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Abstract This work presents a D-shaped photonic crystal fiber temperature sensor based on surface 
plasmon resonance with high sensitivity and high figure of merit. To enhance surface plasmon 
resonance, the gold film is deposited on the polished flat of D-shaped photonic crystal fiber. Ethanol 
and chloroform are employed as temperature-sensitive materials, which are placed on the outside of 
the fiber to detect temperature changes. When the phase-matching condition is met, the core mode 
couples with the surface plasma mode, resulting in energy transfer. The finite element method is 
used to perform all numerical simulations of sensor characteristics in the COMSOL software. The 
results show that the highest sensitivity of the sensor can reach 6.36 nm/°C, and the maximum figure 
of merit (FOM) is 0.3440/°C between -5 ℃ and 60 °C. To our knowledge, the achieved sensing 
characteristics are significantly better than those of the current PCF temperature sensors. 
Furthermore, excellent linearity with a polynomial fit R2 of up to 0.9981. The proposed sensor has 
exceptional performance in terms of temperature detection range, sensitivity, FOM and fabrication, 
making it suitable for a wide variety of biochemical and medical applications. 
Key words Surface plasmon resonance; Photonic crystal fiber; Temperature sensor; polished D-
shaped flat  

OCIS codes 060.5295; 240.6680; 280.4788; 280.6780



Introduction  

Photonic crystal fiber (PCF) exhibits superior properties owing to its unique structure, including 
infinite single-mode transmission, high nonlinearity, controllable birefringence and tunable 
dispersion [1-3]. In recent years, PCF-based temperature sensors have gained considerable interest 
due to their small size, light weight, and distant sensing capability. Numerous types of PCF 
temperature sensors have already appeared to date, such as long period grating (LPG), mode 
coupling, Sagnac interferometer and surface plasmon resonance [4-10]. Du C et al. [5] proposed a 
method for measuring temperature using an isopropanol-filled PCF with a long period grating, the 
maximum sensitivity of sensor in the range of 20-50 ℃ is 1.356 nm/℃. However, LPG-based 
sensors are expensive because of the need for high-power lasers in fabrication. A all-fiber Sagnac 
interferometer temperature sensor with high sensitivity of 1.65 nm/°C was reported by Li et al [6], 
but temperature detection range of only 25-33 °C. Liu Q et al. [7] demonstrated a PCF temperature 
sensor with a larger sensing range from 20 ℃ to 80 °C based on the coupling of liquid core and 
defect mode, while the sensitivity is -1.9 nm/°C and the FOM can go as low as -0.035/°C. A 
temperature sensor with polarization-insensitive based on liquid-filled PCF was proposed by Abbasi 
M et al. [10] and obtained the sensitivity of -1.96 nm/°C in both x and y polarization directions. 
Additionally, the FOM of sensor is up to 0.272/℃, but sensitivity should be improved. 

Surface plasmon resonance (SPR) technology is one of the major achievements of modern optics. 
SPR is extremely sensitive and precise to changes in the refractive index of the surrounding medium, 
so it is frequently used in the design of various refractive index sensors. Due to the fact that 
temperature has an effect on the refractive index change of the medium, the temperature sensor 
based on SPR has become a research hotspot in recent years [11-14]. In 2012, Peng Y et al. [15] 
first achieved an SPR-based PCF temperature sensor, in which the PCF air holes were covered by 
gold films for SPR response. A high-sensitivity SPR-PCF temperature sensor with a central liquid 
crystal-filled air hole and gold wires filling of some air holes in the layer was recorded by Hameed 
et al. [16], the sensitivity can reach up to 10 nm/°C between 30 ℃ and 50 ℃. Bo Han et al. [17] 
simultaneously measured temperature and strain in two symmetrical PCF holes coated with golden 
layer, one of which was permeated with a temperature-sensitive liquid. This sensor exhibited 
sensitivity of -6.83 nm/°C with a narrow temperature range of 20-30 ℃. Clearly, the SPR-PCF 
temperature sensor has a higher sensitivity. However, the temperature range of the above sensors 
are limited and only the sensitivity is studied. Thus, it is critical to investigate how to concurrently 
increase the performance of SPR-PCF temperature sensor across a wide temperature range, 
including sensitivity, FOM, and so on. The PCF air holes are small, making it extremely difficult to 
place temperature-sensitive materials and metal films in them. Therefore, simplifying the design 
and fabrication of PCF is important. 

