit the proliferation of resistant 

bacteria, in this case, both bacteria die out. In this situation, suppose resistant bacteria produce, on average more 

than one, and the reproduction capacity of sensitive bacteria is lower than resistant bacteria. In that case, only 

resistant bacteria live, and sensitive bacteria die out. When sensitive bacteria produce more than one bacterium, and 

the reproduction capacity of sensitive bacteria is more than resistance, then both sensitive and resistant bacteria live. 

Although the reproduction capacity of resistant bacteria is lower than sensitive, the spontaneous mutation of 

sensitive bacteria makes them live.  

 

2.2.4 Numerical simulations 

This section gives some numerical simulations and graphs that illustrate the above results. The values of the 

parameters used in the simulations are constant and were determined based on data from Table 1. For numerical 

simulation, we consider an individual with a disease caused by bacteria that develop resistance to antibiotics M and 

N. The drug interaction parameter for sensitive and resistant bacteria are (λ1) and (λ2) respectively. The λ equals to 0 

for additive interaction (Joseph Peter Torella et al. 2010), 1 for synergistic interaction (Joseph Peter Torella et al. 

2010), and -1 for antagonistic interaction (Joseph Peter Torella et al. 2010). Our simulation follows three scenarios. 

In the first scenario, antibiotics interact additively with the sensitive and the resistant bacteria (λ1=λ2=0). In the 

second scenario, antibiotics interact synergistically with the sensitive bacteria, but they interact antagonistically with 

resistant bacteria (λ1=1, λ2=-1). In the third scenario, antibiotics interact antagonistically with sensitive bacteria but 

synergistically with resistant bacteria (λ1=-1, λ2=1). 

 

Table 1: Interpretation and considered values of the parameters for the model (6). Data are deduced from the literature. 

Parameter Description Value Units Ref. 

𝐾 Bacteria carrying capacity 109 Cells [23] 

(39) 

) 



13 

 

𝛽𝑠 The growth rate of sensitive bacteria 1 ℎ−1 [23] 

𝛽𝑟 The growth rate of resistant bacteria 0.65 ℎ−1 [23] 

𝜇𝑠 The natural death rate of sensitive bacteria 0.5 ℎ−1 [23] 

𝜇𝑟 The natural death rate of resistant bacteria 0.5 ℎ−1 [23] 

𝑚 The mutation rate of sensitive bacteria 10−8 + 10−6 𝑚𝑢𝑡 × 𝑔𝑒𝑛 [3] 

𝐸𝑚𝑎𝑥𝑀,𝑆
 

The maximal kill rate of sensitive bacteria with 

the antibiotic M 
1.5 ℎ−1 [3] 

𝐸𝑚𝑎𝑥𝑁,𝑆
 

The maximal kill rate of sensitive bacteria with 

the antibiotic N 
1.5 ℎ−1 Hypothesis 

𝐸𝑚𝑎𝑥𝑀,𝑅
 

The maximal kill rate of resistant bacteria with 

the antibiotic M 
1.1 ℎ−1 [23] 

𝐸𝑚𝑎𝑥𝑁,𝑅
 

The maximal kill rate of resistant bacteria with 

the antibiotic N 
1.1 ℎ−1 Hypothesis 

𝐼𝐶50𝑀,𝑆
 

The concentration of the antibiotic M, which 

has a half-maximum effect on sensitive bacteria 
0.25 𝜇𝑔/𝑚𝑙 [23] 

𝐼𝐶50𝑁,𝑆
 

The concentration of the antibiotic N, which has 

a half-maximum effect on sensitive bacteria  
0.25 𝜇g/ml Hypothesis 

𝐼𝐶50𝑀,𝑅
 

The concentration of the antibiotic M, which 

has a half-maximum effect on resistant bacteria 
5 𝜇g/ml [23] 

