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Potential impact of Climate Change on electricity Demand in Niger 1 

 2 

Abstract  3 

 4 
The present study examines the potential impact of climate change on daily electricity 5 

demand (DED) and climate variables in Niger at specific Global Warming Levels 6 

(GWL1.5, GWL2.0, GWL2.5, and GWL3.0). The principal component analysis (PCA) 7 

and the Multiple Linear Regression (MLR) model was utilized to build the electricity 8 

demand model. Furthermore, fourteen (14) regional climate models from the 9 

Coordinated Regional Climate Downscaling Experiment (CORDEX) were used for the 10 

study. The ability of the model ensemble-mean in reproducing the annual cycle of the 11 

climate variables was evaluated. The impact of climate change at specific GWLs on 12 

electricity demand and each climate variable is quantified. The MLR predicted the 13 

demand with a coefficient of determination R2 equals to 0.808 and a root mean square 14 

error (RMSE) equals to 149.87. The residuals analysis indicated that the model 15 

complies with the regressions assumptions. The models projected an increase of 16 

electricity demand at all the GWLs. More than 75% of the models agree on the 17 

noticeable change in electricity demand. The results of the study showed how climate 18 

services could be used to quantify the impacts of climate change on electricity demand. 19 

This has application on providing useful information for policymakers regarding the 20 

potential impacts of climate change in the energy sector 21 

 22 

Keywords: regional climate models; model ensemble mean; climate variables; global 23 

warming levels; daily electricity demand 24 

 25 

1. Introduction 26 

 27 
In most African countries, the energy sector faces a number of challenges including 28 

insecure energy supply, continuous growth of electricity demand and recurrent 29 

blackouts. For example, in Niger, the electricity consumption has increased by more 30 

than 150% since 2001 with the largest increase in the residential and commercial 31 

sectors.  As the cities are becoming more populated and the extreme hot days more 32 

frequent, the demand will continue to rise. Yet, the electricity supply system has not 33 

been able to adequately keep up with the peaks demand during the hot periods when 34 

the demand exceeds the available generating capacity, resulting to blackouts in several 35 

localities. For example, during the hot periods in 2016, the power company in Niger 36 
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(NIGELEC) was not able to meet half of the demand resulting to blackout in many 37 

areas. This problem will be compounded the incoming years since the government of 38 

Niger has taken a number of measures to achieve 100% of electricity access in the urban 39 

by 2030. In addition to the rise in electricity demand, significant increase in mean and 40 

extreme temperatures is also projected to result from climate change. Indeed, an 41 

increase in mean and extreme temperatures is projected to result from climate change 42 

over West Africa (IPCC, 2013; Klutse et al. 2018, Nikulin et al., 2018). Previous studies 43 

have shown the relation between electricity demand and climate variables and 44 

demonstrated that demand might get altered with changing climate (Aldl & Waris, 45 

2014; Kaufmann et al., 2013; Jovanović et al., 2015; Valor et al., 2001; Guan et al., 46 

2017; Pardo et al., 2002). Hence, for a better management of future electricity supply, 47 

there is a need to quantify the potential impacts of climate change on electricity 48 

demand. The present study intends to provide more information in this area. 49 

 50 

Many studies have addressed the impacts of climate change on electricity demand in 51 

several countries across the world, and show that the impacts differ from one climate 52 

zone to another, and from one city to the other. For instance, in cold climate, it is 53 

projected that climate change would decrease the energy demand since less energy will 54 

be required for heating the buildings during winter. In Finland, Jylhä et al. (2015) 55 

reported a decrease of 20-35% in total energy consumption by 2100 depending on the 56 

magnitude of climate change. Wan et al. (2012) shows that the reduction of heating 57 

demand may be up to 22.3% in Harbin, 23.6% Hong Kong, 26.6% in Beijing, and 58 

55.7% in Shanghai (55.7%). On the other hand, the energy demand is projected to 59 

increase in tropical countries where more electricity will be required for cooling the 60 

buildings. Shourav et al., (2018) revealed that climate change would increase the daily 61 

electricity and peak demand in Dhaka City by up to 5.9-15.6% and 5.1-16.7% 62 

respectively toward the end of this century under different climate change scenarios. 63 

