We included 100 adult patients with severe COVID-19 pneumonia, and we divided them into two groups; In group A (survivors) were included 76 patients with a median age of 57,5 (49,2–65) years. In group B (non-survivors), were included 24 patients with a median age of 66 (62–71) years.
Sixty (78.9%) patients from group A and 23 (95,8%) patients in group B had comorbidities, consisting in obesity (46,1% vs. 45,8%), diabetes mellitus (17,1% vs. 33,3%), arterial hypertension (41,9% vs. 58,3%), CHF (3,9% vs. 12,5%), peripheral vascular disease (1,3% vs. 4,1%), CKD (3,9% vs. 20,8%), COPD (10,5% vs. 16,6%), chronic hepatitis (3,9% vs. 8,3%), history of neoplasia (0% vs. 25%), ischemic stroke (2,6% vs. 20,8%), dementia (1,3% vs. 4,1%), peptic ulcer (1,3%vs. 0%), and other pathologies (32,9% vs. 54,1%) including history of current depressive disorder and rheumatologic diseases. The median Charlson Comorbidity Index (CCI) [7] score was 1,5 [1; 2] in group A and 3 [2; 6] in group B.
All patients required supplemental oxygen at admission, 17 patients (22.3%) in group A received oxygen by nasal cannula/Venturi mask versus 9 patients (37,5%) in group B and 57 patients (77,6%) in group A by non-rebreathing masks versus 12 patients (50% in group B); 3 patients (12.5%) in group B were mechanically ventilated at admission.
Patients required a median oxygen flow of 12 [10–20] L/min in group A and 25 [12,5–30] L/min in group B, with a median FiO2 of 60% [50–60] vs 60% [48,7–78,7], median PaO2 of 84 [71–104]mmHg vs 81,5 [61,5–93,7]mmHg, median PaO2/FiO2 ratio of 163,3 [126,6-217,9] vs 110,5 [96,5- 156,9], median pCO2 of 37 [34,9–40]mmHg vs 36 [32; 39,2] mmHg and a median RR of 35 [20,7–30] PaO2/FiO2 ratio] breaths /minute vs 26,5 [20; 28,5] breaths/minute.
In group B, lower values were detected for PaO2/FiO2 ratio, lymphocytes, platelets, and hemoglobin and higher values for neutrophils, BNP, D-dimers, creatine kinase, lactate dehydrogenase, and serum creatinine compared with group A, as showed in Table 1. For the other measured parameters, we found no statistical difference in value distribution.
Table 1
Biologic changes in survivors (group A) and non-survivors (group B)
Parameter
Median (IQR)
|
Group A
|
Group B
|
p-value
|
PaO2/FiO2 ratio
|
163,3 [126,6; 217,9]
|
110,5 [96,5; 156,8]
|
0,008
|
Neutrophils (x103/µL)
|
6200 [4650; 8350]
|
8750 [5400; 13675]
|
0,016
|
Lymphocytes (x103/µL)
|
950 [700; 1200]
|
525 [400; 800]
|
< 0,001
|
Neutrophils/lymphocytes ratio
|
6,8 [4,1; 11,4]
|
14,6 [8,7; 30,8]
|
< 0,001
|
Platelets (x103/µL)
|
229,5 [191,7; 318,5]
|
160 [1110,2; 275,7]
|
0,004
|
Hemoglobin (g/dL)
|
14 [12,8; 14,5]
|
12,5 [11,3; 13,7]
|
0,001
|
BNP (ng/L)
|
86 [17; 301]
|
754 [144,7; 2428,7]
|
0,003
|
D-dimers (ng/mL)
|
246 [156; 354]
|
555 [213; 1141]
|
0,001
|
Creatine kinase (U/L)
|
61,5 [34,2; 127]
|
191,5 [76; 307,5]
|
0,004
|
Myoglobin (µg/L)
|
120 [83,5; 225,2]
|
236 [128,3; 332,4]
|
0,007
|
Lactate dehydrogenase (U/L)
|
354,5 [287; 454,2]
|
570 [457; 680]
|
0,001
|
Serum creatinine (mg/dL)
|
0,9 [0,7; 1,1]
|
1,4 [1,1; 1,5]
|
< 0.001
|
Serum albumin (g/L)
|
3,8 [3,4; 4]
|
3,35 [3,1; 3,6]
|
< 0.001
|
A higher percentage of lung involvement was found in group B, including alveolar, interstitial and mixt lesions, with a dominant interstitial component. The distribution of normal lung densities differs between the two groups of patients, with a higher percentage of normal lung densities surrounded by inflammatory changes in group B.
