PIKfyve-specific inhibitors restrict replication of multiple human coronaviruses in vitro but not in a murine model of COVID-19 ### James Logue Department of Microbiology and Immunology, University of Maryland, School of Medicine https://orcid.org/0000-0002-7410-9741 ### Arup R. Chakraborty Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health ### **Robert Johnson** Department of Microbiology and Immunology, University of Maryland, School of Medicine https://orcid.org/0000-0002-1976-7688 ### Girija Goyal Wyss Institute for Biologically Inspired Engineering, Harvard University ### Louis J. Taylor Department of Microbiology and Immunology, University of Maryland, School of Medicine ### Lauren Baracco Department of Microbiology and Immunology, University of Maryland, School of Medicine #### Marisa E. McGrath Department of Microbiology and Immunology, University of Maryland, School of Medicine ### **Robert Haupt** Department of Microbiology and Immunology, University of Maryland, School of Medicine ### Melissa Rodas Wyss Institute for Biologically Inspired Engineering, Harvard University ### **Brooke A. Furlong** Wyss Institute for Biologically Inspired Engineering, Harvard University ### **Mercy Soong** Wyss Institute for Biologically Inspired Engineering, Harvard University ### Pranav Prabhala Wyss Institute for Biologically Inspired Engineering, Harvard University ### Viktor Horvath Wyss Institute for Biologically Inspired Engineering, Harvard University ### Kenneth E. Carlson Wyss Institute for Biologically Inspired Engineering, Harvard University ### Stuart Weston Department of Microbiology and Immunology, University of Maryland, School of Medicine https://orcid.org/0000-0001-9840-2953 ### Donald E. Ingber Wyss Institute for Biologically Inspired Engineering, Harvard University ### Melvin L. DePamphilis Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health ### Matthew B. Frieman (mfrieman@som.umaryland.edu) Department of Microbiology and Immunology, University of Maryland, School of Medicine https://orcid.org/0000-0003-0107-0775 ### Research Article Keywords: SARS-CoV-2, PIKfyve, COVID-19, therapeutic, coronavirus, apilimod Posted Date: April 28th, 2022 **DOI:** https://doi.org/10.21203/rs.3.rs-1605065/v1 **License:** © ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License # PIKfyve-specific inhibitors restrict replication of multiple human coronaviruses *in vitro* but not in a murine model of COVID-19 - 3 James Logue^{1,2}, Arup R. Chakraborty³, Robert Johnson^{1,2}, Girija Goyal⁴, Louis J. Taylor^{1,2}, Lauren - 4 Baracco^{1,2}, Marisa E. McGrath^{1,2}, Robert Haupt^{1,2}, Melissa Rodas⁴, Brooke A. Furlong⁴, Mercy Soong⁴, - 5 Pranav Prabhala⁴, Viktor Horvath⁴, Kenneth E. Carlson⁴, Stuart Weston^{1,2}, Donald E. Ingber⁴⁻⁶, Melvin L. - 6 DePamphilis³, Matthew B. Frieman^{1,2,*} - 8 ¹Department of Microbiology and Immunology, University of Maryland, School of Medicine, 685 West - 9 Baltimore St, Baltimore, MD, 21201, USA. - ²Center for Pathogen Research, University of Maryland, School of Medicine, 685 West Baltimore St, - 11 Baltimore, MD, 21201, USA. - ³Division of Developmental Biology, National Institute of Child Health & Human Development, National - 13 Institutes of Health, Bethesda, MD 20892-2790, USA. - ⁴Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, - 15 USA. 7 - ⁵Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, - 17 USA. 20 22 - 18 ⁶Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard - 19 Medical School, Boston, MA 02115, USA. - 21 *Correspondence: M.B.F. (mfrieman@som.umaryland.edu) ### 23 Abstract - 24 The ongoing COVID-19 pandemic has claimed more than 6 million lives and continues to test the world - economy and healthcare systems. To combat this pandemic, the biological research community has shifted efforts to the development of medical countermeasures, including vaccines and therapeutics. However, to date, the only small molecules approved for the treatment of COVID-19 in the United States are the nucleoside analogue Remdesivir and the protease inhibitor Paxlovid, though multiple compounds have received Emergency Use Authorization and many more are currently being tested in human efficacy trials. One such compound, Apilimod, is being considered as a COVID-19 therapeutic in a Phase II efficacy trial. However, at the time of writing, there are no published efficacy data in human trials or animal COVID-19 models. Here we show that, while Apilimod and other PIKfyve inhibitors have potent antiviral activity in various cell lines against multiple human coronaviruses, these compounds worsen disease in a COVID-19 murine model when given prophylactically or therapeutically. ### Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), first reported in Wuhan City, Hubei Provence, China in early December 2019 [1-3]. Since then, occurrence of COVID-19 has expanded to a worldwide pandemic, with over 400 million reported cases and over 6 million reported deaths at the time of writing [4, 5]. In response, halting this pandemic has become a top priority for public health agencies and governments, spurring many research institutions to shift focus to SARS-CoV-2 as an all-in approach to solving this global problem. However, to date, very few small molecules therapeutics (Remdesivir, Molnupiravir and Paxlovid) have attained approval or authorization from the Food and Drug Administration for the prevention or treatment of COVID-19 [6, 7]. Given the paucity of available medical countermeasures, continued research into compounds with the potential to treat this disease and their mechanisms of action is urgently needed. