1. Fatehi, A. N. DNA Damage in Bovine Sperm Does Not Block Fertilization and Early Embryonic Development But Induces Apoptosis After the First Cleavages. J. Androl. 27, 176–188 (2006).
2. Romerius, P. et al. Sperm DNA Integrity in Men Treated for Childhood Cancer. Clin. Cancer Res. 16, 3843–3850 (2010).
3. Draper, G. J., Stiller, C. A., Cartwright, R. A., Craft, A. W. & Vincent, T. J. Cancer in Cumbria and in the vicinity of the Sellafield nuclear installation, 1963-90. BMJ 306, 89–94 (1993).
4. Gardner, M. J. et al. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ 300, 423–429 (1990).
5. Gardner, M. J., Hall, A. J., Downes, S. & Terrell, J. D. Follow up study of children born elsewhere but attending schools in Seascale, West Cumbria (schools cohort). BMJ 295, 819–822 (1987).
6. Inskip, H. The Gardner hypothesis. BMJ 307, 1155–1156 (1993).
7. Wakeford, R. Childhood leukaemia and radiation exposure of fathers---the end of the road, perhaps? J. Radiol. Prot. 23, 359–362 (2003).
8. Laurier, D. et al. Epidemiological studies of leukaemia in children and young adults around nuclear facilities: a critical review. Radiat. Prot. Dosimetry 132, 182–190 (2008).
9. Kodaira, M., Izumi, S., Takahashi, N. & Nakamura, N. No Evidence of Radiation Effect on Mutation Rates at Hypervariable Minisatellite Loci in the Germ Cells of Atomic Bomb Survivors. Radiat. Res. 162, 350–356 (2004).
10. Izumi, S., Koyama, K., Soda, M. & Suyama, A. Cancer incidence in children and young adults did not increase relative to parental exposure to atomic bombs. Br. J. Cancer 89, 1709–1713 (2003).
11. Yeager, M. et al. Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science 372, 725–729 (2021).
12. Little, M. P., Goodhead, D. T., Bridges, B. A. & Bouffler, S. D. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents. Mutat. Res. Mutat. Res. 753, 50–67 (2013).
13. Russell, W. L. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women. Proc. Natl. Acad. Sci. 74, 3523–3527 (1977).
14. Dubrova, Y. E. et al. Human minisatellite mutation rate after the Chernobyl accident. Nature 380, 683–686 (1996).
15. Slebos, R. J. C. et al. Mini-and microsatellite mutations in children from Chernobyl accident cleanup workers. Mutat. Res. Toxicol. Environ. Mutagen. 559, 143–151 (2004).
16. Horai, M. et al. Detection of de novo single nucleotide variants in offspring of atomic-bomb survivors close to the hypocenter by whole-genome sequencing. J. Hum. Genet. 63, 357–363 (2018).
17. Morton, L. M. et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science 372, eabg2538 (2021).
18. Brinkworth, M. H. Paternal transmission of genetic damage: findings in animals and humans. Int. J. Androl. 23, 123–135 (2000).
19. Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl. Acad. Sci. 116, 9491–9500 (2019).
20. Drost, J. B. & Lee, W. R. Biological basis of germline mutation: Comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ. Mol. Mutagen. 25, 48–64 (1995).
21. Crow, J. F. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1, 40–47 (2000).
22. Makova, K. D. & Li, W.-H. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416, 624–626 (2002).
23. Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet. 48, 935–939 (2016).
24. Koturbash, I. et al. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28, 1831–1838 (2007).
25. Ilnytskyy, Y., Koturbash, I. & Kovalchuk, O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ. Mol. Mutagen. 50, 105–113 (2009).
26. Sorahan, T. et al. Cancer in the offspring of radiation workers: an investigation of employment timing and a reanalysis using updated dose information. Br. J. Cancer 89, 1215–1220 (2003).
27. Marchetti, F., Essers, J., Kanaar, R. & Wyrobek, A. J. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl. Acad. Sci. 104, 17725–17729 (2007).
28. DePinho, R. A. & Polyak, K. Cancer chromosomes in crisis. Nat. Genet. 36, 932–934 (2004).
29. Rappaport, Y. et al. Bisection of the X chromosome disrupts the initiation of chromosome silencing during meiosis in Caenorhabditis elegans. Nat. Commun. 12, 4802 (2021).
30. Roerink, S. F., van Schendel, R. & Tijsterman, M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res. 24, 954–962 (2014).
31. Wyatt, D. W. et al. Essential Roles for Polymerase θ-Mediated End Joining in the Repair of Chromosome Breaks. Mol. Cell 63, 662–673 (2016).
32. Vaquero, A. et al. Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin. Mol. Cell 16, 93–105 (2004).
33. Hergeth, S. P. & Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16, 1439–1453 (2015).
34. Nielsen, A. L. et al. Heterochromatin Formation in Mammalian Cells. Mol. Cell 7, 729–739 (2001).
35. Daujat, S., Zeissler, U., Waldmann, T., Happel, N. & Schneider, R. HP1 Binds Specifically to Lys26-methylated Histone H1.4, whereas Simultaneous Ser27 Phosphorylation Blocks HP1 Binding. J. Biol. Chem. 280, 38090–38095 (2005).