𝐼𝐶50𝑁,𝑅
 

The concentration of the antibiotic N, which has 

a half-maximum effect on resistant bacteria 
5 𝜇g/ml Hypothesis 

Table 1: Interpretation and considered values of the parameters for the model (6). Data are deduced from the 

literature (continues) 

 𝜃1 hourly dose of antibiotic 0.21 𝑚𝑔/ℎ [3] 

 𝜃2 hourly dose of the antibiotic N 0.42 𝑚𝑔/ℎ [3] 
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𝜇1 The degradation rate of the antibiotic M 0.0025 ℎ−1 [3] 

𝜇2 The degradation rate of the antibiotic N 0.0021 ℎ−1 [3] 

 𝜆1  Interaction parameter between the antibiotics M 

and N for sensitive bacteria 

variese between   

[-1.5 1.5] 

- [12] 

 𝜆2  Interaction parameter between the antibiotics M 

and N for resistant bacteria 

variese between  

[-1.5 1.5] 

- [12] 

 

Here, for simplicity, we assume that antibiotics M and N  have the same maximum kill rate (Emax ) on sensitive and 

resistant bacteria. We also assume that the IC50's of M and N antibiotics are the same  for simplicity.  

Fig. 1 shows that the system (6) solution approaches the trivial equilibrium P0 point since Rs < 1  and Rr < 1 in all 

scenarios (Fig. 1a-1c). On the other hand, when Rs < Rr and Rr > 1, the solutions approach the equilibrium P1  point, 

as seen in Fig. 2a-2c. Here, the resistant bacteria evade the combined effect. Finally, when Rs > Rr and Rs > 1  

system (6 solution approaches the equilibrium point P2 (Fig. 3a-3c). The less fit resistant bacteria is stabilized by the 

influx of mutations from the sensitive. 

The number of bacteria produced by a sensitive bacteria (Rs) equals to 0.58, 0.48, and 0.74 for the first, second, and 

third  scenarios, respectively. Anagolosly, The number of bacteria produced by a resistant  bacteria (Rr) equals  0.69, 

0.72, and 0.65 for the first, second, and third scenarios, respectively. It is inferred from Fig. 1a-1b  that when the 

drug interaction is synergistic, the sensitive and resistant bacteria have a lower reproductive number than when the 

drug interactions are additive. Conversely, when the drug interaction is antagonistic, the sensitive and resistant 

bacteria have a bigger reproduction number than when the drug interactions are additive. 
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Fig. 1 Temporal course of sensitive (s) and resistant (r) bacteria population through three scenarios  of antibiotics 

interaction effect: a) additive (λ1=λ2=0)  effect on both the sensitive and the resistant bacteria, b) synergistic (λ1=1) 

effect on the sensitive bacteria, and  antagonistic (λ2=-1) effect on resistant bacteria,  c) antagonistic (λ1=-1) effect 

on the sensitive, and synergistic (λ2=1) effect on the resistant bacteria. In here c1 and c2 are the concentration of 

antiobitics, M and N. Simulations are done using parameter values in Table 1 and bacteria and antibiotic densities 

(y-axises) given in the log plot. In all  three cases Rs < 1 and Rr < 1 which implies that the solution of the system (6) 

approach P0. 
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Fig. 2 Temporal course of sensitive (s) and resistant (r) bacteria population through three scenarios  of antibiotics 

interaction effect: a) additive (λ1=λ2=0) effect on both the sensitive and the resistant bacteria, b) synergistic (λ1=1) 

effect on the sensitive bacteria, and  antagonistic (λ2=-1) effect on resistant bacteria,  c) antagonistic (λ1=-1) effect 

on the sensitive and synergistic (λ2=1) effect on the resistant bacteria. In here 𝑐1 and 𝑐2 are the concentration of 

antibiotics, M and N. Simulations are done using parameter values in Table 1 and bacteria and antibiotic densities 

