Abotaleb M, Samuel SM, Varghese E, et al (2018) Flavonoids in cancer and apoptosis. Cancers (Basel) 11:. https://doi.org/10.3390/cancers11010028
Azam M, Zhang S, Abdelghany AM, et al (2020) Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res Int 130:108957. https://doi.org/10.1016/j.foodres.2019.108957
Biasini M, Bienert S, Waterhouse A, et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252-8. https://doi.org/10.1093/nar/gku340
Dahuja A, Madaan TR (2004) Off-flavour development in soybeans: comparative role of some antioxidants and related enzymes. J Sci Food Agric 84:547–550. https://doi.org/10.1002/jsfa.1667
Dastmalchi M, Bernards MA, Dhaubhadel S (2016) Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Plant J 85:689–706. https://doi.org/10.1111/tpj.13137
Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743. https://doi.org/10.1023/B:PLAN.0000023666.30358.ae
Dinkins RD, Hancock J, Coe BL, et al (2021) Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover. Plant Cell Rep 40:517–528. https://doi.org/10.1007/s00299-020-02647-4
Ganhão R, Estévez M, Morcuende D (2011) Suitability of the TBA method for assessing lipid oxidation in a meat system with added phenolic-rich materials. Food Chem 126:772–778. https://doi.org/10.1016/j.foodchem.2010.11.064
Gaya P, Medina M, Sánchez-Jiménez A, Landete JM (2016) Phytoestrogen metabolism by adult human gut microbiota. Molecules 21:. https://doi.org/10.3390/molecules21081034
Gutierrez-Gonzalez JJ, Guttikonda SK, Tran L-SP, et al (2010) Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol 51:936–948. https://doi.org/10.1093/pcp/pcq065
Henick AS, Benca MF, Mitchell JH (1954) Estimating carbonyl compounds in rancid fats and foods. J Am Oil Chem Soc 31:88–91. https://doi.org/10.1007/BF02612488
Jung W, Yu O, Lau SM, et al (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212. https://doi.org/10.1038/72671
Křížová L, Dadáková K, Kašparovská J, Kašparovský T (2019) Isoflavones. Molecules 24:. https://doi.org/10.3390/molecules24061076
Kumar V, Rani A, Dixit AK, et al (2010) A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res Int 43:323–328. https://doi.org/10.1016/j.foodres.2009.10.019
Liu K (1997) Chemistry and nutritional value of soybean components. In: Soybeans. Springer US, Boston, MA, pp 25–113
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Mahesha HG, Singh SA, Rao AGA (2007) Inhibition of lipoxygenase by soy isoflavones: evidence of isoflavones as redox inhibitors. Arch Biochem Biophys 461:176–185. https://doi.org/10.1016/j.abb.2007.02.013
Nedele A-K, Gross S, Rigling M, Zhang Y (2021) Reduction of green off-flavor compounds: Comparison of key odorants during fermentation of soy drink with Lycoperdon pyriforme. Food Chem 334:127591. https://doi.org/10.1016/j.foodchem.2020.127591
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Ruiz-Larrea MB, Mohan AR, Paganga G, et al (1997) Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26:63–70
Szklarczyk D, Franceschini A, Wyder S, et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-52. https://doi.org/10.1093/nar/gku1003
Tepavčević V, Cvejić J, Poša M, et al (2021) Classification and discrimination of soybean (Glycine max (L.) Merr.) genotypes based on their isoflavone content. Journal of Food Composition and Analysis 95:103670. https://doi.org/10.1016/j.jfca.2020.103670
Tewari K, Kumari S, Vinutha T, et al (2014) Gamma irradiation induces reduction in the off-flavour generation in soybean through enhancement of its antioxidant potential. J Radioanal Nucl Chem 303:2041–2051. https://doi.org/10.1007/s10967-014-3803-9
Tsen SY, Tan XY, Tan YM, et al (2016) Relative Inhibitions of 5-Lipoxygenase and Myeloperoxidase and Free-Radical Scavenging Activities of Daidzein, Dihydrodaidzein, and Equol. J Med Food 19:543–548. https://doi.org/10.1089/jmf.2015.3557
Vicaş SI, Chedea VS, Socaciu C (2011) Inhibitory effects of isoflavones on soybean lipoxygenase-1 activity. J Food Biochem 35:613–627. https://doi.org/10.1111/j.1745-4514.2010.00405.x
Vyn TJ, Yin X, Bruulsema TW, et al (2002) Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. J Agric Food Chem 50:3501–3506. https://doi.org/10.1021/jf0200671
Yamagata K (2019) Soy isoflavones inhibit endothelial cell dysfunction and prevent cardiovascular disease. J Cardiovasc Pharmacol 74:201–209. https://doi.org/10.1097/FJC.0000000000000708