Augimeri RV, Varley AJ, Strap JL (2015) Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria. Front Microbiol 6:1282 https://dx.doi.org/10.3389/fmicb.2015.01282
Brett C, Waldron K (1990) Physiology and biochemistry of plant cell wall. Topics in plant physiology. Springer, Netherlands https://doi.org/10.1007/978-94-010-9641-6
Cacicedo ML, Cesca K, Bosio VE, Porto LM, Castro GR (2015) Self-assembly of carrageenin-CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery. J Appl Biomed 13:239–248 http://dx.doi.org/10.1016/j.jab.2015.03.004
Cauerhff A, Castro GR (2013) Bionanoparticles, a green nanochemistry approach. Electronic J Biotech 16(3): 717-3458 https://dx.doi.org/10.2225/vol16-issue3-fulltext-3
Chawla PR, Bajaj IB, Shrikant AS, Singhal RS (2009) Microbial cellulose: fermentative production and application. Food Technol Biotechnol 47(2):107 – 124 https://ru.scribd.com/document/213780963/2058-Chawla-1-1 Accessed 28 February 2020
Coban E, Biyik P (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS medium and beet molasses medium. Afr J Microbiol Res 5(9);1037-1045 https://doi.org/10.5897/AJMR11.008
Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442 https://dx.doi.org/10.1016/j.carbpol.2012.10.071
Guo X, Cavka A, Jönsson L (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 93(12):17˗21 https://doi.org/10.1186/1475-2859-12-93
Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345 ˗ 346 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1269899/pdf/biochemj01080-0172.pdf Accessed 28 February 2020
Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young's modulus of bacterial cellulose filaments. Cellulose 15(4):507-513 https://dx.doi.org/10.1007/s10570-008-9206-8.
Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5(2):31-33 http://doi.org/10.4172/1948-5948.1000095
Jozala AF, Pértile RA, Santos CA., Santos-Ebinuma VC, Seckler MM, Gama FM, Pessoa JrA (2014) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 1:4˗8 https://doi.org/10.1007/s00253-014-6232-3
Kaewnopparat S, Sansernluk K, Faroongsarng D (2008) Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum an approach using thermoporosimetry. AAPS Pharm Sci Tech 9(2):701-707 http://dx.doi.org/10.1208/s12249-008-9104-2
Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without th e presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72: 291-296 https://doi.org/10.1007/s00253-005-0265-6
Keshk S (2014a) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym 99:98-100 http://dx.doi.org/10.1016/j.carbpol.2013.08.060
Keshk S (2014b) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4(2):150 http://dx.doi.org/10.4172/2155-9821.1000150
Kiziltas EE, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted 10 wood sugars. Carbohydr Polym 21(3):16-21 https://doi.org/10.1016/j.carbpol.2015.01.036
Klemm D, Schumann D, Udhardt U, Marsch D (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603 https://dx.doi.org/10.1016/S0079-6700(01)00021-1
Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256 https://doi.org/10.1007/s12010-007-8119-6
Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol biosci 14:10-32 https://dx.doi.org/10.1002/mabi.201300298
Lin D, Lopez-Sanchez P, Li R (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technol 151:113–119 https://doi.org/10.1016/j.biortech.2013.10.052
Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51 https://dx.doi.org/10.1016/j.carbpol.2007.07.025
Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22 https://doi.org/10.1016/0922-338X(93)90171-4
Matsuoka MA, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 60(4):575-579 https://doi.org/10.1271/bbb.60.575
Nugroho D, Pradipta A (2015) Characterization of nata de coco produced by fermentation of immobilized Acetobacter xylinum. Agriculture and Agricultural Science Procedia. 3:278-282 https://doi.org/10.1016/j.aaspro.2015.01.053
Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int J Eng Technol 11(5):90–98 https://pdfs.semanticscholar.org/56c8/8c6b3cedbda1616c0c6ab23db70be802ba17.pdf Accessed 28 February 2020
Park JK, Jung JY, Park РY (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnology letters 25:2055-2059 https://doi.org/10.1023/B:BILE.0000007065.63682.18
Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacet xylinum. World J Microbiol Biotechnol 16:245 – 248 https://doi.org/10.1023/A:1008958014270
Rani MU, Appaiah KAA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk J Food Sci Technol. 50(4):755–762 https://doi.org/10.1007/s13197-011-0401-5
Rastogi A, Singh J, Das M, Kundu D, Banerjee R (2018) An understanding of bacterial cellulose and its potential impact on industrial applications. In Principles and applications of fermentation technology (eds Kuila A, SharmaV) https://dx.doi.org/10.1002/9781119460381.ch20
Revin VV, Kostina EG, Revina NV, Shutova VV (2018) Effect of nutrient sources on the alginate accumulation in the culture liquid of Azotobacter vinelandii D-05 and obtaining biocomposite materials. Braz Arch Biol Technol 61: e18160406 http://dx.doi.org/10.1590/1678-4324-2018160406
Revin VV, Shutova VV (2015) Adhesives on the base of modified Leuconostoc mesenteroides cultural fluid. J Biotech 208: S116 http://dx.doi.org/10.1016/j.jbiotec.2015.06.367
Revin VV, Shutova VV, Novokuptsev NV (2016) Biocomposite materials from lignocellulose raw materials and levan produced by Azotobacter vinelandii. J Biotech 231: S8 http://dx.doi.org/10.1016/j.jbiotec.2016.05.055
Schenzel K, Fischer S (2004) Applications of FT Raman spectroscopy for the characterization of cellulose. Lenzinger Berichte 83:64–70 https://pdfs.semanticscholar.org/5cd5/648c6f5839be5f89fbc1e910a32e1cdb3870.pdf Accessed 28 February 2020
Schenzel K, Fischer St, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231 https://doi.org/10.1007/s10570-004-3885-6
Son HJ, Kim HG, Kim KK, Kim SH, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215-219 http://dx.doi.org/10.1016/S0960-8524(02)00176-1
Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR Spectroscopy. Sensors 11(6):5543-5560 http://dx.doi.org/10.3390/s110605543
Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. In Davison BH, McMillan J, Finkelstein M (eds) Twenty-Second Symposium on Biotechnology for fuels and chemicals. ABAB Symposium. Humana Press, Totowa, NJ https://doi.org/10.1007/978-1-4612-0217-2_43
Wu J-M, Liu R-H (2013) Cost-effective production of bacterial cellulose in static cultures using distillery waste water. J Biosci Bioengin 115(3):284-290 https://doi.org/10.1016/j.jbiosc.2012.09.014
Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506-513 https://doi.org/10.1016/j.carbpol.2011.02.034
Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2001) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86(4):1558-1564 https://dx.doi.org/10.1016/j.carbpol.2011.06.061
Zugenmeier P. (2008) Crystalline cellulose and derivatives. Characterization and structure. Springer-Verlag Berlin Heidelberg