The characterization of lung lesions using semi-quantitative assessment tools (number of pulmonary lobes with pathologic changes) had no statistical significance between Group A and Group B (Table 2).
Table 2
CT lung involvement in survivors (group A) and non-survivors (group B) at admission
Parameter
Median [IQR]
|
Group A
|
Group B
|
p-value
|
alveolar lesions (%)
|
1,8 [1; 3,2]
|
3,1 [1,5; 5,1]
|
0,062
|
mixt lesions (%)
|
4,6 [2,5; 7,3]
|
6,9 [4,1; 12]
|
0,036
|
interstitial lesions (%)
|
39,4 [31,7; 47,8]
|
49,2 [44,3; 60,1]
|
0,001
|
total lung involvement (%)
|
47,2 [35,9; 63]
|
64,9 [48,1; 74,1]
|
0,003
|
normal lung densities (%)
|
52,7 [37; 64,1]
|
35,1 [25,9;51,9]
|
0,003
|
Cluster 1 (2-10mmc) (%)
|
0,4 [0,2; 0,9]
|
1,1 [0,3; 1,5]
|
0,029
|
Cluster 2 (10-60mmc) (%)
|
0,45 [0,2; 0,9]
|
0,9 [0,3; 1,7]
|
0,011
|
Cluster 3 (60-200mmc) (%)
|
0,1 [0; 0,3]
|
0,4 [0,2; 0,6]
|
0,001
|
Cluster 4 (over200mmc) (%)
|
51,6 [35,5; 63,7]
|
33 [20,7; 51,7]
|
0,002
|
lobes with interstitial lesions (n)
|
5 [5; 5]
|
5 [5; 5]
|
0,931
|
lobes with alveolar lesions (n)
|
0 [1; 2]
|
0 [0; 2]
|
0,306
|
lobes with atelectatic changes (n)
|
3,5 [2; 5]
|
2 [2; 4]
|
0,253
|
A lower percentage of normal lung densities, PaO2/FiO2 ratio, lymphocytes, platelets, hemoglobin and serum albumin, respectively a higher percentage of interstitial lesions, oxygen flow, FiO2, Neutrophils/lymphocytes ratio, lactate dehydrogenase, creatine kinase MB, myoglobin, and serum creatinine are associated with higher mortality. (Table 3).
Table 3
Risk factors associated with poor outcome
Parameter
|
Pearson correlation
|
p-value
|
Exp B (95% CI for Exp B)
|
Change in mortality (%)
|
Interstitial lesions (%)
|
0,320
|
0,001
|
1,065 (1,022; 1,109)
|
6,5 *
|
Total lung involvement (%)
|
0,335
|
0,001
|
1,049 (1,018; 12,08)
|
4,9 *
|
Normal lung densities (%)
|
-0,335
|
0,001
|
0,953 (0,926; 0,982)
|
4,7% #
|
Cluster1 (2-10mmc) (%)
|
0,209
|
0,047
|
1,798 (1,015; 3,183)
|
79,8 *
|
Cluster2 (10-60mmc) (%)
|
0,233
|
0,019
|
1,936 (1,081; 3,467)
|
93,6 *
|
Cluster 3 (60-200mmc) (%)
|
0,241
|
0,016
|
4,92 (1,262; 19,181)
|
392 *
|
Cluster 4 (over200mmc) (%)
|
-0,341
|
0,001
|
0,956 (0,93; 0,98)
|
4,4 #
|
Age (years)
|
0,260
|
0,009
|
1,052 (1,011; 1,094)
|
5,2 *
|
O2 flow ( L/min)
|
0,306
|
0,002
|
1,092 (1,029; 1,159)
|
9,2 *
|
FiO2(%)
|
0,260
|
0,009
|
1,045 (1,009; 1,083)
|
4,5 *
|
PaO2/FiO2 ratio
|
-0,235
|
0,02
|
0,99 (0,982; 0,999)
|
1 #
|
Lymphocytes( x 103/µL)
|
-0,360
|
< 0,001
|
0,997 (0,995; 0,999)
|
0,3 #
|
Neutrophils/lymphocytes ratio
|
0,341
|
0,001
|
1,067 (1,023; 1,113)
|
6,7 *
|
Platelets( x 103/µL)
|
-0,302
|
0,002
|
0,99 (0,984; 0,997)
|
1 #
|
Hemoglobin (g/dL)
|
-0,362
|
< 0,001
|
0,623 (0,47; 0,83)
|
38#
|
CKMB (U/L)
|
0,258
|
0,01
|
1,047 (1,004; 1,091)
|
4,7 *
|
LDH (U/L)
|
0,371
|
< 0,001
|
1,005 (1,002; 1,008)
|
0,5 *
|
Serum albumin (g/L)
|
-0,450
|
< 0,001
|
0,062 (0,012; 0,32)
|
93,8 #
|
Myoglobin(µg/L)
|
0,282
|
0,013
|
1,006 (1,001; 1,011)
|
0,6 *
|
*for 1 unit increase in the parameter; # for 1 unit decrease in the parameter |
Logistic regression was used to assess the OR for each parameter correlated with the risk of a poor outcome.