Ahmed et al (2012) reported that an increase in temperature alone may lead to 1.36, 64 

2.72 and 6.34 % rise in per capita demand during summer season and 2.09, 4.5, and 65 

11.3% rise in per capita demand during the spring of 2030, 2050, and 2100 respectively. 66 

In Brazil, Invidiata et al., (2015) reported that climate change would induce an increase 67 

in the annual energy demand from 19-65% in 2020, 56-112% in 2050, and 112%-185% 68 

in 2080. While, it could be speculated that the electricity demand in Niger would also 69 

increase because of climate change, no such study has quantified the percentage of 70 
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increase in this West African country. Since the impacts of climate change may differ 71 

from one geographic location to another, it is worth to investigate the potential impact 72 

of climate change at specific location. Indeed, according to IPCC, the effects of climate 73 

change should be carried out at a location where the impacts are felt and the responses 74 

are implemented. Hence, given the heterogeneity of climate change, carrying out such 75 

study will provide reliable information to the policymakers and electricity planners to 76 

take anticipated measures as far as the energy sector is concerned. 77 

 78 

To project the impacts of future global warming, information on how future climate 79 

projection under different emissions scenarios is needed. This information is provided 80 

by means of the Global Climate models (GCMs) also known as General Circulation 81 

Models. However, the spatial resolutions of these GCMs are too coarse for impact 82 

assessments (100-300 km). Therefore, there is a need to downscale the outputs of these 83 

GCMs by using either the statistical or dynamical downscaling techniques. The 84 

statistically downscaling techniques by means of morphing approach have been widely 85 

used to assess the impacts of climate change on electricity consumptions in previous 86 

works (Wang, Chen and Ren, 2010; Shen, 2017; Wang, Liu and Brown, 2017; Cellura 87 

et al., 2018). While the morphing technique only reflects changes in the average 88 

weather conditions and not possible to see changes in extreme climate conditions for 89 

the morphed data, the extreme climate conditions are projected to increase as a result 90 

of climate change (IPCC, 2013). Hence, the morphing technique might underestimate 91 

the impact of climate change on energy consumption. This shortcoming makes the 92 

morphing technique less relevant for assessing the impact of climate change on 93 

electricity consumption. In contrast, the dynamical downscaling technique by means of 94 

Regional Climate Models has the ability to generate physically consistent datasets 95 

across different variables. The RCMs have the advantage to provide the state of the 96 

atmosphere at each time step as well as in long integrations over a century. This 97 

provides a better representation of future climate compared to morphed data. However, 98 

given a variety of RCMs, selecting a single RCM model with specific boundary 99 

conditions is not a trivial task.  The IPCC suggests that given the strengths and 100 

weaknesses of various models, no single models can be considered as the best. To assist 101 

developing countries that lack computer infrastructure have access from multi-RCM 102 

projections, The Coordinated Regional Climate Downscaling Experiment (CORDEX) 103 

has made their datasets available publicly, and several studies have already used the 104 
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CORDEX data to assess the impacts of global warming on various sectors over the 105 

continent (Abiodun et al., 2017; Kumi & Abiodun, 2018; Klutse et al., 2018, Nikulin 106 

et al., 2018; Maúre et al. 2018; Abiodun et al., 2018). Nevertheless, none of these 107 

studies have investigated the impact of climate change on energy demand over West 108 

Africa. The present study intends to fill in this gap. 109 

 110 

Hence, the present paper aims at investigating the potential impact of climate change 111 

on electricity demand in Niger at specific Global Warming Level (GWL1.5, GWL2.0, 112 

GWL2.5 and GWL3.0) using the multi-RCMs. In the study, we develop a multiple 113 

linear regression model (MLR) based on the historical relationship between the 114 

electricity demand and climate variables, analyze the multi-simulations datasets 115 

CORDEX RCMs; and project the impacts of climate change on electricity demand 116 

based on MLR model. Section 2 of the paper describes the data and methods used in 117 

the study, section 3 presents and discusses the results and section 4 concludes the paper. 118 