(y-axises) given in the log plot. In all  three cases Rs < 1 and Rr >1, which implies that the solution of the system (6) 

approach P1. 
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Fig. 3 Temporal course of sensitive (s) and resistant (r) bacteria population through three scenarios  of antibiotics 

interaction effect: a) additive (λ1=λ2=0) effect on both the sensitive and the resistant bacteria, b) synergistic (λ1=1) 

effect on the sensitive bacteria, and  antagonistic (λ2=-1) effect on resistant bacteria,  c) antagonistic (λ1=-1) effect 

on the sensitive and synergistic (λ2 = 1) effect on the resistant bacteria. In here 𝑐1 and 𝑐2 are the concentration of 

antibiotics, M and N. Simulations are done using parameter values in Table 1 and bacteria and antibiotic densities 

(y-axises) given in the log plot. In all  three cases Rs > 1 and Rr < Rr, which implies that the solution of the system 

(6) approach P2. 

 

 

 

 

 

3. Results  

Here we will inspect the relationship between the interaction parameters of drugs for wild-type (λ1) and mutants (λ2) 

minimum inhibitory concentration (MIC). The MIC is the lowest concentration of an antimicrobial that will inhibit 
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the visible growth of a microorganism after overnight incubation (J M Andrews 2001, 2002). Antibiotic that has 

lower MIC is more effective in killing per dose. First, we analytically investigate the influence of (λ2) on the MIC of 

the mutant bacteria .  

Therefore, we equate  Rr =1, for no visible growth, in the equation (15)  

𝑅𝑟 = 𝛽𝑟(𝛼21𝛼22𝜆2 + 𝛼21 +  𝛼22) + 𝜇𝑟 = 1 

Solving for (λ2) we get  

𝜆2 = 𝛽𝑟 − 𝜇𝑟 − 𝛼21 − 𝛼22𝛼21𝛼22 = 𝛽𝑟 − 𝜇𝑟 − (𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑀,𝑅  𝜃1 𝜇1) − (𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑁,𝑅  𝜃2 𝜇2)(𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑀,𝑅  𝜃1 𝜇1)   (𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑁,𝑅  𝜃2 𝜇2)  

for simplicity, we assume that both antibiotics have the same minimal inhibitory concentration ( ICM,R 50 = ICN,R 50 = 

ICR 50 ) and maximum kill rate (EM,R max = EN,R max = ER max) for resistant bacteria. Here we will investigate only the 

condition where μ1 = μ2  and θ1 = θ2. then (41) written as 

𝜆2 = 𝛽𝑟 − 𝜇𝑟 − 2(𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑅  𝜃1 𝜇1)(𝐸𝑚𝑎𝑥𝑟𝐼𝐶50𝑅  𝜃1 𝜇1)2    

We found (see appendix A for writing ICR 50  as function of MICr) 

𝐼𝐶50𝑅 = 𝐸𝑚𝑎𝑥𝑟  𝑀𝐼𝐶𝑟𝛽𝑟 − 𝜇𝑟  

where MICr is the MIC for resistant bacteria treated with a single antibiotic. Substituting (43) to (42), we get  

𝜆2 = 𝑀𝐼𝐶𝑟2𝜃12 − 2 𝑀𝐼𝐶𝑟𝜇1𝜃1( (𝛽𝑟 − 𝜇𝑟) 𝜇1)2  

The (44) equation relates the λ2 to MICr . Specifically, it relates λ2 to how effective the drugs used in 

combination should be, at a minimum, when used alone. The minimum effectiveness translates to the maximum 

MIC value. We have plotted the graph of the (44) equation in Fig. 4 by using values in Table 1. Figure 4 shows that 

as the interactions change from antagonistic to synergistic, the antibiotics are allowed to have higher MIC values. 

Synergism can make up for the inefficiency of a single drug. The drugs that interact antagonistically must be very 

effective as a single drug.  

