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 15 

Abstract 16 

Microencapsulation of biological control agents by spray drying (SD) has been studied 17 

as a method for increasing product shelf life and stability to enable the application of 18 

microencapsulated agents in sustainable agriculture. In this study, the microencapsulation 19 

of Trichoderma asperellum conidia by spray drying was evaluated. The objective was to 20 

assess the influence of drying air temperature and wall material (maltodextrin DE20, 21 

MD20) concentration on the microencapsulation of Trichoderma asperellum conidia and 22 

to identify the optimum conditions to produce. Microparticles were characterized in terms 23 

of morphology, particle size, and shelf life. A central composite rotatable design (CCRD) 24 

was used to investigate the effect of operating parameters on drying yield (DY), moisture 25 

content, conidial viability (CV), and percentage of conidial survival (SP). 26 

Microencapsulation experiments were carried out under optimum conditions to validate 27 

the obtained model. The optimum temperature and MD20/conidia dry weight ratio were 28 

80°C and 1:4.5, respectively, which afforded a drying yield of 63.85 ± 0.86%, a moisture 29 

content of 4.92 ± 0.07%, a conidial viability of 87.10 ± 1.16%, and a conidial survival of 30 

85.78 ± 2.88%. Microencapsulation by spray drying using MD20 as wall material 31 

extended the viability of conidia stored at 29°C compared with the control. 32 

Key points: 33 

 Trichoderma asperellum conidia were microencapsulated by spray drying; 34 

 Temperatures higher than 100°C negatively affected T. asperellum;  35 

 Scanning electron microscopies showed that maltodextrin well covered the conidia. 36 
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 39 

Introduction 40 

 41 

Sustainable agronomy and environmental protection are important issues nowadays 42 

(Schmoll and Schuster 2010; Wang et al. 2017; Bacior and Prus 2018; Li et al. 2018). Fungi of 43 

the genus Trichoderma spp.  show potential for plant growth promotion (Youssef et al. 2016; 44 

Jalali et al. 2017; Zhang et al. 2017) and are the main species used for biological control of 45 

phytopathogens. Trichoderma can interact with phytopathogens through different mechanisms, 46 

such as parasitism, antibiosis, and competition, and have a resistance-inducing effect on plants 47 

against diseases (Chen et al. 2016; Szczech et al. 2017; Vinodkumar et al. 2017). 48 

Compared with chemical agents, Trichoderma products have some disadvantages, 49 

particularly with respect to shelf life and viability during storage and field application (Jin and 50 

Custis 2011; Muñoz-Celaya et al. 2012; Locatelli et al. 2018). High water activity, high drying 51 

temperatures during processing (Jin and Custis 2011), prolonged storage, high storage 52 

temperatures (Muñoz-Celaya et al. 2012; Broeckx et al. 2017; Reyes et al. 2018), contamination 53 

of growth medium, and oxidative stress (Reyes et al. 2018) are factors that affect the viability 54 

of fungal formulations.  55 

Microencapsulation of microorganisms by spray drying (SD) is a valuable technique 56 

for producing microbial formulations in powder form. During spray drying, the product 57 

temperature is kept low by the rapid evaporation of water from droplets, which makes the 58 

technique suitable for drying heat-sensitive products (Gharsallaoui et al. 2007) without 59 

compromising quality. Spray drying has been shown to increase the shelf life of fungal 60 

preparations (Jin and Custis 2011; Muñoz-Celaya et al. 2012; Ma et al. 2015; Broeckx et al. 61 

2017; Reyes et al. 2018; Braga et al. 2019). However, inappropriate selection of operational 62 

parameters, such as inlet air temperature, wall material concentration, liquid feed flow rate, and 63 

drying air flow rate can result in low conidial survival, unsuitable particle size and morphology 64 

as well as high moisture content and water activity (Sosnika and Seremet, 2015; Kemp et al. 65 

2016; Cotabarren et al. 2018). 66 

Because of the large number of variables that can influence a spray-drying process, 67 

studies use statistical design and mathematical optimization models to describe drying and 68 



microencapsulation processes of microorganisms and determine how much variables contribute 69 

to product quality and their interaction effects (Chandramouli et al. 2004; Chávez and Ledeboer 70 