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that infects cells after binding of the viral spike glycoprotein to its target cell receptor, angiotensin-converting enzyme 2 (ACE2). Viral contents can then be released into the cytosol following spike cleavage by transmembrane protease serine 2 (TMPRSS2) on the cell surface or by cathepsin-mediated cleavage in endosomes [8-11]. Once inside the cell, SARS-CoV-2 generates a replication complex contained within double-membrane vesicles to avoid cellular detection, where subgenomic RNA (sgRNA) is transcribed and genomic RNA (gRNA) is replicated [12, 13]. Proteins are then translated from sgRNA and translocate to the endoplasmic reticulum to facilitate the construction of new virions in the endoplasmic reticulum to Golgi intermediate compartment. Newly created virions are then secreted from the infected cell through the exocytosis pathway (reviewed in [13]). However, as SARS-CoV-2 is a newly identified virus, many of the virus lifecycle steps are posited from previous research on SARS-CoV, due to the similarity of the two viruses. Specific aspects of the SARS-CoV-2 lifecycle are still being actively researched. As SARS-CoV-2 replication is reliant on host membrane synthesis and vesicular trafficking within cells, it may also be susceptible to therapeutic targeting of host trafficking machinery. An important enzyme involved in vesicle trafficking, phosphatidylinositol-3-phosphate 5-kinase type III (PIKfyve), has shown to be a promising *in vitro* therapeutic target for multiple diseases, including cancers, autoimmune diseases, and emerging viral diseases [14-19]. PIKfyve modifies a lipid involved in vesicle localization, phosphatidylinositol, by the addition of a 5` phosphate, leading to the trafficking of multiple intracellular vesicles [20]. Though the PIKfyve inhibitor Apilimod has been shown to decrease SARS-CoV-2 infection in cell culture and is currently being considered as a COVID-19 therapeutic in a Phase II clinical trial (listed as recruiting patients, NCT04446377), efficacy in COVID-19 animal models has yet to be reported [21, 22]. Additionally, other PIKfyve inhibitors, including the WX8-family of PIKfyve inhibitors, have yet to be studied [19]. Here we describe the efficacy of multiple PIKfyve inhibitors against SARS-CoV-2 when administered pre- and post-infection in VeroE6 cells as well as in A549 cells overexpressing human ACE2 (A549/hACE2). We also describe the efficacy of these compounds in a murine model of COVID-19 to assess effects on lung infection and COVID-19 disease progression. Though these compounds showed nanomolar potency at disrupting SARS-CoV-2 replication *in vitro*, PIKfyve inhibitor administration prior to or following SARS-CoV-2 infection in a murine model of disease resulted in increases of both lung viral load and mortality as compared to vehicle-treated mice, likely due to a delayed but hyperactive immune response. ### Results ### PIKfyve inhibitors disrupt infection by multiple coronaviruses in vitro To assess the efficacy of PIKfyve inhibitors against SARS-CoV-2 *in vitro*, VeroE6 or A549/hACE2 cells were pre-treated with various concentration of PIKfyve inhibitors 2 hours prior to infection with SARS-CoV-2 expressing green fluorescent protein (GFP). The percent of infected cells was then determined under these treatment conditions after nuclear staining and visualization using a Celigo cell imager (Nexclecom Inc). All inhibitors tested potently restricted SARS-CoV-2 replication in both cell lines, showing SARS-CoV-2 inhibition at nanomolar concentrations and minimal cytotoxicity (Table 1). We additionally tested the ability of Apilimod, WX8, and NDF to inhibit replication of hCoV-OC43, an endemic cold-causing coronavirus that infects humans. We found these PIKfyve inhibitors restricted hCoV-OC43 replication in human umbilical vein endothelial cells (HUVECs) as measured by infection-induced cell death, suggesting that PIKfyve inhibitors could be a potential pan-coronavirus therapeutic (Fig S1a). Following these results, we aimed to ascertain which steps of the SARS-CoV-2 lifecycle PIKfyve inhibition may affect by performing time-of-addition analysis in the same cell lines. PIKfyve inhibitor treatment was initiated in triplicate at 2 hours pre-infection, at the time of infection, or 2- or 6- hours post-infection with SARS-CoV-2 (WA-1) and supernatants were collected after 24 hours to assess virus output by plaque assay (Fig 1). Additionally, cellular RNA was collected to assess SARS-CoV-2 sgRNA levels as a measure of intracellular viral replication (Fig S2A). Compound efficacy at these timepoints would affect different aspects of the virus life cycle: efficacy exclusively at 2 hours pre-infection or at the time of infection would suggest an effect on viral attachment/entry; efficacy at the earlier timepoints and at 2 hours post-infection would suggest an effect on middle life cycle stages, such as viral transcription or translation; and compound efficacy at the previous timepoints as well as 6 hours post-infection would suggest an effect on virion assembly or exit. Apilimod, WX8, and NDF showed steadily decreasing efficacy in VeroE6 cells as the treatment was administered progressively later during SARS-CoV-2 infection (Fig 1A-C), suggesting that these inhibitors may be affecting multiple stages (e.g., entry and exit) of the virus lifecycle in this cell type. However, efficacy for these three compounds seemed to be limited to earlier timepoints when used in A549/hACE2 cells (Fig 1F-H), suggesting the compounds may only affect