36. Lorković, Z. J. & Berger, F. Heterochromatin and DNA damage repair: Use different histone variants and relax. Nucleus 8, 583–588 (2017).
37. Cann, K. L. & Dellaire, G. Heterochromatin and the DNA damage response: the need to relaxThis paper is one of a selection of papers in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process. Biochem. Cell Biol. 89, 45–60 (2011).
38. Bayona-Feliu, A., Casas-Lamesa, A., Reina, O., Bernués, J. & Azorín, F. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat. Commun. 8, 1–14 (2017).
39. Alpi, A., Pasierbek, P., Gartner, A. & Loidl, J. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma 112, 6–16 (2003).
40. Dubrova, Y. E. & Sarapultseva, E. I. Radiation-induced transgenerational effects in animals. Int. J. Radiat. Biol. 1–7 (2020) doi:10.1080/09553002.2020.1793027.
41. Middelkamp, S. et al. Sperm DNA damage causes genomic instability in early embryonic development. Sci. Adv. 6, eaaz7602 (2020).
42. Taylor, T. H. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Update 20, 571–581 (2014).
43. van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).
44. Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009).
45. Spinella, F. et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil. Steril. 109, 77–83 (2018).
46. Lord, B. et al. Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br. J. Cancer 78, 301–311 (1998).
47. Vorobtsova, I. E., Aliyakparova, L. M. & Anisimov, V. N. Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat. Res. Mol. Mech. Mutagen. 287, 207–216 (1993).
48. Dernburg, A. F. Here, There, and Everywhere. J. Cell Biol. 153, F33–F38 (2001).
49. Niwa, O. & Kominami, R. Untargeted mutation of the maternally derived mouse hypervariable minisatellite allele in F 1 mice born to irradiated spermatozoa. Proc. Natl. Acad. Sci. 98, 1705–1710 (2001).
50. Dubrova, Y. E. et al. Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. Environ. Mol. Mutagen. 49, 308–311 (2008).
51. Barber, R., Plumb, M. A., Boulton, E., Roux, I. & Dubrova, Y. E. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc. Natl. Acad. Sci. 99, 6877–6882 (2002).
52. Kropácová, K., Slovinská, L. & Miúrová, E. Cytogenetic Changes in the Liver of Progeny of Irradiated Male Rats. J. Radiat. Res. (Tokyo) 43, 125–125 (2002).
53. Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).
54. Kais, Z. et al. FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair. Cell Rep. 15, 2488–2499 (2016).
55. Audebert, M., Salles, B. & Calsou, P. Involvement of Poly(ADP-ribose) Polymerase-1 and XRCC1/DNA Ligase III in an Alternative Route for DNA Double-strand Breaks Rejoining. J. Biol. Chem. 279, 55117–55126 (2004).
56. Schimmel, J., van Schendel, R., den Dunnen, J. T. & Tijsterman, M. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends Genet. 35, 632–644 (2019).
57. Carvajal-Garcia, J. et al. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc. Natl. Acad. Sci. 117, 8476–8485 (2020).
58. Villarreal, D. D. et al. Microhomology Directs Diverse DNA Break Repair Pathways and Chromosomal Translocations. PLoS Genet. 8, e1003026 (2012).
59. Yousefzadeh, M. J. et al. Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ. PLoS Genet. 10, e1004654 (2014).
60. Hwang, T. et al. Defining the mutation signatures of DNA polymerase θ in cancer genomes. NAR Cancer 2, zcaa017 (2020).
61. Yu, W. et al. Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat. Commun. 11, 5239 (2020).
62. Thorslund, T. et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527, 389–393 (2015).
63. Downs, J. A., Kosmidou, E., Morgan, A. & Jackson, S. P. Suppression of Homologous Recombination by the Saccharomyces cerevisiae Linker Histone. Mol. Cell 11, 1685–1692 (2003).
64. Murga, M. et al. Global chromatin compaction limits the strength of the DNA damage response. J. Cell Biol. 178, 1101–1108 (2007).
65. Seo, B. & Lee, J. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans. J. Vis. Exp. 54224 (2016) doi:10.3791/54224.
66. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 16, 284–287 (2012).
67. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
68. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio (2013).
69. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
70. Van der Auwera, G. A. & O’Connor, B. D. Genomics in the cloud: using Docker, GATK, and WDL in Terra. (O’Reilly Media, 2020).
71. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).
72. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
73. Team, R. C. R: A language and environment for statistical computing. (2013).
74. Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. in Proceedings of the 9th Python in Science Conference vol. 57 61 (Austin, TX, 2010).
75. vanRossum, G. Python reference manual. Dep. Comput. Sci. CS (1995).