2007; Koc et al. 2010; Anekella and Orsat 2013; Behboudi-Jobbehdar et al. 2013; Da Costa et 71 

al. 2015; Braga et al. 2019). The use of statistical experimental design reduces the number of 72 

experiments required to study a given process, thereby reducing the time and financial resources 73 

needed to conduct an experimental investigation (Box et al. 2005). 74 

The objectives of this work were to investigate the influence of drying air temperature 75 

and maltodextrin concentration on the characteristics of Trichoderma asperellum conidial 76 

powders produced by spray drying; to determine optimum process conditions for conidial 77 

viability; to characterize the obtained material by physicochemical, microbiological, and 78 

morphological tests; and to evaluate the storage stability of T. asperellum conidial powders 79 

produced with and without wall material by spray drying under optimized conditions. 80 

 81 

Material and methods 82 

T. asperellum conidial suspensions and wall material 83 

 84 

T. asperellum conidial suspensions, produced by solid-state fermentation, and wall 85 

material, maltodextrin DE20 (Galena, Brazil), were kindly provided by Farroupilha Lallemand 86 

Biocontrol Laboratory (Patos de Minas, Brazil). Conidial suspensions were characterized for 87 

moisture content, conidial concentration, germination, and colony forming unit (CFU) count 88 

prior to each experiment.  89 

Microencapsulation by spray drying 90 

 91 

The T. asperellum conidia and maltodextrin mixture was maintained at room 92 

temperature under constant stirring while being fed to the spray dryer (MSD 1.0, LabMaq, 93 

Brazil). Experiments were conducted using a feed rate of 0.6 L h− 1, drying air flow rate of 9.90 94 

× 104 L h− 1, and atomization air flow rate of 2,400 L h− 1. 95 

To optimize process conditions, we used a central composite rotatable design (CCRD), 96 

with three replicates at the center point and 11 treatments in total. Inlet air temperature and 97 

maltodextrin concentration were the independent variables. Drying yield, microparticle 98 

moisture content, conidial viability, and conidial survival were the dependent variables.  99 



Variables and their levels are presented in Table 1. The upper and lower limits of 100 

independent variables were determined according to preliminary tests and previous studies on 101 

microencapsulation of Trichoderma spp. Conidia (Jin and Custis 2011; Muñoz-Celaya et al. 102 

2012). 103 

 104 

Insert Table 1 105 

 106 

To perform the microbiological analyzes, the powders were rehydrated up to the same 107 

spore concentration of the initial solution fed to the dryer and characterized for germination and 108 

colony forming units (CFU), with the main objective of evaluating the amount of viable conidia 109 

(CV) and percentage of conidia (SP) survival. 110 

 111 

Process optimization and experimental validation 112 

Optimum operational conditions for microencapsulation of T. asperellum conidia by 113 

spray drying were determined by response surface methodology (RSM) based on CCRD, as 114 

described by Box et al. (2005). Model equations were imported into MATLAB, contour plots 115 

were constructed and superimposed, and the region of optimum response for all variables was 116 

identified. 117 

Physicochemical, microbiological and morphological analyzes 118 

 119 

Microbiological analyses were performed using powders rehydrated to the initial spore 120 

concentration of the feed solution. Germination percentage was determined to assess conidial 121 

viability, and CFU counts were used as a measure of conidial survival. 122 

T. asperellum conidial suspensions were characterized for spore concentration, 123 

germination percentage, and CFU count. Microparticles were characterized for moisture 124 

content (A.O.A.C. (Association of Official Analytical Chemists) 2005), spore concentration, 125 

germination percentage, and CFU count.  126 

Conidia were counted using a Neubauer chamber. Conidial viability after spray drying 127 

was determined using the germination test proposed by Danielson and Davey (1973)  and 128 

Milner et al. (1991) , with modifications. CFU counting was carried out according to the method 129 

of Jin and Custis (2011). Viable conidia concentration was expressed as CFU per gram. 130 

Conidial survival percentage was calculated as the CFU count of the feed solution divided by 131 

the CFU count of spray-dried powders times 100 (Picot and Lacroix 2004). 132 



Microscopic examination of powder samples was performed using a sputter coater 133 

