Abraham Gnanadass, S., Divakar Prabhu, Y. and Valsala Gopalakrishnan, A., 2021. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update. Archives of Gynecology and Obstetrics, 303(3), pp.631-643.
Escobar-Morreale, H.F., 2018. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 14(5), pp.270-284.
Ajmal, N., Khan, S.Z. and Shaikh, R., 2019. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. European journal of obstetrics & gynecology and reproductive biology: X, 3, p.100060.
Zhang, B., Zhou, W., Shi, Y., Zhang, J., Cui, L. and Chen, Z.J., 2020. Lifestyle and environmental contributions to ovulatory dysfunction in women of polycystic ovary syndrome. BMC Endocrine Disorders, 20(1), pp.1-7.
Witchel, S.F.; E Oberfield, S.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and TreatmentWith Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573.
Dokras A, Clifton S, Futterweit W, Wild R. Increased prevalence of anxiety symptoms in women with polycystic ovary syndrome: systematic review and meta-analysis.FertilSteril 2012;97:225–30.
Bishop, S.C., Basch, S. and Futterweit, W., 2009. Polycystic ovary syndrome, depression, and affective disorders. Endocrine Practice, 15(5), pp.475-482.
Kirmizi, D.A., Baser, E., Onat, T., Caltekin, M.D., Yalvac, E.S., Kara, M. and Gocmen, A.Y., 2020. Sexual function and depression in polycystic ovary syndrome: Is it associated with inflammation and neuromodulators?. Neuropeptides, 84, p.102099.
MacQueen, G. and Frodl, T., 2011. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research?. Molecular psychiatry, 16(3), pp.252-264.
Sun, H., Kennedy, P.J. and Nestler, E.J., 2013. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology, 38(1), pp.124-137.
Mineur, Y.S., Obayemi, A., Wigestrand, M.B., Fote, G.M., Calarco, C.A., Li, A.M. and Picciotto, M.R., 2013. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety-and depression-like behavior. Proceedings of the National Academy of Sciences, 110(9), pp.3573-3578.
Hamon, M., Blier, P., 2013. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 54–63.
Belujon, P. and Grace, A.A., 2017. Dopamine system dysregulation in major depressive disorders. International Journal of Neuropsychopharmacology, 20(12), pp.1036-1046.
Yu, Q., Hao, S., Wang, H., Song, X., Shen, Q. and Kang, J., 2016. Depression-like behavior in a dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Biology of reproduction, 95(4), pp.79-1.
Chaudhari, N.K. and Nampoothiri, L.P., 2017. Neurotransmitter alteration in a testosterone propionate-induced polycystic ovarian syndrome rat model. Hormone molecular biology and clinical investigation, 29(2), pp.71-77.
Chan, K.L., Cathomas, F. and Russo, S.J., 2019. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology, 34(2), pp.123-133.
Zhou, Y., Cui, C., Ma, X., Luo, W., Zheng, S.G. and Qiu, W., 2020. Nuclear factor κB (NF-κB)–mediated inflammation in multiple sclerosis. Frontiers in Immunology, 11, p.391.
Liu, T., Zhang, L., Joo, D. and Sun, S.C., 2017. Signal Transduct. Target. Ther, 2, p.e17023.
González, F., Rote, N.S., Minium, J. and Kirwan, J.P., 2006. Increased activation of nuclear factor κB triggers inflammation and insulin resistance in polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 91(4), pp.1508-1512.
Cao, P., Yang, W., Wang, P., Li, X. and Nashun, B., 2021. Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Frontiers in cell and developmental biology, 9.
Xu, N., Azziz, R., Goodarzi, M.O., 2010. Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertility and Sterility 94, 781-783.
Cui, P., Ma, T., Tamadon, A., Han, S., Li, B., Chen, Z., An, X., Shao, L.R., Wang, Y. and Feng, Y., 2018. Hypothalamic DNA methylation in rats with dihydrotestosterone‐induced polycystic ovary syndrome: effects of low‐frequency electro‐acupuncture. Experimental physiology, 103(12), pp.1618-1632.