In this work, a multi-channel D-shaped PCF temperature sensor based on SPR is designed and 
studied by finite element method. The arrangement of air holes is only two layers, which simplifies 
the structure design. Gold has high stability and is difficult to oxidize, so it is deposited on the D-
shaped surface to excite plasmon resonance. Here, the ethanol and chloroform are placed outside of 
PCF as the temperature sensitive liquid. Therefore, the problems associated with covering the film 
and filling liquid in the air holes can be efficiently overcome. Through simulation, we firstly analyze 
the parameters about sensitivity and FOM of the sensor and attain excellent sensing performance. 
Moreover, the optimization of structural parameters about gold film thickness and the distance from 



center to polished flat of PCF are investigated. Comparing and analyzing various PCF temperature 
sensors at last, our sensor exhibits superior sensing performance and is very competitive in the field 
of temperature sensing.  

Structure design and basic theory 

The cross-sectional view of the designed SPR-PCF temperature sensor is shown in Fig. 1, modal 
analysis is conducted in the X-Y plane, and incident light along the Z direction. The sensor structure 
consists of two layers of cladding air holes. The air holes with diameters d, d1 and d2 are arranged 
in a regular hexagon lattice, and the pitch of lattice is Λ. On the side close to the metal film are two 
air holes with a diameter of d3, and the distance to the center of the air hole below is Λ/1.1. Here, 
the fiber radius is r, the side polished flat coated with gold film of thickness t height from fiber core 
is h. There are fewer air holes on the side near the gold film, which enable multi-channel 
transmission of core energy. Temperature-sensitive liquid mixed with ethanol and chloroform at a 
ratio of 1:1 is placed on the outer layer. Chloroform has a high thermal coefficient but a large 
refractive index. Thus, adding ethanol to reduce the refractive index of the liquid. Outermost layer 
is a perfectly matched layer, which is used to absorb the radiation energy and ensure the accuracy 
of the calculation. Due to the fact that the air holes are closely spaced, the PCF designed can be 
fabricated using high-precision ultrasonic drilling [18]. 

 

 

Fig.1 Schematic cross-section of proposed PCF-SPR temperature sensor with Λ=2.5 μm, h=3.5 μm,  

d=2 μm, d1=1.5 μm, d2=0.75 μm, d3=1.8 μm, r=6.5 μm, t=30 nm 

The background material of the temperature sensor is fused silica, and its refractive index can 
be obtained from the Sellmeier equation [19] 
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where incident light wavelength λ is in microns and temperature T is in degree Celsius. The dielectric 
constant of the gold film on the polished surface is analyzed by the Drude-Lorentz model [20] 
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Here,   =5.9673 is the permittivity of gold at high frequency.    is the angular frequency of 

guided light, 
D

  and 
D
   represent the plasma and damping frequency, respectively. 2

D
 

=2113.6THz, 2
D
   =15.92 THz. 

L
  and

L
  are frequency and spectral width of Lorentz 

oscillators. 2
L

  =650.07 THz, 2
L

  =104.86 THz,   =1.09 can be interpreted as a 

weighting factor. Since temperature-sensitive liquid is more sensitive to temperature than metal, the 
temperature properties of gold film are ignored [21]. Thermosensitive liquid is a mixture of ethanol 
and chloroform, and its refractive index [22] can be expressed as 
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where x% and (100-x)% indicate the proportions of ethanol and chloroform, respectively, and the 
ratio in the text is 1:1. Material dispersion of liquid is neglected, supposing the refractive indices of 
ethanol and chloroform are 1.36048 and 1.43136 at T = 20 °C. dn dT represents the thermo-optic 
coefficient, and the liquid of thermo-optic coefficient are -3.94×10-4/℃ and -6.328×10-4/℃ [23,24]. 