In other words, if the interactions are synergistic, it is speculated that we do not need to use drugs with high 

inhibitory effects, as the synergistic interactions enhance their inhibitory effects. Similarly, as antagonistic 

interactions between drugs against resistant strains decrease (λ2 > 0),  the minimum concentration for inhibiting 

resistant strains reduce. When the interactions are antagonistic, we need to use drugs with high inhibitory effects, as 

antagonistic interactions reduce their inhibitory effects. From bacteria's point of view, the resistant strain is better-

(40) 

) 

(41) 

) 

(42) 

) 

(43) 

) 

(44) 

) 
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off if the drugs interact antagonistically. Antagonistic drugs have to be very efficient; otherwise, they cannot control 

bacterial growth. The same argument extends to sensitive bacteria as well. 

 

 

Fig. 4 Effect of interaction parameter between antibiotics for resistant bacteria (λ2) on minimum inhibitory 

concentration (MIC) level of drugs. 

After establishing that the antagonistic interactions benefit both the sensitive and resistant bacteria, we would like to 

consider the evolutionary aspects. To consider evolution, we have to compare the growth rate of the sensitive and 

resistant bacteria. A larger growth advantage would lead to faster evolution (Seyfullah Enes Kotil and Kalin 

Vetsigian 2018). 

Now we suppose a quasi-stable condition for concentrations, and we compute the maximum growth rate of sensitive 

and resistant bacteria when s and r are close to goes to zero in (6) system. To calculate the growth rate of sensitive 

and resistant bacteria, we divide the first and second equation of (6) with s and r, respectively. We get 𝐺𝑠 = 𝛽𝑠 − 𝑚 − ((𝛼11𝛼12𝜆1 + 𝛼11 +  𝛼12) + 𝜇𝑠) 𝐺𝑟 = 𝛽𝑟 − ((𝛼21𝛼22𝜆2 + 𝛼21 +  𝛼22) + 𝜇𝑟) 

where Gs and Gr  are the growth rates of sensitive and resistant bacteria, respectively, in quasi-stable 

condition, for interaction parameters. For simplicity, we assume that both antibiotics have same minimal inhibitory 

concentration for resistant bacteria ( ICM,R 50 = ICN,R 50 = ICR 50 ) and sensitive bacteria ( ICM,S 50 = ICN,S 50 = ICS 50 ). 

We also assume that both antibiotics have same maximum kill rate for resistance (EM,R max = EN,R max = ER max) and 

sensitive (EM,S max = EN,S max = ES max)  bacteria.  So that 

(45) 

) 
) 
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𝛼11 = 𝐸𝑚𝑎𝑥𝑆𝐼𝐶50𝑆   𝜇1𝜃1  , 𝛼12 = 𝐸𝑚𝑎𝑥𝑆𝐼𝐶50𝑆   𝜇2𝜃2    
and 

𝛼21 = 𝐸𝑚𝑎𝑥𝑅𝐼𝐶50𝑅   𝜇1𝜃1   , 𝛼22 = 𝐸𝑚𝑎𝑥𝑅𝐼𝐶50𝑅   𝜇2𝜃2    
In here we will investigate only the condition where μ1 = μ2  and θ1 = θ2. Consequently, α11 = α12   and α21 = α22 then 

(45) became  𝐺𝑠 = 𝛽𝑠 − 𝑚 − ((𝛼112 𝜆1 + 2 𝛼11) + 𝜇𝑠) 𝐺𝑟 = 𝛽𝑟 − ((𝛼212𝜆2 + 2 𝛼21) + 𝜇𝑟) 

Since antibiotics have less effect on resistant bacteria than sensitive, so we can write α11 = δ α12  for some δϵR , 

substituting this in second equation of (46) we get 𝐺𝑟 = 𝛽𝑟 − (𝛿2 𝛼112𝜆2 + 2 𝛿 𝛼11) + 𝜇𝑟) 

solving first equation of (46) for α11 we get  

𝛼11 = −1 + √ −𝜆1 𝜇𝑠 +  𝜆1 𝛽𝑠 −𝜆1 𝐺𝑠 −𝜆1 𝑚 + 1 𝜆1  

substituting (48) in to (47)  