entry in this cell type. Alternatively, WWL lacked this decreasing efficacy in VeroE6 cells (Fig 1E), showing the same decrease is SARS-CoV-2 output titer at all treatment times, suggesting an effect on late stages of the viral life cycle. XB6 showed a decreased effect when administered later during infection for A549/hACE2 cells (Fig 1I) and variable efficacy in VeroE6 cells (Fig 1D). # PIKfyve inhibitors exacerbate disease in a murine model of COVID-19 when administered pre- or post-infection Two members of the WX8 family of PIKfyve inhibitors, WX8 and NDF, were tested for efficacy when treatment was initiated prior to infection with SARS-CoV-2 (B.1.351, "beta" variant, 1 x 10⁵ plaque forming units [PFU]/mL) in Balb/c laboratory mice (Fig 2A). Apilimod was not available for preinfection testing but was included for post-infection testing, described later. Treatment with WX8 or with NDF resulted in increased weight loss as compared to vehicle treated controls, showing a greater than 10% weight loss by 4 days post-infection (dpi) for treated animals (Fig 2B). This weight loss was absent for uninfected, treated controls. SARS-CoV-2 titers from lungs were also significantly higher in WX8-treated animals on 2 and 4 dpi and in NDF-treated animals on 4 dpi (Fig 2C). Titer results were confirmed by RT-qPCR (Fig S2B). In contrast, treatment with the potent SARS-CoV-2 inhibitor EIDD-2801, used in the present study as a positive compound control, showed minimal weight loss and a complete reduction in SARS-CoV-2 titers in lungs [23, 24]. Histopathological examination of lung sections from WX8-, NDF-, or vehicle-treated animals infected with SARS-CoV-2 showed epithelial sloughing in the bronchiolar space and inflammation in both the bronchiolar and alveolar spaces for vehicle treated animals on 2 dpi. In contrast, inflammation was markedly reduced on 2 dpi for WX8- and NDF-treated animals (Fig 2D). No qualitative differences between treatments could be discerned at 4 dpi. Following these results, Apilimod, WX8, and NDF were tested for efficacy against SARS-CoV-2 infection with treatment administration initiated 1 dpi (Fig 3A). Given the anti-inflammatory results seen from histopathological examination of lung sections during pre-exposure testing, a more severe COVID-19 disease model (mouse-adapted SARS-CoV-2, MA-10, 1 x 10⁵ plaque forming units [PFU]/mL) was chosen for post-exposure efficacy testing. None of the treatments tested were able to mitigate disease-associated weight loss (Fig 3B), reduce SARS-CoV-2 titers from lung tissues (Fig 3C, RT-qPCR in Fig S2C), or increase disease survival (Fig 3D). In fact, viral clearance was delayed in NDF- and Apilimod-treated animals, and WX8- and Apilimod-treated animals died earlier than the vehicle control group. Additionally, it was observed that PIKfyve inhibitor-treated mice developed what appeared to be conjunctivitis one day prior to succumbing to disease, which was absent in vehicle treated animals that died or in uninfected, treated control (data not shown). Histopathological analysis showed no discernible qualitative differences in inflammation as compared to vehicle treated animals (Fig 3E). ### PIKfyve inhibitors modulate immune parameters in vitro and in vivo Single cell sequencing was performed on lungs collected on 4 dpi from the initial pre-infection treatment mouse study. Lung dissociation treatment was biased toward collection of immune cells so lung epithelial cells were underrepresented in our results. T-distributed stochastic neighbor embedding (t-SNE) analysis of single-cell expression data revealed 9 distinct cell clusters for each mouse group assessed (Fig 4A). By 4 dpi, treatment of SARS-CoV-2 infected mice by either NDF or WX8 resulted in a marked increase in granulocytes and antigen presenting cells as compared to vehicle treated animals (Fig. 4B, quantified in 4C). In both the granulocyte (Fig 4D, shown for WX8) and APC populations (Fig 4E, shown for WX8), we identified reduced expression of interferon signaling pathway genes in SARS-CoV-2-infected lungs with treatment of either drug: NDF vs. untreated, granulocyte cluster (z=-2.2, p=7.7x10⁻⁵); WX8 vs. untreated, granulocyte cluster (z=-2.6, p=8.1x10⁻⁷); NDF vs. untreated, APC cluster (z=-1.0, p=3.9x10⁻²); WX8 vs. untreated, APC cluster (z=-3.0, p=2.3x10⁻⁶). Negative z-scores indicate predicted pathway inhibition [25]. Additionally, Toll-like receptor (TLR) expression was significantly different in antigen presenting cells, showing a down-regulation of TLR9 and an upregulation of both TLR4 and TLR5 (Fig 4E, shown for WX8). In addition to these single cell sequencing results, we also found that WX8, NDF, and Apilimod modulate secretion of proinflammatory cytokines in response to infection by another human coronavirus, hCoV-OC43, in studies with cultured HUVECs. Treatment with WX8, NDF, or Apilimod resulted in significant dose-dependent decreases in production of IFN-β, IL-1α, and IL-6, with a modest decrease in CXCL10 expression (Fig S1b-f). ### **Discussion** The development of broad-spectrum antivirals continues to be a top priority to prepare for sudden viral disease outbreaks. PIKfyve inhibitors, including Apilimod, have shown to be potent antiviral agents *in vitro* against many pandemic- and epidemic- causing viruses (e.g., SARS-CoV-2, Ebola virus, Marburg virus) [17, 22]. However, there remains a lack of published data on the effects of PIKfyve inhibitor treatment on disease progression in any animal models. In the present study, we similarly found that Apilimod and the WX8 family of PIKfyve effectively restrict