2. Data and methods 119 

2.1 Data 120 

2.1.1 Study area 121 

 122 
Geographically, Niger is located in West Africa, between 12 and 24°N latitude and 0 123 

to 16°E longitude with a total land area of 1,267,00km2 (Figure 1). Climatically, four 124 

distinct climate zones can be identified: the Soudano-Sahelian zone (about 1% of the 125 

total) with an annual rainfall ranging from 600 to 800mm, the Sahelian zone (about 126 

10% of the total land area) with an annual precipitation ranging from 350mm to 127 

600mm; the Sahelo-Saharan zone (12% of the total land area) with an annual rainfall 128 

ranging from 150mm to 350mm; and finally the Saharan zone, which occupies about 129 

77% of the total land area with an annual precipitation less that 150mm. The study 130 

focuses on Niamey, which is the capital and the largest city of Niger with a total land 131 

area of 256km2 and a population of about 1.5 million inhabitants. Niamey belongs to 132 

the Sahelian zone with average temperature ranging in summer (March-June) from 30 133 

to 35 and 20 to 27 in winter (December-February). It is most important city in Niger in 134 

terms of infrastructure, institutions, and industries, making this city more attractive to 135 

rural dwellers. Indeed, in 2015, the electricity consumption of Niamey is about 63% of 136 
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the total electricity consumed by whole country. Figure 1 presents the map of Africa 137 

showing the study are and the main cities. 138 

 139 

                       140 
 141 

Figure 1: Map of the Study area with main cities (Wikipedia). 142 

 143 

 144 

 145 

        2.1.2. Energy Sources and Status of Electricity Used in Niger 146 

 147 
The current energy situation in Niger is characterized by a dual energy system 148 

containing co-existing traditional and modernized energy systems and practices 149 

(IRENA,2013). As a matter of fact, 79% of the Total Primary Energy System (TPES) 150 

is from biomass, which meets 83% of the total household energy needs. The household 151 

sector is the main end user of energy consumption in Niger and represents 90% of the 152 

total energy consumption, followed by transport with 8% and industry which accounts 153 

for 2%. Moreover, the electricity access rate is one of the lowest in the world, with high 154 

disparities between urban and rural areas. Indeed, in 2018, the percentage of population 155 

having access to electricity was estimated to 20% with 67% in urban area and 10% in 156 

rural areas. As stated earlier, more than 63% of the total electricity is consumed by 157 

Niamey. Figure 2 shows the share of electricity consumption for the main cities in 158 

Niger. 159 
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 160 

Figure 2: Electricity Consumption Share of the Main cities Niger 161 

 162 

The electricity produced is mainly from fossil fuel sources mainly coal, oil and diesel 163 

which accounted for 99.4% of the total electricity production in 2015 while the 164 

electricity produced from renewable energy sources accounted for 0.75% which is 165 

mainly solar photovoltaic. For instance, in 2018 the total installed solar PV was 20 MW 166 

despite the high solar potential estimated to 5-7 kWh/m2/day with sunshine duration of 167 

about 7 to 10 hours.  168 

In addition to high solar energy potential, the country has also high hydropower 169 

potential estimated to 130MW on Kandadji site, 122.5MW at Gambou, and 26MW at 170 

Dyondonga.  Currently, there is no hydropower plant in Niger. 171 

The coal reserves are estimated to 15 million tons with energy content equals to 172 

3650kcal/kg in Agadez Region and 70 million of tons with an energy content of 173 

6000kcal/kg at Salkadamna in Tahoua region. The annual production of uranium is 174 

estimated to 3400 tons while the oil and gas reserves are also estimated respectively to 175 

700 million barrels and 14 billion m3                176 

2.1.3 Observed data 177 

 178 
The observed daily electricity demand, weather variables data for Niamey spanning 179 

from January 2005 to December 2017 are used in this study. The electricity data were 180 

obtained from the National Company of electricity of Niger (NIGELEC), which is 181 

indeed, the only company responsible for producing and generating the electricity over 182 

the country.   183 

The weather variables data are obtained from the automatic weather station in 184 