When the core and surface plasmon polariton (SPP) modes of the SPR-PCF temperature sensor 
are coupled at a specific wavelength, SPR occurs when the excitation of the free electrons of the 
metal by the incident light's evanescent field, transferring energy from the core mode to the SPP 
mode [25]. This particular wavelength is referred to as the phase matching point and the resonance 
wavelength. As a result, a loss peak appears at the resonance wavelength. When the temperature 
varies, the effective refractive index of core mode and SPP mode vary, resulting in a shift in the 
resonant wavelength. Thus, temperature detection can be achieved based on the resonance 
wavelength.    

The temperature upper limit in this work is set at 60 °C based on the boiling point of the blended 
liquid. At a temperature of -5 °C, there is an almost completely coupled resonance between the core 
mode and the SPP mode, because the loss of resonance peaks decreases with decreasing temperature 
starting at -5 ℃. Hence, temperature detection range from -5 ℃ to 60 ℃ is selected. 

Results and discussions 

Analysis of electric field distribution, dispersion relations and mode losses  

The proposed sensor is simulated using the full vector finite element method in COMSOL software. 
At T = -5 ℃, the temperature sensor is numerically calculated and analyzed in the 0.82 μm to 0.9 
μm wavelength range. Fig. 2 shows the electric field distribution diagram for the x-pol and y-pol 
core modes, the y-pol SPP mode, and the y-pol coupling resonance at various wavelengths. As can 
be seen in Fig. 2 (d) and (e), when the wavelength λ = 0.8568 μm, electric field distribution of the 
x-pol core mode is almost unchanged, while the y-pol core mode and the SPP mode are phase-
matched, the majority of energy in the core is transferred to the gold film, resulting in a strong SPR 
effect. Fig. 3 displays the loss spectra of core mode and the dispersion relations of y-pol core mode 
and plasmon mode at T = -5 ℃. It can be seen from the figure that the loss of the y-pol core mode 
is high and exhibits a clear peak between 0.82 μm and 0.9 μm, whereas the x-pol core mode loss is 



mild and stable. The y-pol core mode experienced stronger interaction with the SPP mode, and the 
sensitivity was higher, so the y-pol mode is considered for the entire sensing process. According to 
Fig. 3, the real part of the effective refractive index of the y-pol core mode and the SPP mode are 
coincident at a wavelength of 0.8568 μm, and the value of loss peak of y-pol core mode is up to 
317.51 dB/cm. The calculation formula of the loss can be defined as[26]  

     42
dB cm =8.686 Im 10effn




    (4) 

Where Im(neff) represent the imaginary part of the effective refractive index. 
Fig. 4 (a) shows the loss spectra of the y-pol core mode at -5-60 ℃. When the temperature 

changes from 60 °C to -5 °C, the refractive index of the mixture of temperature-sensitive liquid is 
approaching that of the core, so the coupling between the core mode and the SPP mode has been 
increasing which leads to the red-shifted of resonance wavelengths. Simultaneously, the value of 
the loss peak increases significantly as the temperature decreases. When nearly all of the energy in 
the y-pol core mode is transferred to the SPP mode, the coupling between them changes from 
incomplete to complete, then the loss of core mode and the SPP mode will reverse. As shown in Fig.  
4 (b), when the temperature is changed from 0 °C to -5 °C, the loss peak increases and the resonance 
wavelength redshifts, but the opposite occurs when the temperature is changed from -5 °C to -15 °C. 
So it can be concluded that at -5 °C, the coupling between the y-pol core mode and the SPP mode 
is nearly complete, resulting in a high coupling efficiency[27], and the core mode loss reaches its 
maximum value. 
 

 

 

 

 

 

 

Fig. 2 Electric field distributions of the (a) and (e) x-pol core mode, (b) y-pol core mode, 

(c) y-pol SPP mode, (d) y- pol coupling mode at T = -5℃ 

 

 