𝐺𝑟 = 𝛽𝑟 − 𝛿2 (−1 + √ −𝜆1 𝜇𝑠 +  𝜆1 𝛽𝑠 −𝜆1 𝐺𝑠 −𝜆1 𝑚 + 1)2 𝜆2 𝜆1 2− 2 𝛿 (−1 + √ −𝜆1 𝜇𝑠 +  𝜆1 𝛽𝑠 −𝜆1 𝐺𝑠 −𝜆1 𝑚 + 1) 𝜆1 −𝜇𝑟) 

We plot the surface of the growth rate of resistance strains (Gr) as a function of the interaction parameter of 

antibiotics for wild-type λ1  and mutants λ2 Fig. 5. We set the parameters to the values given in Table 1. The (Gs) is 

set to 0, to get solutions when the drug is used inhibit the sensitive bacteria. Figure 5 illustrates, as expectedly, that 

the Gr decreases as increasing antagonism with the sensitive bacteria, while Gr increases as increasing antagonism 

with the resistant bacteria. More importantly,  the Gr depends more on λ1 compared to λ2. The simulation of temporal 

course of resistant bacteria, which is shown in Fig. 6, confirms our analytical conclusion in Fig. 5.  

(46) 

) 
) 

(47) 

) 
) 

(48) 

Fig

𝜆2

1.5

(49) 

Fig

𝜆2

1.5
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Fig. 5 Association between interaction parameters of antibiotics for wild-type λ1 and mutants λ2. on the growth rate 

of resistant strains. 

Fig. 6a simulates the temporal course of sensitive and resistant strains under four different scenarios of the combined 

effect of antibiotics M and N. We select scenarios for the combined action of antibiotics according to the four 

corners of the graph in Fig. 5. In the first scenario, antibiotics M and N have an antagonistic effect on the wild type 

and a synergistic effect on the mutant. In the second scenario, the antibiotics M and N have a synergistic effect on 

the wild type and an antagonistic effect on the mutant type. The third is that antibiotics M and N have antagonistic 

effects on both wild type and mutant. In the fourth scenario, antibiotics M and N act synergistically on both wild-

type and mutant. 

As seen in Fig. 6a, the resistant bacteria population density has a reasonable interpretation with Fig.5 growth rate of 

resistant bacteria when the concentration of antibiotics is in maximum density (see Fig. 6b). Fig. 6a shows that the 

resistant bacteria have maximum population density when the λ1=1 (synergistic). Fig. 5 also interpreted that the 

growth rate of resistant bacteria increases when sensitive bacteria are inhibited by the synergistic effect. In addition, 

in Fig. 5 and Fig. 6a, the λ2 has not significantly contributed to the growth rate of resistant bacteria. Inversely, 

resistant bacteria have minimum population density for the scenario when λ2 (antagonistic).  

 

4. Discussion  

The rapid spread of antibiotic-resistant pathogens has prompted drug combinations to maintain clinical efficacy and 

combat the development of resistance. Unfortunately, the emergence of multidrug-resistant bacteria causes treatment 

to be more complicated and increases mortality. It is important to investigate the factor that causes multidrug 

resistance in combined therapy. In this work, we develop a mathematical model using a system of ODE incorporated 
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with a pharmacodynamic model to examine the impact of drug interaction on the evolution of resistance during 

multidrug therapy. Qualitative analysis shows that there exists bacteria-free equilibrium, 𝑃0, resistant bacteria 

equilibrium. P0, resistant bacteria equilibrium. P1, and endemic equilibrium, P2, where sensitive and resistant 

bacteria both co-exist. We found two parameters Rs and Rr, which determine the existence and stability of 

equilibrium points. Rs define as the number bacteria generated by a fraction of sensitive bacteria that survive the 

effect of combined antibiotics and immune system response. Rr, define as the number bacteria generated by a 

fraction of resistant bacteria that survive the effect of combined antibiotics and immune 