Wang, T., Liu, Y., Lv, M., Xing, Q., Zhang, Z., He, X., Xu, Y., Wei, Z. and Cao, Y., 2019. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene, 683, pp.87-100.
Chen, F., Chen, Z., Chen, M., Chen, G., Huang, Q., Yang, X., Yin, H., Chen, L., Zhang, W., Lin, H. and Ou, M., 2021. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. npj Biofilms and Microbiomes, 7(1), pp.1-12.
Illingworth R., Kerr A., Desousa D., Jørgensen H., Ellis P., Stalker J., Jackson D., Clee C., Plumb R., Rogers J., 2008. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biology 6 e22.
Shorakae, S., Ranasinha, S., Abell, S., Lambert, G., Lambert, E., de Courten, B. and Teede, H., 2018. Inter‐related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clinical endocrinology, 89(5), pp.628-633.
Sailaja, B.S., Cohen-Carmon, D., Zimmerman, G., Soreq, H. and Meshorer, E., 2012. Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proceedings of the National Academy of Sciences, 109(52), pp.E3687-E3695.
Tsankova, N., Berton, O., Renthal, W. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9, 519–525 (2006).
Yang, C.H., Liu, X.M., Si, J.J., Shi, H.S., Xue, Y.X., Liu, J.F., Luo, Y.X., Chen, C., Li, P., Yang, J.L. and Wu, P., 2012. Role of IKK/NF-κB signaling in extinction of conditioned place aversion memory in rats. PLoS One, 7(6), p.e39696.
Lopez-Atalaya, J.P., Ito, S., Valor, L.M., Benito, E. and Barco, A., 2013. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic acids research, 41(17), pp.8072-8084.
Sharma, M., Shivarama Shetty, M., Arumugam, T.V. and Sajikumar, S., 2015. Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B. Scientific reports, 5(1), pp.1-11.
Sevastre-Berghian, A.C., Ielciu, I., Mitre, A.O., Filip, G.A., Oniga, I., Vlase, L., Benedec, D., Gheldiu, A.M., Toma, V.A., Mihart, B. and Mihuţ, A., 2020. Targeting oxidative stress reduction and inhibition of HDAC1, MECP2, and NF-KB pathways in rats with experimentally induced hyperglycemia by administration of Thymus marshallianus Willd. extracts. Frontiers in Pharmacology, p.1492.
Dudek, K.A., Dion-Albert, L., Lebel, M., LeClair, K., Labrecque, S., Tuck, E., Perez, C.F., Golden, S.A., Tamminga, C., Turecki, G. and Mechawar, N., 2020. Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences, 117(6), pp.3326-3336.
Soliman, M.L., Puig, K.L., Combs, C.K. and Rosenberger, T.A., 2012. Acetate reduces microglia inflammatory signaling in vitro. Journal of neurochemistry, 123(4), pp.555-567.
Ehrman, D.A., Barnes, R.B. and Rosenfield, R.L., 1995. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocrine reviews, 16(3), pp.322-353.
Blank, S.K.; McCartney, C.R.; Chhabra, S.; Helm, K.D.; Eagleson, C.A.; Chang, R.J.; Marshall, J.C., 2009. Modulation of gonadotropinreleasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls—implications for regulation of pubertal maturation. J. Clin. Endocrinol. Metab. 94, 2360–2366.
Suriyakalaa, U., Ramachandran, R., Doulathunnisa, J.A., Aseervatham, S.B., Sankarganesh, D., Kamalakkannan, S., Kadalmani, B., Angayarkanni, J., Akbarsha, M.A. and Achiraman, S., 2021. Upregulation of Cyp19a1 and PPAR-γ in ovarian steroidogenic pathway by Ficus religiosa: A potential cure for polycystic ovary syndrome. Journal of Ethnopharmacology, 267, p.113540.