SARS-CoV-2 replication in multiple cell lines, with activity observed down to nanomolar concentrations. Mechanistically, PIKfyve inhibitors appear to affect multiple stages of the virus lifecycle based on the *in vitro* time of addition analysis demonstrated here, though additional assays are still needed to confirm inhibition of specific lifecycle stages. Though these and past *in vitro* results suggest that PIKfyve inhibitors have potential value as COVID-19 treatments, this work highlights that *in vitro* efficacy does not always translate to compound efficacy *in vivo*. Animals treated with PIKfyve inhibitors generally experienced worse disease progression, regardless of when the treatment regimen was begun. Pre-exposure prophylactic administration resulted in an increase in peak viral load and delayed viral clearance from lungs. Additionally, it was observed that trafficking of immune cells was delayed in the PIKfyve inhibitor treated animals as compared to vehicle treated animals by histology. These results were consistent with *in vitro* findings in human cells showing that PIKfyve inhibitors suppress secretion of proinflammatory cytokines (e.g., various interleukins) that normally promote recruitment and trafficking of immune cells. Together, these findings suggest a potential immune modulatory effect of PIKfyve inhibition, which in turn leads to delayed viral clearance. Though these results showed a worsening of disease, the observed immune modulatory effects of PIKfyve inhibitor treatment raised the possibility that a post-exposure treatment regimen could mitigate some of the effects of a cytokine storm, which has been correlated with COVID-19 disease severity [1, 26]. Therefore, we decided to test this hypothesis using a more severe COVID-19 mouse model that utilized infection with a mouse adapted SARS-CoV-2 (MA-10). However, we once again observed a similar worsening of disease using this therapeutic regimen and PIKfyve treated, SARS-CoV-2 infected animals died from disease earlier than vehicle treated animals. Single cell analysis of immune cells from lungs collected during the pre-exposure treatment study suggests potential mechanisms for the increased death and lack of viral control in the lungs. PIKfyve treatment led to a marked increase of innate immune cells at 4 dpi, including neutrophils and antigen presenting cells, as compared to untreated animals. Though there was a marked increase in these cells, the expression of interferon stimulated genes in both cell groups was significantly decreased, suggesting a muted interferon response despite the increased viral load. Among the antigen presenting cell cluster, Toll-like receptor (TLR) expression patterns suggested a response tuned more toward bacterial infection (higher TLR4 and TLR5 expression). Additionally, a lower expression of TLR9 may suggest an inhibition of trafficking of plasmacytoid dendritic cells (pDC) to the lung, which have been suggested to control acute lung inflammation following lung damage [27]. Indeed, a reduction in pDCs could explain the lack of an interferon response in both APCs and granulocytes, as they are high producers of type 1 interferon. However, additional studies will need to be completed to assess these potential mechanisms. Though multiple works have demonstrated PIKfyve inhibitor efficacy *in vitro*, this is the first published work to demonstrate that PIKfyve inhibitors are not protective in a mouse model of COVID-19 and led to increased disease. These animal model data will hopefully be informative for any future efficacy testing of this family of compounds as a disease treatment, including identifying additional pathways for antiviral targeting. ### **Material and Methods** ### Virus and cells All work with SARS-CoV-2 was performed in an A/BSL3 laboratory and approved by our Institutional Biosafety Committee (IBC# IBC-00005484) and Institutional Animal Care and Use Committee (IACUC# 1120004). Vero E6 cells (ATCC CRL 1586) were cultured in DMEM medium (Quality Biological) supplemented with 10% (vol/vol) heat-inactivated FBS (Sigma), 1% (vol/vol) penicillin–streptomycin (Gemini Bio-Products) and 1% (vol/vol) 1-glutamine (2 mM final concentration; Gibco) (Vero medium). The cells were maintained at 37 °C (5% CO2). SARS-CoV-2 expressing GFP and the mouse-adapted SARS-CoV-2 (MA-10) was generously provided by Dr. Ralph Baric [28, 29]. SARS-CoV-2 B.1.351 isolate was generously provided by Dr. Andy Pekosz. The original strain of SARS-CoV-2 was provided by the CDC following isolation from a patient in Washington State (WA-1; BEI number NR-52281). Stocks were prepared by infection of Vero E6 cells for two days when a cytopathic effect was starting to become visible. The media were collected and clarified by centrifugation before being aliquoted for storage at -80 °C. The titer of the stock was determined by plaque assay using Vero E6 cells (below). ### SARS-CoV-2 titer determination by plaque assay Plaque assays were performed as described previously [30]. Briefly, 12-well plates were seeded with 2 x 10⁵ VeroE6 cells/well one day prior to processing. On the day of processing, media was removed from the 12-well plates and 200μL of dilutions of lung homogenates or virus stock in DMEM were added to each well. Plates were incubated at 37 °C (5% CO₂) for 1 hour with rocking every 15 minutes. Following incubation, 2mL of plaque assay media, DMEM containing 0.1% agarose (UltraPureTM) and 2% FBS (Gibco), was added to each well and incubated for 3 days at 37 °C (5% CO₂). Following incubation, plates were fixed with 4% paraformaldehyde, stained with 