 

Fig. 6 Temporal course of resistant (r) bacteria population under different combination scenarios. (a) shows 

resistance bacteria density over time (b) shows antibiotic M (blue line) and N ( red dash line) density over time. In 

(a)  Blue line shows synergistic (λ1=1) effect of M and N antibiotics on sensitive bacteria, and antagonistic (λ2=-1) 

effect of M and N antibiotics on resistant bacteria. The Red line shows antagonistic (λ1=-1) effect of M and N 

antibiotics on sensitive bacteria, and synergistic (λ2=1) effect of M and N antibiotics on resistant bacteria. Blackline 

shows antagonistic (λ1=-1, λ2=-1) effect of M and N antibiotics on sensitive and resistant bacteria. Greenline 

synergistic (λ1=1, λ2=1) effect of M and N antibiotics on sensitive and resistant bacteria. The rectangular dash point 

out the resistant bacteria density when the concentration of M and N antibiotics are at their maximum level (c1 = c2 

=1) 
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system response. When Rs <1 and Rr <1   the solution of system (6) approach bacteria-free equilibrium means that 

sensitive and resistant bacteria are eliminated by combined antibiotic and immune system response. This result tells 

as that the net growth rate of bacteria is less than the combined antibiotic inhibitory effect when the interaction 

between drugs is synergistic (λ1 > 0, λ2 >0), antagonistic (λ1 < 0, λ2 <0), or additive (λ1 = 0, λ2 =0). When Rs < Rr 

and Rr >1, solution of system (6) approach resistant bacteria equilibrium P1, means infection caused only by 

resistant bacteria. When Rs >1 and Rs > Rr  the system (6) solution approaches endemic equilibrium P2. 

Hegreness M. et al. (Matthew Hegreness et al. 2008) and Remy Chait et al. [Remy Chait et al. 2007] found that the 

evolution of antibiotic resistance grows slower if drugs interact antagonistically with the wild-type. Pena-Miller et 

al. (Rafael Pena-Miller et al. 2013) conclude that synergistic interaction changes to antagonistic interaction. Thus, 

antagonistic interaction in the mutants are preferred. Our results clarify that antagonistic relation with the wild-type 

has a more critical role in the therapy outcome than the mutant (see Fig, 5).  

In addition, Hegreness M. et al. (Matthew Hegreness et al. 2008) found that the evolution of antibiotic resistance 

grows faster during synergistic interaction. This acceleration is the selective advantage for resistance mutations 

during synergistic interaction. Our results confirm their findings since we show that at the minimum inhibitory 

concentration (MIC) level, the growth rate of resistant bacteria increases due to the enhancement of the synergistic 

effect of antibiotics on wild-type bacteria and the antagonistic effect on mutants (see Fig. 5). 

Moreover, Torella et al. (Joseph Peter Torella et al. 2010) found that the synergistic interaction shortens the clearing 

time for a population of susceptible bacteria but increases the competitive advantage for resistant bacteria. Although 

the antagonistic interaction increases the purification time, it decreases the competitive advantage of resistant 

bacteria. Our results in Fig. 5 show that mutants under the pressure of antagonistic antibiotics outperform 

competitively resistant strains.  

In this study, we investigate the association between synergistic and antagonistic interaction of antibiotics for wild-

type (sensitive bacteria) and mutants (resistance bacteria) on the growth rate of resistant strains. The most important 

contribution of our work is to clarify that antagonism against wild type has a more critical role. Our analytical 

results suggest that it would be more appropriate to develop combined therapy strategies against wild type (sensitive 

bacteria). 

The best multidrug therapy that would stand the test time should include very effective drugs that interact 

antagonistically with the sensitive bacteria. If possible, interact synergistically with the mutant bacteria. 
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