Duleba, A.J., Dokras, A., 2012. Is PCOS an inflammatory process? Fertil Steril. 97:7–12
Blair, S.A., Kyaw-Tun, T., Young, I.S., Phelan, N.A., Gibney, J. and McEneny, J., 2013. Oxidative stress and inflammation in lean and obese subjects with polycystic ovary syndrome. The Journal of reproductive medicine, 58(3-4), pp.107-114.
Yeon Lee, J., Baw, C.K., Gupta, S., Aziz, N. and Agarwal, A., 2010. Role of oxidative stress in polycystic ovary syndrome. Current women's health reviews, 6(2), pp.96-107.
Uçkan, K., Demir, H., Turan, K., Sarıkaya, E. and Demir, C., 2022. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. International Journal of Clinical Practice, 2022.
Haslan, M.A., Samsulrizal, N., Hashim, N. et al. Ficus deltoidea ameliorates biochemical, hormonal, and histomorphometric changes in letrozole-induced polycystic ovarian syndrome rats. BMC Complement Med Ther 21, 291 (2021)
Klimczak, D., Szlendak-Sauer, K. and Radowicki, S., 2015. Depression in relation to biochemical parameters and age in women with polycystic ovary syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 184, pp.43-47.
Dokras, A., Clifton, S., Futterweit, W., Wild, R., 2011. Increased risk for abnormal depression scores in women with polycystic ovary syndrome: a systematic review and meta-analysis. Obstet Gynecol. 117:145–152.
Karjula, S., et al., 2017. Psychological distress is more prevalent in fertile age and premenopausal women with PCOS symptoms: 15-year follow-up. J. Clin. Endocrinol. Metab. 102, 1861–1869.
Richa, R., Yadawa, A. K., and Chaturvedi, C. M. (2017). Hyperglycemia and High Nitric Oxide Level Induced Oxidative Stress in the Brain and Molecular Alteration in the Neurons and Glial Cells of Laboratory Mouse, Mus Musculus. Neurochem. Int. 104, 64–79. doi: 10.1016/j.neuint.2016.12.008
Ruhé, H.G., Mason, N.S., Schene, A.H., 2007. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry.12:331–59.
Goldwater, D.S., Pavlides, C., Hunter, R.G., Bloss, E.B., Hof, PR., McEwen, B.S., et al., 2009. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164: 798–808.
Fan, C., Song, Q., Wang, P., Li, Y., Yang, M. and Yu, S.Y., 2018. Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Frontiers in immunology, p.2889.
Mohammadi, M., Fatemi, I., Taghipour, Z., Azin, M., Kaeidi, A., Hakimizadeh, E., Taghizadeh, R. and Hassanipour, M., 2021. Polycystic Ovary Syndrome Can Lead to Neurocognitive Changes in Female Rats Treated with Letrozole. Archives of Neuroscience, 8(2).
Weaver, I.C.G., Cervoni, N. and Champagne, F., a D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ, 2004. Epigenetic programming by maternal behavior. Nat. Neurosci, 7, pp.847-54.
Machado‐Vieira, R., Ibrahim, L. and Zarate, Jr, C.A., 2011. Histone deacetylases and mood disorders: epigenetic programming in gene‐environment interactions. CNS neuroscience & therapeutics, 17(6), pp.699-704.
Wei, Y., 2015. Bin, Melas PA, Wegener G, Mathe AA, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in tet1 and in 5-hydroxymethylation levels in the BDNF gene. Int J Neuropsychopharmacol, 18(2), pp.1-10.
Lu, X., Wang, L., Yu, C., Yu, D., and Yu, G. (2015). Histone Acetylation Modifiers in the Pathogenesis of Alzheimer’s Disease. Front. Cell. Neurosci. 9, 226 (June). doi: 10.3389/fncel.2015.00226