0.25% crystal violet (w/v), plaques counted, and titers calculated as plaque forming units (PFU). ### SARS-CoV-2 titer determination by RT-qPCR RT-qPCR was processed for time of addition analysis (cellular RNA) and for mouse lung homogenates as described previously [30]. RNA was extracted per the manufacturer's instructions using the Direct-zol RNA Miniprep Kit (Zymo Research). RNA was converted into cDNA (Thermo RevertAid Reverse Transcriptase) and used as template for qPCR (Qiagen RT2 SYBR green qPCR Mastermix). The primers used were against the N gene (5'-TAATCAGACAAGGAACTGATTA-3' (Forward) and 5'-CGAAGGTGTGACTTCCATG-3' (Reverse)) on an Applied Biosystems QuantStudio 5 thermocycler. ### In vitro compound efficacy testing Efficacy testing was processed as described previously [31]. Briefly, infection and drug testing using GFP-expressing SARS-CoV-2 were performed in Vero E6 cells. The cells were plated in clear-bottom black 96-well plates one day before infection. The cells were pretreated with drug at a range of concentrations for 2 h at 37 °C (5% CO2) before infection with SARS-CoV-2 (GFP) at MOI = 0.1. The plates were then incubated at 37 °C (5% CO2) for 48 h, followed by fixation with 4% paraformaldehyde, nuclear staining with Hoechst 33342 (Invitrogen) and data acquisition on a Celigo five-channel imaging cytometer (Nexcelom Bioscience). The percentage of infected cells was determined for each well based on GFP expression by manual gating using the Celigo software. In addition to plates that were infected, parallel plates were left uninfected to monitor the cytotoxicity of the drug alone. The plates were incubated at 37 °C (5% CO2) for 48 h before performing CellTiter-Glo (CTG) assays as per the manufacturer's instructions (Promega). Luminescence was read on a BioTek Synergy HTX plate reader using the Gen5 software (v7.07; BioTek Instruments Inc.) To measure the impact of selected drugs on HCoV-OC43 infection, 96-well plates seeded with Human Umbilical Vein Endothelial Cells (HUVEC) are infected with HCoV-OC43 and treated with the drugs. Uninfected or vehicle treated cells (0.1% DMSO) are included as controls. HUVEC plates are predosed with drugs overnight at 34°C at indicated concentrations (100µl/well). The following day, HCoV-OC43 is added to the wells (100µl/well) at an MOI of 0.2 and incubated for 3 hours at 34°C. After incubation, the medium containing virus and drugs is aspirated, the wells are washed with PBS +/+, new media is added with fresh drugs (100µl/well), and the plates are incubated for 72 hours at 34°C. The supernatant is collected and stored for cytokine analysis and the plates are fixed with 4% Paraformaldehyde for Hoechst and/or anti-viral staining. Fixed HUVECs are permeabilized with 100µl/well of 0.1% Triton X, 1% FBS in PBS+/+ for 10 minutes at room temperature (RT), washed once with PBS, incubated in 100ul/well of 1:50 human FcR Blocking Reagent (Miltenyi) in staining buffer (1% FBS in PBS+/+) for 30 minutes at RT, and washed again with PBS. Next, they are incubated with 100µl/well of 1:400 Anti-OC43 coronavirus primary antibody (EMD Millipore MAB9013) in staining buffer for 30 minutes at RT, washed five times with PBS, and then incubated with 100µl/well of 1:500 donkey anti-mouse HRP secondary antibody (Jackson ImmunoResearch 715-036-151) and 1:2000 Hoechst 33342 (Life Technologies H3570) in staining buffer for 1 hour at RT. After five PBS washes, Hoechst fluorescence is read at 355nm excitation and 450nm emission using a Synergy H1 Spectrophotometer. Subsequently, viral load is measured using the ImmPACT DAB Peroxidase (HRP) Substrate kit (Vector Labs) according to the manufacturer's instructions, and DAB absorbance was read at 465nm. 276 277 278 279 280 281 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 ### Compound time of addition studies Time of addition analysis was performed in VeroE6 and in A549/hACE2 cells for all PIKfyve inhibitors available to us. Drug treatment was initiated either 2-hours pre-infection (-2h), at the time of infection (0h), or 2- or 6-hours post-infection (+2h and +6h, respectively) with SARS-CoV-2 (WA-1, MOI= 0.5), with virus added at 0h and removed at the 2h timepoint. Supernatants and cellular RNA in TRIzol (Ambion) were collected at 24-hours post-infection. Supernatant was titered by plaque assay and cellular RNA in TRIzol was titered by RT-qPCR. 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 282 283 ### Compound efficacy testing in a mouse model of COVID-19 Animal model testing was performed as described previously [23, 32] and approved by the University of Maryland, Baltimore Institutional Animal Care and Use Committee (IACUC# 1120004). Briefly, 8-10 week old BALB/c laboratory mice were anaesthetized with a mix of xylazine and ketamine diluted in phosphate buffered saline prior to intranasal inoculation with either 1 x 10⁵ PFU of SARS-CoV-2 B.1.351 or 1 x 10³ PFU of SARS-CoV-2 MA-10. Apilimod (50 mg/kg, Selleck Chemicals), WX8 (30mg/kg, Specs, ChemDiv), and NDF (50mg/kg, Specs, ChemDiv) treatments were administered once daily by intraperitoneal injection started either 1 day prior to infection (B.1.351) or 1 day following infection (MA-10). EIDD-2801 (150 mg/kg, WuXi AppTec) was dosed orally, twice daily, starting one day prior to infection was used as a positive control for all experiments, as it has been shown to be efficacious in animal models previously [23, 24]. All compounds were formulated in corn oil (Sigma) with no more than 10% DMSO (Sigma). Weights were collected daily following infection and 5 mice sacrificed on 2 dpi and 4 dpi for each treatment group. Lungs were harvested and sectioned for the following: (1) fixed in 4% paraformaldehyde for histopathological analysis; (2) homogenized in TRIzol for RT-qPCR analysis; (3) homogenized in PBS for plaque assay processing; and (4) processed for singlecell sequencing (1 day prior to infection (B.1.351) experiment only, described below). Homogenization occurred using 1.0 mm glass beads (Sigma Aldrich) and a Beadruptor (Omni International Inc.). 