AGRHYMET and the Meteorological service of Niger (DMN). These data include the 185 
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air temperature, the maximum temperature, the minimum temperature, the relative 186 

humidity, the wind speed, and the solar radiation.  187 

The DED depicts seasonal variation and an increasing trend (Figure 2). The latter might 188 

be due to socio-economic development while the former is a result of weather 189 

fluctuations.  190 

The observed outliers which mostly occurred during the rainy season are due network 191 

failure due to strong winds. Indeed, the very low value of demand observed on 28th 192 

August 2005, 1st July 2008 are due to the collapse of pylons on Birnin Kebbi’s line 193 

which provides about 68% of electricity supply resulting to blackouts in several 194 

localities. On the other hand, the minimum values observed on November 2010 resulted 195 

from the revisions of the thermal plant PC4 in Niamey in order to increase its production 196 

capacity. 197 

 198 

 199 

 200 
Figure 3: Time series of daily electricity demand for Niamey (2005-2017). O1, O2, O3, 201 

and O4 are the outliers. 202 

 203 

Several studies have shown that the relationship between electricity and temperature is 204 

nonlinear and thereby used two branches in studying the relationship (Valor et al., 205 

2001; Ahmed et al., 2012; Yi-Ling et al., 2014; Shin and Do, 2016)). For convenience, 206 

can be introduced with concept of Degree Days (DD): The Cooling Degree Days 207 

(CDD) and the Heating Degree Days (HDD). While HDD provides an indication of the 208 

sensible heating requirements for a particular location, the CDD provides the same but 209 

for sensible cooling requirements (Giannakopoulos and Psiloglou, 2006). The 210 



 

8 

 

difference between the two branches is usually identified on electricity-temperature 211 

scatter plots using the base temperature, which is the temperature point where the 212 

electricity shows no sensitivity to temperature. However, unlike the studies of 213 

Giannakopoulos and Psiloglou (2006) and Valor et al., (2001), in this study, the 214 

relationship between the electricity demand and temperature is quite linear and presents 215 

its minimum value around 22⁰C (Figure 3). Hence, this value will be used to calculate 216 

the CDD. 217 

From Figure 3, the base temperature for this study is about 22°C; hence, this value is 218 

used to define the CDD and HDD in Equation (1) & (2): 219 

 220 𝐶𝐷𝐷 = 𝑚𝑎𝑥⁡(𝑇 − 22, 0)                                                                                            (1) 221 

 222 

 223 

 224 

Where CDD is the cooling degree-days, T the air temperature (°C), and 22 the 225 

temperature at which the electricity shows no sensitivity to air temperature (i.e. base 226 

temperature). 227 

 228 
Figure 3:  Scatter plot of detrended electricity demand and air temperature (red line 229 

indicated the best fit and blue line shows the base temperature)  230 

  231 

Another feature is the heat index (HI) reflecting an increased operation of air 232 

conditioning during hot and humid summer days. Indeed, the effect of relative humidity 233 

on electricity demand is supposed to be relevant in conjunction with warm and hot 234 

temperature only, because the perceived temperature can be higher in such 235 

meteorological conditions and thus the use of cooling appliances increases (Apadula et 236 

al., 2012).  Following Steadman, (1979), the HI formula can be defined as follow: 237 
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 238 𝐻𝐼 = ⁡⁡ 𝐶0 + 𝐶1 ∗ 𝑇⁡⁡⁡⁡⁡⁡ + ⁡⁡⁡𝐶2 ∗ 𝐻⁡⁡⁡⁡⁡ +⁡⁡⁡ 𝐶3 ∗ 𝑇𝐻⁡⁡⁡⁡ + ⁡⁡⁡𝐶4 ∗ 𝑇2 ⁡⁡⁡+ ⁡⁡⁡𝐶5 ∗ 𝐻2  239 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝐶6 ∗ 𝑇2𝐻⁡ + ⁡⁡𝐶7 ∗ 𝑇𝐻2 ⁡⁡+ ⁡⁡⁡⁡𝑇2𝐻2
                                                        (2) 240 