Fig. 3 Loss spectra of the core modes and the dispersion relations of y-polarized core mode 

and plasma mode at T = -5℃ 
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Fig. 4 Loss spectra of the y-pol core mode in the temperature range (a) from -5 ℃ to 60 ℃ 

and (b) from -15 ℃ to 0 ℃ 

Analysis of sensor sensing performance 

In the detection range, the sensor performances are analyzed in terms of sensitivity, figure of merit 
(FOM) and the linearity of resonance wavelength. Sensitivity is an important parameter for a 
temperature sensor, and it is calculated using the wavelength interrogation method. The sensitivity 
of the sensor is investigated between -5 ℃ and 60 ℃ in this article and the expression can be written 
as[28] 

   peak
nm =S

Τ



℃  (5) 

where Δλpeak and ∆T represent the shifting distance of the resonance wavelength and change of the 
temperature. From Fig. 4, we can obtain the variation of the λpeak (resonance wavelength) and T 
(temperature), the sensitivity can be calculated as shown in Table 1. It can be seen from the table 
that the sensor has a maximum sensitivity of 6.36 nm/°C at -5 °C, which is better than a range of 
previously designed PCF temperature sensors. 

The figure of merit (FOM) is another critical sensor parameter, it is defined as the ratio of the 
sensitivity to the full-width at half-maximum (FWHM), with the following expression[29] 

  -1 S
FOM

FWHM
℃  (6) 

The sharp resonant response (lower FWHM) can effectively filters out spectral noise, resulting 
in a greater signal to noise ratio for the received signal. Therefore, higher sensitivity as well as lower 
FWHM are important directions to improve detection accuracy. In many circumstances, high 
sensitivity and a high FOM within the temperature sensor's wide detection range cannot be obtained 
simultaneously. In this paper the proposed sensor achieves a narrow FWHM value of the core mode 
loss at -5 °C, hence improving both sensitivity and FOM. The FOM and FWHM values of the sensor 
at various temperatures are listed in Table 1 and the highest FOM of 0.3440/°C, that is also indicative 
of increased performance. According to Fig. 5 (a), the FOM reaches its highest value when the 
FWHM is the lowest. Fig. 5 (b) shows quadratic fitting of the loss peak wavelengths changing with 
temperature between -5 °C and 60 °C, which gives a satisfactory linearity with polynomial fit R2 up 
to 0.9981. 
 

 

 

(a) (b) 



Table1 Sensing performance of PCF-SPR temperature sensor in the temperature range from -5 ℃ to 60 ℃ 

 

T(℃) λpeak (nm)  ∆λpeak (nm) S (nm/℃) FWHM (nm) FOM (℃-1) 

-5 856.8 31.8 6.36 18.49 0.3440 

0 825 49 4.9 26.35 0.1860 

10 776 37 3.7 29.62 0.1249 

20 739 29 2.9 29.06 0.0998 

30 710 24 2.4 27.98 0.0858 

40 686 20 2 26.88 0.0744 

50 666 18 1.8 25.94 0.0694 

60 648 — — 25.14 — 

 

  

Fig. 5 Variations of the (a) FOM and FWHM values and (b) quadratic fitting of resonance 

Wavelength for different temperatures 

Optimization of the structural parameters 

When structural parameters are changed, the temperature sensing characteristics are altered as well. 
This section investigates the effect of gold film thickness (t) and the distance from fiber core to 
polished flat (h) on sensing properties in order to optimize sensing performance. The core mode loss 
spectra of t = 20 nm and t = 25 nm at the temperature of -5~60 ℃ are plotted in Fig. 6 (a) and (b), 
and the corresponding sensitivity can be calculated. Fig. 6 (c) depicts the sensitivity with the 
variation of temperature under different gold film thicknesses, it can be observed that when t = 30 
nm, the sensing sensitivity is the highest. Fig. 6 (d) and (e) are the FOM and FWHM values versus 
temperature at t = 20 nm and 25 nm, respectively. Their figures of merit (FOM) are 0.2620/°C and 
0.2537/°C, which are both smaller than the 0.3440/°C at t = 30 nm. Therefore, gold film thickness t 
is optimized to 30 nm with consideration of high sensitivity and FOM. 
 