302 303 304 305 306 307 ### Histopathology Histopathology was processed as described previously [23, 32]. Lung sections were fixed in 4% paraformaldehyde in phosphate-buffered saline for a minimum of 48 h, after which they were sent to the Histology Core at the University of Maryland, Baltimore, for paraffin embedding and sectioning. Five-micrometer sections were prepared and used for hematoxylin and eosin (H&E) staining by the Histology Core Services. Sections were imaged at 10x magnification and assembled into figures using Adobe Photoshop and Illustrator software. ### Cytokine analysis in human umbilical vein endothelial cells Cytokine analysis was conducted in multiplexed MSD plates using manufacturer provided calibrators and instructions (Mesoscale Discovery). ### Single-cell sequencing of Mouse Lungs Mouse lung samples were collected from 2 mice per group on 4 dpi during the pre-infection-dosing, B.1.351 infection experiment. Lung samples were dissociated into a single cell suspension using the gentleMACS Dissociator as described previously [33]. Single cell suspensions were then processed using a 10X Chromium Controller to isolate single cells and cDNA/library preparation was completed using the Chromium Single Cell 5` GEM preparation and i7 Multiplex Kit, according to the manufacturer's instructions, followed by sequencing on a NextSeq Sequencer (Illumina). scRNAseq data were processed and aggregated by the CellRanger pipeline (10X Genomics; software version 6.1.2) using the five-prime chemistry mode [34]. The 2020-A Mus musculus reference was used for transcript mapping (genome: GRCm38; annotation version: Gencode M23). After k-means clustering (k=9), cell types were predicted using scmap (version: 1.14.0) [35] and confirmed by inspecting differential expression patterns in the Loupe Browser (10X Genomics; software version 6.0.0) in R version 4.1.1 [36]. Cells from the RBC cluster were removed from cluster-level analysis as differences in the number of RBCs are likely due to incomplete perfusion. Cluster-level differential expression analysis was performed using DEseq2 (version: 1.32.0), after an additional filtering step to remove RBCs --cells with detectable hemoglobin Hbb-a2 transcript (ENSMUSG00000069917) with five or more reads were removed. Pathway analysis was performed using Ingenuity Pathway Analysis (Qiagen Inc.) [25]. The raw reads have been deposited in the NCBI Sequence Read Archive (accession number pending). 334 335 **Statistical Analysis** 336 All statistics were performed using GraphPad PRISM (GraphPad Software, La Jolla, CA). 337 338 Acknowledgements 339 The authors would like to thank the University of Maryland, Baltimore Sequencing Core at the Institute 340 for Genome Sciences for the collection of single cell sequencing data. The authors would also like to 341 thank the Histology Core at the University of Maryland, Baltimore for histology processing. This work was funded in part by DARPA under Cooperative Agreement W911NF-16-C-0050 (J.L., R.J., G.G., 342 343 L.J.T., L.B., M.E.M., R.H., M.R., B.F., M.S., P.P., V.H., K.E.C., S.W., D.E.I., M.B.F.) and by the 344 National Institute of Child Health and Human Development, Intramural Research Grant HD000506 345 (A.R.C. and M.L.D.). 346 347 **Contributions** 348 J.L., A.R.C., D.I., M.L.D. and M.B.F. contributed to conceptualization of experiments. J.L., A.R.C., V.H., 349 K.E.C., D.I., M.L.D. and M.B.F. contributed to the generation of data and analysis and interpretation of 350 the results. J.L., R.J., G.G., L.B., M.E.M., R.H., M.R., B.F., M.S., P.P. and S.W. performed the 351 experiments. M.L.D., K.E.C., D.I. and M.B.F. coordinated the projects. J.L. and M.B.F. contributed to 352 drafting and making critical revisions with the help of all authors listed on this manuscript. 353 354 **Competing Interests Statement** 355 This work led to the submission of a patent application titled "Therapeutics Against Pathogenic 356 Coronaviruses", PCT Patent Application: PCT/US2021/060122 filed November 19, 2021 (A.R.C., M.L.D. 357 and M.B.F.). 358 ### 359 References - Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, - 361 *China.* Lancet, 2020. **395**(10223): p. 497-506. - 2. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. - 363 Nature, 2020. **579**(7798): p. 270-273. - 364 3. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J - 365 Med, 2020. **382**(8): p. 727-733. - 366 4. Dong, E., H. Du, and L. Gardner, An interactive web-based dashboard to track COVID-19 in real - 367 *time*. Lancet Infect Dis, 2020. - 5. Dong, E., H. Du, and L. Gardner. COVID-19 Dashboard. [Dashboard] 2020 [cited 2020 21] - 369 April]; Available from: https://coronavirus.jhu.edu/map.html. - 370 6. FDA. FDA Approves First Treatment for COVID-19. 2020 [cited 2022 March 7]; Available - from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid- - 372 <u>19</u>. - 373 7. FDA. Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral Treatment of - 374 *COVID-19 in Certain Adults*. 