The mortality rate doubled for every additional 19,2 years of age, 10,8 L/min oxygen requirement, 22,2% FiO2, 14,9 value of Neu/Ly, 21,3 U/L of CKMB, 200 U/L of LDH, 166,6 µg/L increase in myoglobin. The mortality rate also doubled for every decrease with 100 of PaO2/FiO2 ratio, 333 (x103/µL) in lymphocytes count, 100 (x103/µL) in platelets count, and 1,06 (g/L) in serum albumin.
A 100% increase in mortality rate was observed for every 15,3% additional interstitial lesions, 20,4% additional total lung involvement, and every 21,2% decrease in normal lung densities.
Evaluating the cluster densities, the mortality rate raised by 100% for every increase with 1,2% in Cluster 1, 1,07% in Cluster 2, 0,25% in Cluster 3 and for every decrease with 22,7% in Cluster 4.
The impact of demographic, hematologic, biologic, radiologic, and respiratory variables on survival rate, mortality rate, and the overall accuracy of prediction are shown in (Table 4). The overall accuracy prediction was similar in all logistic models (over 81%) with a higher corrected survival percentage (over 90%) and lower corrected mortality percentage (14,3–47,8%).
Table 4
Regression models to evaluate survival/mortality rate in patients with severe COVID-19 pneumonia
Regression model type
|
Omnibus test of model coefficients
|
Nagelkerke R Square
|
Hosmer Lemeshow test
|
Corrected survival rate (%)
|
Corrected
mortality rate (%)
|
Overall accuracy prediction (%)
|
Radiologic
|
< 0,001
|
0,260
|
0,404
|
94,7
|
37,5 (45,8)
|
81 (83)
|
Clinical
|
< 0,001
|
0,347
|
0,255
|
95,9
|
40,9
|
83,3
|
Respiratory assistance
|
0,003
|
0,280
|
0,199
|
94,6
|
36,4
|
81,3
|
Hematologic
|
< 0,001
|
0,466
|
0,356
|
92,1
|
54,2
|
83
|
Biologic
|
0,027
|
0,380
|
0,742
|
90,3
|
36,4
|
76,2
|
Coagulation
|
0,109
|
0,222
|
0,499
|
97,1
|
25
|
78,3
|
Mixt
|
< 0,001
|
0,699
|
0,877
|
94,3 (97,1)
|
78,6 (85,7)
|
89,8 (93,9)
|
Predictor variables used for radiological model: percentage of total lung involvement, normal lung densities, number of pulmonary lobes with alveolar involvement, and atelectatic lesions. The description of normal lung densities using the cluster evaluation algorithm generates an increase of 8,3% for the corrected deceased percentage and 2% for the overall accuracy prediction. For a radiological model with only qualitative (presence of pulmonary lesions yes/no) and semi-quantitative parameters (number of lobes with interstitial lesions/alveolar lesions/atelectatic changes), we found no statistical significance (p = 0,166 in Omnibus test of model coefficients and 0,023 in Hosmer-Lemeshow test).
Predictor variables used for clinical model: heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate, CCI, consciousness status (1- oriented, 2-confused, 3 - stupor, 4 -coma).
Predictor variables used for respiratory assistance model: SpO2, oxygen flow requirement (L/min), PaO2/FiO2 ratio, CO2, oxygen delivery (facial mask/nasal mask/non-breathing mask/high flow O2, non-invasive ventilation/orotracheal intubation/extracorporeal membrane oxygenation)
Predictor variables used for the hematologic model: Leukocytes, neutrophils, lymphocytes, platelets, hemoglobin
Predictor variables used for biological model: Lactate dehydrogenase, myoglobin, serum albumin, serum creatinine, ferritin
Predictor variables used for coagulation model: PAI-1, INR, D-dimers, platelets (no significance by Omnibus test of model coefficients)
Predictor variables used for the mixt model: age, lymphocytes, PaO2/FiO2 ratio, percent of lung involvement, lactate dehydrogenase, serum albumin, D-dimers, oxygen flow, and myoglobin. Replacing the parameter “lung involvement” with the parameters presented in the cluster analysis leads to an increase of 2,8% for the corrected survival rate, 7,1% for the corrected mortality rate, and 4,1% for the overall accuracy prediction.