(Leica, Germany) and a conventional scanning electron microscope (Zeiss, Germany). Particle 134 

size distribution was evaluated by laser diffraction using a Mastersizer 2000 (Malvern 135 

Instruments, UK).  136 

Drying yield was calculated as the ratio of the dry weight of powder samples to the 137 

dry weight of feed solutions (T. asperellum conidial suspension with or without wall material). 138 

 139 

T. asperellum conidial viability before and during storage 140 

 141 

Conidial viability was determined by CFU counting before and during storage using 142 

microencapsulated conidia (test sample) and a control sample (without wall material). Samples 143 

were placed in packaging of the aluminum, stored at 29°C in a BOD incubator (Ethik 144 

Technology, Brazil), and evaluated on days 7, 34, 68, 73, 90, 122, and 129 of storage. Prior to 145 

viability analysis, samples were homogenized by vortexing, and a 1 g aliquot was mixed with 146 

9 mL of sterile water, according to Reyes et al. (2018). 147 

Statistical analysis 148 

 149 

Student’s t-test was applied to compare differences between CCRD results (drying 150 

yield, moisture content, conidial viability, and conidial survival) at a significance level of 0.10. 151 

Data were analyzed using Statistica software. 152 

 153 

Results  154 

Central composite rotatable design (CCRD) 155 

The results of drying yield (%), moisture (%), viable conidia (%) and percentage of 156 

survival (%) as a function of the experimental conditions of the CCRD using maltodextrin DE20 157 

as the wall material are shown in Table 2.  158 

Insert Table 2 159 

Insert Figure 1 160 

The response surface plots of drying yield as a function of inlet air temperature and 161 

maltodextrin concentration are presented in the Fig. 1(a). The Eq. 1 and Fig. 1(a) show that an 162 

increase in inlet air temperature had a positive effect on drying yield. Accordingly, treatment 5, 163 

which was conducted at the lowest temperature (51.8°C), resulted in the lowest yield (36.50%). 164 



The Eq. 1 describes the drying yield as a function of the significant (p < 0.10) variable: 165 𝐷𝑌 (%) = 61.00 + 9.68𝑇𝑖 (1) 

where DY is the drying yield and 𝑇𝑖 is the inlet air temperature. 166 

Treatments 1 and 5, performed using the lowest inlet air temperatures (60 and 51.8°C, 167 

respectively) and wall material/conidial dry weight ratios, resulted in powders with high 168 

moisture content (about 7%). In treatment 2, a wall material/conidial dry weight ratio of 1:8.4 169 

was used, and the lowest moisture content (5.87%) was obtained. The model equation (Eq. 2) 170 

for moisture content in microparticles is given by: 171 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) = 3.78 − 1.75𝑇𝑖 (2) 

where 𝑇𝑖 is the inlet air temperature. 172 

The response surface plot (Fig. 1b) shows that the increase in inlet air temperature 173 

caused a significant decrease in microparticle moisture content. The effect of maltodextrin 174 

concentration on microparticle moisture was not significant (p > 0.10). The coefficient of 175 

determination (R2) for the response variable moisture content was 0.88; that is, the model 176 

explained 88% of the variance in moisture content. Samples with 8% moisture were obtained 177 

at 50–60°C, whereas, at higher temperatures (100 to 110°C), samples with 2–3% moisture were 178 

obtained. However, the use of inlet air temperatures above 100 °C is not recommended because 179 

it results in a low percentage of conidial survival. Decrease in conidial viability occurred mainly 180 

because of the increase in temperature, as shown by Eq. (3). 181 𝐶𝑉 (%) = 83.68 − 35.30𝑇𝑖 − 23.08𝑇𝑖2 (3) 

where CV is the conidial viability percentage, 𝑇𝑖 is the inlet air temperature, and 𝑇𝑖2 is the 182 

maltodextrin/conidia dry weight ratio. 183 

The response surface of conidial viability (Fig. 1c) (R2 = 0.93) shows that the highest 184 

responses were obtained at inlet air temperatures of 55 to 75°C and wall material/conidia dry 185 