2021 [cited 2022 March 7]; Available from: - 375 https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda- - authorizes-additional-oral-antiviral-treatment-covid-19-certain. - Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. - 378 Cell, 2020. **181**(2): p. 281-292.e6. - 379 9. Lan, J., et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 - 380 receptor. Nature, 2020. **581**(7807): p. 215-220. - 381 10. Gierer, S., et al., The spike protein of the emerging betacoronavirus EMC uses a novel - 382 coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing - 383 antibodies. J Virol, 2013. **87**(10): p. 5502-11. - 384 11. Matsuyama, S., et al., Efficient activation of the severe acute respiratory syndrome coronavirus - 385 spike protein by the transmembrane protease TMPRSS2. J Virol, 2010. **84**(24): p. 12658-64. - 386 12. Snijder, E.J., et al., A unifying structural and functional model of the coronavirus replication - organelle: Tracking down RNA synthesis. PLoS Biol, 2020. **18**(6): p. e3000715. - 388 13. V'Kovski, P., et al., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev - 389 Microbiol, 2020: p. 1-16. - 390 14. Gayle, S., et al., *Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for* - 391 *treatment of B-cell non-Hodgkin lymphoma*. Blood, 2017. **129**(13): p. 1768-1778. - 392 15. Hulseberg, C.E., et al., Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and - 393 Ebola Viruses. J Virol, 2019. 93(8). - 394 16. Krausz, S., et al., Brief report: a phase IIa, randomized, double-blind, placebo-controlled trial of - apilimod mesylate, an interleukin-12/interleukin-23 inhibitor, in patients with rheumatoid - 396 *arthritis*. Arthritis Rheum, 2012. **64**(6): p. 1750-5. - 397 17. Nelson, E.A., et al., *The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks* - 398 *filoviral entry and infection.* PLoS Negl Trop Dis, 2017. **11**(4): p. e0005540. - 399 18. Sands, B.E., et al., Randomized, double-blind, placebo-controlled trial of the oral interleukin- - 400 12/23 inhibitor apilimod mesylate for treatment of active Crohn's disease. Inflamm Bowel Dis, - 401 2010. **16**(7): p. 1209-18. - 402 19. Sharma, G., et al., A family of PIKFYVE inhibitors with therapeutic potential against autophagy- - dependent cancer cells disrupt multiple events in lysosome homeostasis. Autophagy, 2019. - 404 **15**(10): p. 1694-1718. - 405 20. Hasegawa, J., B.S. Strunk, and L.S. Weisman, PI5P and PI(3,5)P(2): Minor, but Essential - 406 *Phosphoinositides.* Cell structure and function, 2017. **42**(1): p. 49-60. - 407 21. Riva, L., et al., Discovery of SARS-CoV-2 antiviral drugs through large-scale compound - 408 *repurposing*. Nature, 2020. **586**(7827): p. 113-119. - 409 22. Kang, Y.L., et al., Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS- - 410 *CoV-2*. Proc Natl Acad Sci U S A, 2020. **117**(34): p. 20803-20813. - 411 23. Schultz, D.C., et al., Pyrimidine inhibitors synergize with nucleoside analogues to block SARS- - 412 *CoV-2*. Nature, 2022. - Sheahan, T.P., et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in - human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med, 2020. - **12**(541). - 416 25. Krämer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, - 417 2014. **30**(4): p. 523-30. - 418 26. Mehta, P., et al., *COVID-19: consider cytokine storm syndromes and immunosuppression.* - 419 Lancet, 2020. **395**(10229): p. 1033-1034. - 420 27. Venet, F., et al., Plasmacytoid dendritic cells control lung inflammation and monocyte - 421 recruitment in indirect acute lung injury in mice. Am J Pathol, 2010. **176**(2): p. 764-73. - 422 28. Leist, S.R., et al., A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in - 423 *Standard Laboratory Mice.* Cell, 2020. **183**(4): p. 1070-1085.e12. - 424 29. Hou, Y.J., et al., SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the - 425 Respiratory Tract. Cell, 2020. **182**(2): p. 429-446.e14. - 426 30. Coleman, C.M. and M.B. Frieman, Growth and Quantification of MERS-CoV Infection. Curr - 427 Protoc Microbiol, 2015. **37**(1): p. 15e.2.1-9. - 428 31. Si, L., et al., A human-airway-on-a-chip for the rapid identification of candidate antiviral - 429 therapeutics and prophylactics. Nat Biomed Eng. 2021. - 430 32. Logue, J., et al., *Immunogenicity and In vivo protection of a variant nanoparticle vaccine that* - 431 confers broad protection against emerging SARS-CoV-2 variants. bioRxiv, 2021: p. - 432 2021.06.08.447631. - 433 33. Jungblut, M., et al., Standardized preparation of single-cell suspensions from mouse lung tissue - 434 using the gentleMACS Dissociator. J Vis Exp, 2009(29). 435 34. Zheng, G.X., et al., Massively parallel digital transcriptional profiling of single cells. Nat 436 Commun, 2017. 8: p. 14049. 437 35. Kiselev, V.Y., A. Yiu, and M. Hemberg, scmap: projection of single-cell RNA-seq data across 438 data sets. Nat Methods, 2018. 15(5): p. 359-362. 439 36. R Core Team. R: A Language and Environment for Statistical Computing. 2021; Available from: 440 https://www.R-project.org/. 