(a) (b) 



    

 

Fig. 6 The core mode loss spectra of (a) t = 20 nm and (b) t = 25 nm, (c) the sensitivity 

versus temperature with different value of t, FOM and FWHM values 

at (d) t = 20 nm and (e) t = 25 nm for different temperature 

The distance from fiber core to polished flat (h) has an effect on the efficiency with which energy 
in the core is transmitted to the gold layer, and then affecting sensing performance. Fig. 7 (a) and 
(b) show the core mode loss spectra of h = 3.4 μm and 3.6 μm at the temperature of -5~60 ℃. The 
sensitivity with the variation of temperature at h = 3.4 μm, 3.5 μm and 3.6 μm are plotted in Fig. 7 
(c). And their maximum sensitivities are 5.8 nm/°C, 6.36 nm/°C and 6.8 nm/°C, respectively. 
Moreover, from Fig. 5 (a), Fig. 7 (d) and (e), it can be obtained that the FOM of different value of 
h, which are 0.3538/℃, 0.3440/℃ and 0.3234/℃. As illustrated in Fig. 7 (c) and (f), when h=3.4 
μm, the sensing sensitivity is lowest but the FOM is highest, while h=3.6 μm is the opposite. Both 
the sensitivity and FOM are relatively high at h=3.5 μm. As a result, h is optimized to 3.5 μm for 
getting better temperature sensing characteristics.  

(d) 

(a) (b) (c) 

(e) 

(a) (b) (c) 



 

Fig. 7 The core mode loss spectra of (a)h = 3.4 μm and (b) h = 3.6 μm, the (c) sensitivity and (f) FOM  

versus temperature with different value of h, FOM and FWHM values 

at (d) h = 3.4 μm and (e) h = 3.6 μm for different temperature 

Performance comparison and experimental setup 

Table 2 compares the sensing performance among designed and existing PCF temperature sensors. 
As can be seen from this table, the sensor suggested in this study has superior performance in terms 
of sensitivity and figure of merit (FOM), as well as a wide temperature detection range of down to 
-5 °C. In addition, the D-shaped structure efficiently promotes electron excitation on the metal film. 
As a result, the proposed SPR-PCF temperature sensor exhibits better sensing capabilities than other 
designs. 

Table 2 Sensing performance comparison of various PCF temperature sensors 

 

 

The experimental setup of the proposed temperature sensor is shown in Fig. 8. The optical signal 
is provided by the broadband light source (BBS) transmits into the designed D-shaped PCF through 
a single-mode fiber (SMF), and then the output spectrum can be observed using an optical spectrum 
analyzer (OSA), which is connected to the PCF via another SMF. The temperature-sensitive liquid 
is deposited on the outer layer of the PCF, which is permeable, and the pump controls its inflow and 
outflow. The temperature controller can adjust the temperature around the sensor. OSA can detect a 
shift in resonance wavelength at different temperatures when the temperature changes[30]. 

Structures Detection range(℃) Sensitivity(nm/℃) FOM(℃-1) Ref 

SPR 20~80 -2.5 -0.061 [7] 

LPG 20~50 1.356  [8] 

Sagnac interferometer 25~33 1.65  [9] 

Coupling between liquid-core mode and 

defect mode  

20~80 -1.9 -0.035 [10] 

Bandgap-like effect  20~28 -5.5 0.0762 [11] 

Ultracompact  0~100 2.82 0.048 [12] 

Polarization-insensitive 20~80 -1.96 -0.272 [13] 

SPR -5~60 6.36 0.3440 This work 

(f) (e) (d) 



 

Fig. 8 Schematic diagram of experimental setup for the proposed SPR-PCF temperature sensor 

 

Conclusion 

A highly sensitive D-shaped PCF temperature sensor based on SPR is proposed. The D-shaped PCF 
features an easy-to-manufacture construction and the sensing effect is excellent when the suitable 
structural parameters are used. The mixture of ethanol and chloroform as the temperature-sensitive 
liquid, and a slight change in temperature can result in a significant change in its refractive index. 
The sensing characteristics of the temperature sensor are studied by the finite element method, the 
results indicate the sensitivity can reach up to 6.36 nm/℃ and the maximum FOM is 0.34396/℃, 
which are better than existing various types of PCF temperature sensor. Additionally, excellent 
polynomial fitting is obtained throughout a broad temperature range of -5 °C to 60 °C. The superior 
performance of the proposed temperature sensor offers a wide range of potential applications in the 
medical and biochemical fields. 
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