weight ratios of 1:3 to 1:10.  186 

Eq. (4) describes conidial survival as a function of inlet air temperature and 187 

maltodextrin concentration: 188 𝐶𝑆 (%) = 81.81 − 32.19𝑇𝑖 − 22.24𝑇𝑖2 (4) 

where CS is the conidial survival percentage, 𝑇𝑖 is the inlet air temperature, and 𝑇𝑖2 is the 189 

maltodextrin/conidia dry weight ratio. 190 

According to Eq. (4), an increase in inlet air temperature causes a decrease in conidial 191 

survival. The coefficient of determination (R2) for the response variable was 0.95; that is, the 192 

model explained 95% of the variance in conidial survival. Jin and Custis (2011) showed that 193 



the best conidial survival results were obtained using inlet air temperatures of 50–80°C, whereas 194 

the worst results were obtained using temperatures of 120–140°C. 195 

The response surface plot of conidial survival (Fig.1d) revealed that inlet air 196 

temperatures of 60 to 70°C and wall material/conidia dry weight ratios of 1:5 to 1:9 gave the 197 

highest conidial survival percentages. 198 

 199 

Optimization of process conditions and validation of the model 200 

 201 

Contour plots were overlaid using MATLAB to determine the optimum operating 202 

conditions (Fig. 2) for obtaining microparticles with low moisture content, high conidial 203 

viability, and high conidial survival. Conidial viability and survival values were evaluated 204 

considering moisture percentages less than 6% and drying yields higher than 50%. 205 

 206 

Insert Figure  207 

  208 

The Fig. 2 shows that optimum responses were achieved with inlet air temperatures of 209 

77 to 79°C and wall material/conidia dry weight ratios of 1:3.8 to 1:7. An inlet air temperature 210 

of 80°C was chosen as the optimum temperature, as it was within the operating range of the 211 

spray dryer used. The optimum wall material/conidia dry weight ratio was defined as 1:4.5. 212 

New tests were carried out using these parameters to confirm the results and validate the model. 213 

Eqs. (1–4) were used to calculate the predicted response values. The goodness of fit of the 214 

models was evaluated by the coefficient of determination (R2) and residue analysis. Table 3 215 

shows the predicted and experimental data used to validate the models. 216 

Insert Table 3 217 

 218 

Under optimized conditions, drying yield of 63.85 ± 0.86%, moisture content of 4.92 219 

± 0.07%, conidial viability of 87.10 ± 1.16%, and conidial survival of 85.78 ± 2.88% were 220 

obtained. These results were satisfactory in comparison with those of the literature. 221 

Experimental data were very similar to predicted values. Thus, drying yield, conidial viability, 222 

and conidial survival equations were adequate to predict responses at reliable levels. However, 223 

we emphasize that these models are valid for the studied experimental range only. 224 

 225 

Morphology of microencapsulated T. asperellum conidia  226 

 227 



The Scanning Electron Microscopy (SEM) images of T. asperellum conidia 228 

microencapsulated by spray drying using maltodextrin DE20 as wall material under optimum 229 

operating conditions is evaluated in Fig. 3. 230 

 231 

Insert Figure 3 232 

Particle size distribution 233 

 234 

The particle size distribution of T. asperellum conidia microparticles obtained using 235 

optimum parameters is evaluated in Table 4. 236 

 237 

Insert Table 4 238 

 239 

In this study, the use of maltodextrin DE20 as wall material increased the mean D50 240 

and D90 values. We also observed that particles smaller than the mean size of pure conidia 241 

(D10 = 1.56 µm) were formed, supposedly being particles formed only with maltodextrin. 242 

Particle size distribution was similar to that obtained by Jin and Custis (2011), 10–25 μm, and 243 

Ma et al. (2015), 7–14 μm, who used the spray-drying technique to obtain microencapsulated 244 

Trichoderma harzianum and B. subtilis, respectively. 245 

 246 

Viability of T. asperellum conidia before and during storage  247 

 248 

After 7 days of storage at 29°C, reduction in conidia germination was less significant 249 

in microencapsulated conidia than in the control, 4.97 × 109 CFU g− 1 to 3.37 × 109 CFU g− 1 250 

compared with 2.17 × 1010 CFU g− 1 to 9.53 × 109 CFU g− 1. Similar results were obtained after 251 