441 442 **Table 1** *in vitro* efficacy data for PIKfyve inhibitors against SARS-CoV-2 in VeroE6 and A549/hACE2 cells. | | VeroE6 Cells | | | A549/hACE2 | | | |----------|--------------|-----------|---------|------------|-----------|----------| | Compound | IC50 (nM) | CC50 (nM) | SI | IC50 (nM) | CC50 (nM) | SI | | Apilimod | 10.05 | >5,000 | >497.51 | 3.23 | >5,000 | >1547.99 | | WX8 | 110.50 | >5000 | >45.25 | 22.62 | >5,000 | >221.04 | | NDF | 639.00 | >5,000 | >7.82 | 9.39 | >5,000 | >532.48 | | WWL | 2,110 | >5,000 | >2.37 | 171.90 | >5,000 | >29.09 | | XB6 | 1,205 | >5,000 | >4.15 | 191.00 | >5,000 | >26.18 | Abbreviations: "IC50", half-maximal inhibitory concentration; "CC50", half-maximal cytotoxic concentration; "SI", selectivity index ### **Figure Legends** ### Fig. 1: Time of addition analysis for PIKfyve inhibitor treatment in vitro. Time of addition analysis was performed by administering treatment either 2 hours pre-infection, at the time of infection, or 2- or 6- hours post-infection with SARS-CoV-2 in (**a-e**) VeroE6 cells or (**f-j**) A549/hACE2 cells. Supernatant titers at 24 hours post infection are shown for (**a,f**) Apilimod, (**b,g**) WX8, (**c,h**) NDF, (**d,i**) XB6, and (**e,j**) WWL as compared to independent, no treatment controls. Ordinary one-way ANOVA analysis was used to compare differences in supernatant viral titer between treated cells and the no treatment control (red); *p \leq 0.1 **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001. Abbreviations: "NT", no treatment; "LOD": limit of detection. Fig. 2: Pre-exposure prophylactic efficacy of PIKfyve inhibitor treatment against SARS-CoV-2 ### infection in mice. (a) Groups of mice were treated intraperitoneally with PIKfyve inhibitors WX8 or NDF once daily beginning 1 day pre-intranasal-challenge with 1 x 10⁵ plaque forming units SARS-CoV-2 (B.1.351). EIDD-2801 dosed twice a day was used as a positive treatment control and uninfected treatment controls were included to assess cytotoxicity. Image created using BioRender. (b) Weight changes were determined for 4 days post-challenge, plotted as the group mean with error bars indicating the ±SD. (c) Infectious viral loads from lung homogenates at 2 (black) or 4 (gray) days post SARS-CoV-2 challenge. (d) Lungs were collected at 2- or 4-days post-challenge and stained with hematoxylin and eosin to assess bronchiolar and alveolar damage and immune cell infiltration. Mixed-effects analysis was used to compare differences in weight change or viral loads from lung homogenates between infection treatment groups and the vehicle treated control group; ** $p \le 0.01$, **** $p \le 0.0001$. Abbreviations: "dpi", days post-infection; "PO", oral dosing; "IP", interperitoneal; "IN", intranasal. Fig. 3: Post-exposure treatment efficacy of PIKfyve inhibitor treatment against SARS-CoV-2 infection in mice. (a) Groups of mice were treated intraperitoneally with PIKfyve inhibitors Apilimod, WX8, or NDF once daily beginning 1 day post-intranasal-challenge with 1 x 10³ plaque forming units SARS-CoV-2 (MA-10). EIDD-2801 dosed twice a day was used as a positive treatment control and uninfected treatment controls were included to assess cytotoxicity. Image created using Biorender. (b) Weight changes were determined for 4 days post-challenge, plotted as the group mean with error bars indicating the ±SD. (c) Infectious viral loads from lung homogenates at 2- (black) or 4- (gray) days post SARS-CoV-2 challenge. (d) Survival curves for treatment groups. (e) Lungs were collected at 2- or 4-days post-challenge and stained with hematoxylin and eosin to assess bronchiolar and alveolar damage and immune cell infiltration. Mixed-effects analysis was used to compare differences in weight change or viral loads from lung homogenates between infection treatment groups and the vehicle treated control group; *p \leq 0.1, *** $p \le 0.001$, **** $p \le 0.0001$. Abbreviations: "dpi", days post-infection; "PO", oral dosing; "IP", interperitoneal; "IN", intranasal. Fig. 4: Single cell sequencing analysis for PIKfyve inhibitor treated animals against SARS-CoV-2 infection in mice. (a,b) t-SNE plot of scRNAseq data for (a) all samples or (b) faceted by condition. Cells are colored by cluster (k-means, n=9), and clusters are labelled by cell type. (c) Bar plot showing the fraction of cells 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 within the APC (top) and granulocyte (bottom) clusters. (d-e) Volcano plot showing differentially expressed genes in SARS-CoV-2-infected cells treated with WX8 versus untreated cells in the (d) granulocyte and (e) APC clusters. ISGs and genes in the interferon signaling pathway are colored blue (and labelled where space allows). TLRs in (e) are colored red. Abbreviations: "APC", antigen presenting cells; "Epith.", epithelial cells; Fig. S1: Treatment efficacy of PIKfyve inhibitors against hCoV-OC43 infection in vitro. HUVECs were treated with PIKfyve inhibitors followed by infection with hCoV-OC43. (a) Efficacy of PIKfyve inhibitors against hCoV-OC43 infection-induced cell death. (b-f) Cytokine measurements from PIKfyve inhibitor treated cells infected with hCoV-OC43 for: (b) interferon beta; (c) interleukin 1 alpha, (d) CXCL10; and (e) interleukin 6. Ordinary one-way ANOVA was used to compare differences in cytokine production for each treatment group and uninfected control as compared to the untreated virus control; * $p \le 0.1$, ** $p \le 0.01$, **** $p \le 0.0001$. Fig. S2: SARS-CoV-2 sub-genomic RT-qPCR analysis of time of addition and mouse infection studies. RT-qPCR for sub-genomic SARS-CoV-2 RNA (replicative intermediate) was performed for (a) time of addition analysis in PIKfyve inhibitor treated VeroE6 or A549/hACE2 cells infected with SARS-CoV-2 or (b-c) to assess viral loads from lung homogenates at 2 (black) or 4 (gray) days post SARS-CoV-2 challenge for (b) pre-infection dosing initiation or (c) post-infection prophylactic dosing initiation. Ordinary one-way ANOVA was used to compare differences in sub-genomic RNA production for each treatment timepoint as compared to the NT control; * $p \le 0.1$, ** $p \le 0.01$, **** $p \le 0.0001$. Abbreviations: "NT", no treatment; "sgRNA", subgenomic RNA. 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 # FIGURE 1 ### FIGURE 2 ### FIGURE 3 # FIGURE S1 # FIGURE S2