A ROC curve analysis was performed for every variable in the mixt prediction model to identify the cut-off value with optimal specificity and sensitivity; the obtained data were used to create a prognosis score (COV-Score) for the enrolled patients. We awarded 2 points for “percent of lung involvement”>60% and 1 point for each of the following parameters: age > 65 years, lymphocytes < 775 ( x 103/µL), PaO2/FiO2 ratio < 140, LDH > 450(U/L), serum albumin < 3,6 g/L, D-dimers > 290ng/mL, oxygen flow > 14,5L/min, and myoglobin > 235µg/L.
We compared the obtained COV-Score using logistic regression with similar scores with radiological evaluation (MuLBSTA and Smart COP). COV-Score showed better overall performance: higher Nagelkerke R Square (0,5 vs. 0,18 respectively 0,09 ) and higher p-value for Hosmer-Lemeshow test (0,73 vs. 0,24 respectively 0,06) in estimating the outcome (survivors vs. non-survivors), with p-values < 0,001 in Omnibus test. We also obtained a better prediction of corrected mortality rate (47,8% vs. 17,4% respectively 13%), higher overall accuracy prediction (85,9% vs. 78,8% respectively 79,8%), and superior OR (Table 5).
Table 5
Logistic regression analysis for prediction scores
Regresion model type
|
B
|
S.E.
|
Wald
|
Sig.
|
Exp(B)
|
95% CI for Exp(B)
|
Lower
|
Upper
|
COV-Score
Constant
|
0,808
|
0,182
|
19,749
|
< 0,001
|
2,243
|
1,571
|
3,203
|
-4,963
|
0,983
|
25,490
|
< 0,001
|
0,007
|
|
|
MuLBSTA
Constant
|
0,370
|
0,116
|
10,265
|
0,001
|
1,448
|
1,155
|
1,817
|
-4,244
|
1,037
|
16,748
|
< 0,001
|
0,014
|
|
|
Smart COP
Constant
|
0,430
|
1,171
|
6,320
|
0,012
|
1,537
|
1,099
|
2,150
|
-3,498
|
0,978
|
12,791
|
< 0,001
|
0,03
|
|
|
Based on the data in Table 5, we can also calculate the probability of death according to COV-Score using the following formula: EXP (Constant + 0,808*COV-Score) / [1 + EXP (Constant + 0,808*COV-Score)]. For a COV-Score of 6, we obtain P = EXP (-4,963 + 0,808*6) / [1 + EXP(-4,963 + 0,808*6)] = 0,89/1,89 = 47%.
In Table 6 can be found the death probabilities for all values of COV-Score from 1 to 10.
Table 6
Probability of death for COV-Score
COV-Score value
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
Probability of death
|
0%
|
1,5%
|
3,3%
|
7,3%
|
15%
|
28,4%
|
47%
|
66,6%
|
81,7%
|
90,1%
|
95,7%
|
We performed an additional ROC curve analysis to verify the obtained results by logistic regression and the prediction accuracy for each evolution score. COV-Score presented a larger AUC and was able to provide better prediction: for similar specificities (0,75 − 0,78) we obtained a better sensitivity (0,87 vs 0,7 and 0,52) respectively for similar sensitivities (0,87 − 0,9) we obtained a better specificity (0,77 vs 0,28 and 0,18) (Table 7).
Table 7
ROC curve analysis for prediction scores
Regresion model type
|
AUC
|
Std error
|
p-value
|
Cut off value 1
|
Se
|
Sp
|
Cut off value 2
|
Se
|
Sp
|
COV-Score
|
0,884
|
0,036
|
< 0,001
|
4,5
|
0,87
|
0,77
|
4,5
|
0,87
|
0,77
|
MuLBSTA
|
0,731
|
0,061
|
0,001
|
8,5
|
0,7
|
0,75
|
6
|
0,9
|
0,28
|
Smart COP
|
0,639
|
0,077
|
0,045
|
5,5
|
0,52
|
0,78
|
3,5
|
0,87
|
0,18
|