34 days of storage, which confirms that the addition of maltodextrin DE20 to the spray-drying 252 

process contributed to the preservation of conidia during drying and, consequently, to conidial 253 

viability throughout storage at 29°C. The Fig. 4 shows the CFU count of microencapsulated T. 254 

asperellum conidia and the control sample during the storage period. 255 

 256 

Insert Figure 4 257 

 258 

Discussion 259 



In the present study of central composite rotatable design (CCRD) yields ranged from 260 

36.5% (treatment 5) to 76.37% (treatment 6) as shown in Table 2. Zhou et al. 2004 investigated 261 

the effects of inlet air temperature on the yield of Bacillus thuringiensis powder obtained by 262 

spray drying. Drying yields of 65.55% and 78.52% were obtained using inlet air temperatures 263 

of 180°C and 210°C, respectively, a sample feed rate of 60 mL min− 1, and an atomization air 264 

pressure of 0.10 MPa.  265 

In the work of LeClair et al. (2016), inlet air temperature and feed solute concentration 266 

were significant variables for the spray-drying yield of thermally stable viral vectors. Powder 267 

yield varied from 90 to 50%, and the best results were obtained at temperatures close to 120°C. 268 

Behboudi-Jobbehdar et al. (2013) studied the spray-drying yield of Lactobacillus acidophilus 269 

microencapsules by varying inlet air temperature (120, 140, and 160°C) and feed rate (6.0, 7.5, 270 

and 9.0 mL min− 1). The authors observed that maximum yield (about 70%) was obtained at 271 

high drying temperatures and low feed rates. However, it is known that high temperature 272 

conditions in spray-drying microencapsulation decrease conidial survival, which is one of the 273 

most important parameters to be optimized.  274 

Jin and Custis (2011) reported that the lowest T. harzianum conidial survival was 275 

obtained at an inlet air temperature of 140°C and the highest, at 60°C. In the same study, the 276 

authors investigated the microencapsulation of T. harzianum conidia at 40 to 140°C and 277 

observed that water condensed on the walls of the drying chamber at low inlet air temperatures, 278 

which indicated that the process was not adequate. The same result was observed in the present 279 

study at an inlet temperature of 51.8°C (treatment 5) in Table 2. At high temperatures, however, 280 

no problems were observed, in accordance with the reported by Jin and Custis (2011). As shown 281 

in Table 2, high inlet air temperatures (100.00 and 108.20°C in treatments 3, 4, and 6) 282 

negatively influenced conidial viability and survival. A high survival percentage 283 

(approximately 80%) was obtained at 80°C and wall material/conidia dry weight ratios above 284 

1:4.9. In a study by Ma et al. (2015), the survival of microencapsulated B. subtilis with 285 

maltodextrin as wall material was higher than 90% after spray drying at 145°C with a feed rate 286 

of 0.55 L h− 1. However, it is known that bacteria are less thermosensitive than fungi, which 287 

explains the high survival capacity of this microorganism compared with that of Trichoderma 288 

asperellum found in the present study. 289 



Concerning the SEM images of Morphology of microencapsulated conidia showed that 290 

a dense and robust structure surrounded T. asperellum conidia. Most particles had an irregular 291 

matrix structure with a wrinkled appearance and concave depressions. According to Lian et al. 292 

(2002) and Favaro-Trindade et al. (2010), concave shapes are characteristic of atomized 293 

particles. According to Rodríguez-Huezo et al. (2007), the formation of dimples is due to the 294 

drying temperature used. Lian et al. (2002) reported that wall material affects dimple size. The 295 

morphology of the microparticles obtained in the present work is similar to that of 296 

microcapsules of T. harzianum conidia obtained by Muñoz-Celaya et al. (2012) by spray drying 297 

using maltodextrin DE10 at 20% (w/v) as wall material.  298 

As conidia were well covered by the wall material and as an intermediate inlet air 299 

temperature (80°C) was used, good results of conidial viability (87.10 ± 1.16%) and conidial 300 

survival (85.78 ± 2.88%) were obtained. Jin and Custis (2011) and Muñoz-Celaya et al. (2012) 301 

obtained conidial survival percentages of 76% and 86% using sucrose and maltodextrin as wall 302 

material, respectively, for the microencapsulation of T. harzianum. 303 

The viability of T. asperellum conidia before and during storage was evaluated with 304 

CFU. The CFU count of microencapsulated conidia (5.33 × 108 CFU g− 1) and control (1.50 × 305 

108 CFU g− 1) at 68 days of storage was significantly lower than the initial count, and conidial 306 

survival was 10.74 ± 1.16% and 0.69 ± 0.61%, respectively. After 129 days of storage, the 307 

number of viable conidia was significantly lower in both samples, 2.70 × 106 CFU g− 1 for 308 

microencapsulated conidia and 8.67 × 106 CFU g− 1 for the control. According to Harman and 309 

Custis (2015), it is ideal that Trichoderma formulations contain 5 × 109 CFU g− 1 to be effective 310 

in a variety of applications. According to a study by EFSA (EFSA (European Food Safety 311 

Authority) 2013), however, the minimum number of viable Trichoderma spp. conidia can vary 312 

depending on the type of application and crop. 313 

In the work by Muñoz-Celaya et al. (2012), the viability of spray-dried T. harzianum 314 

conidia without wall material decreased significantly after 4 weeks of storage at 4 and 29°C. 315 

However, when using maltodextrin DE10 and gum Arabic as wall materials, conidial survival 316 

decreased only after 8 weeks of storage (conidial survival percentages of 40% and 23% at 4°C 317 

and 29°C, respectively). Other studies evaluating the survival of spray-dried microorganisms at 318 

different storage temperatures showed that microorganisms remained more stable under 319 

refrigeration (Paéz et al. 2012; Barbosa et al. 2016; Reyes et al. 2018). Domingues et al. (2016) 320 



evaluated mycelial growth of T. asperellum conidia during storage at 12–27°C and found that 321 

mycelial growth was directly proportional to the increase in temperature. The authors stated 322 

that low temperatures favored the latency of fungi. 323 

Semyonov et al. (2011) evaluated the stability of microcapsules of Lactobacillus casei 324 

subsp. produced by spray drying during storage at different temperatures, 4, 25, and 37°C. The 325 

wall materials were composed of maltodextrins (DE5 and DE19) and a trehalose and 326 

maltodextrin mixture. The authors concluded that high storage temperatures affected 327 

significantly the survival of microorganisms. After 7 and 28 days of storage at 37 and 25°C, 328 

survival was considerably lost, whereas, after 40 days of storage at 4°C, viability was above 329 

70%. Another external factor that influenced probiotic survival was oxygen. Samples stored 330 

under nitrogen at 25°C maintained greater viability than samples stored in an air atmosphere. 331 

Oxidation of membrane lipids can lead to the production of hydroperoxides and the formation 332 

of toxic compounds, damaging microbial DNA (J. Marnett et al. 1985; Akasaka 1986). Chávez 333 

and Ledeboer (2007) also reported high cell viability using low oxygen levels during storage of 334 

probiotic microorganisms. 335 

Muñoz-Celaya et al. (2012) reported that the increase in shelf life of 336 

microencapsulated T. harzianum conidia was due to the presence of biopolymers in the 337 

formulation, as these materials can delay the diffusion of oxygen for approximately 8 weeks of 338 

storage, reducing sample oxidation and oxidative stress. 339 

The optimum operating conditions for microencapsulation of T. asperellum conidia by 340 

spray drying were determined, which can contribute to improving the industrial feasibility of 341 

the process. The optimum inlet air temperature was defined as 80°C and optimum wall 342 

material/conidia dry weight ratio was 1:4.5. Mathematical models were able to predict 343 

accurately the drying yield, microparticle moisture content, conidial viability, and conidial 344 

survival. Under optimum inlet air temperature and maltodextrin concentration conditions, 345 

conidial viability and survival were 87.10 ± 1.16% and 85.78 ± 2.88%, respectively. 346 

Furthermore, spray-drying microencapsulation using maltodextrin DE20 as wall material was 347 

able to extend conidia shelf life compared with the control. 348 
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