 241 
Where HI is the heat index (°C), T is the air temperature (°C); H is the relative humidity 242 

(%) and Ci, the constants. The HI has been applied only when the temperature is equal 243 

or exceeds 27 and simultaneously the relative humidity higher than 40%. Such 244 

meteorological conditions occur only in summer months (JJAS) in Niger where the 245 

mean temperature is greater than 27°C and the relative humidity relatively higher than 246 

40%. 247 

If the above conditions are not satisfied, the HI is set equal to the maximum 248 

temperature. 249 

 250 

Finally, in order to take into account, the thermal oscillation within a day, we introduce 251 

the diurnal temperature range, which is defined in Equation 4: 252 

 253 𝐷𝑇𝑅 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛                                                                                                    (3) 254 

 255 

The descriptive statistics of climate variables are summarized in the Table 1. 256 

 257 

 258 

Table 1: descriptive statistics of the climate variables used in this study 259 

 260 

 Tmean 

(°C) 

Tmax 

(°C) 

Tmin 

(°C) 

Humidity 

(%) 

Radiation 

(Watt/m2) 

Wind 

(m/s) 

DTR 

(°C) 

Mean 29.4 36.8 22.3 34.6 260 2.4 14.4 

Std. 3.8 3.9 4.7 22.2 46 1.3 4.4 

Max 18 45.2 32.2 89 560 10.2 25 

Min 18 24 9 4 0 0 2.8 

 261 

 262 

 263 

2.1.4 CORDEX data 264 

 265 
The simulated daily temperature, humidity, radiation, and wind from the CORDEX 266 

simulation dataset were analyzed for the study. 14 multi-model simulations datasets 267 

produced by four CORDEX Regional Climate Models (RCMs: RCA, CCLM, REMO 268 

and ALADIN) were used in this study. The RCM and GCMs downscaled are given in 269 

Table (2). To assess the impacts of a warming level on climate variables, we calculated 270 

the difference between the projected future values (for the warming level) and the 271 



 

10 

 

historical values (i.e. GWL minus historical).  For more information on the definition 272 

of GWL period, we refer the readers to (Nikulin et al., 2018). 273 

 274 

Table 2: names of GCMs and downscaling RCMs simulations used in this study  275 

 276 

RCMs GCMs Period of Global Warming Level 

1.5 2.0 2.5 3.0 

RCA CCCMA 1999-2028 2012-2041 2024-2053 2044-2053 

CNRM 2015-2046 2029-2058 2041-2070 2052-2081 

CSIRO 2018-2047 2031-2059 2040-2069 2050-2079 

HadGEM 2010-2039 2033-2062 2042-2071 2051-2080 

IPSL 2002-2031 2016-2045 2027-2056 2036-2065 

MIROC 2019-2048 2034-2063 2047-2076 2058-2087 

 MPI 

NCC 

2004-2033 

2019-2048 

2021-2050 

2034-2063 

2034-2063 

2047-2076 

2046-2075 

2059-2088 

CCLM CNRM 2015-2044 2029-2058 2041-2070 2052-2081 

HadGEM 2010-2039 2023-2052 2033-2062 2042-2071 

ICHEC 2005-2034 2021-2050 2034-2063 2047-2076 

MPI 2004-2033 2021-2050 2034-2063 2046-2075 

ALADIN CNRM 2015-2044 2029-2058 2041-2070 2052-2081 

RACMO ICHEC 2003-2032 2021-2050 2035-2064 2046-2075 

 277 

 278 

2.2 Methods 279 

 280 
We establish the historical relationship between electricity demand and climate 281 

variables using the Multiple Linear Regression (MLR) Model. Prior the model 282 

development, the trend (due to socio-economic development) and the seasonality (due 283 

to weekends, holidays effect) were removed following the procedure of Apadula et al. 284 

(2012). The general linear regression model is given in equation 5: 285 𝐷𝐸𝐷𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3𝐼𝑊 + 𝑦𝑡                                                                                (4) 286 
 287 

Where DEDt is the aggregated demand for electricity, t is the time variable 288 

(t=0,1,2,3…), IW is the dummy variable taking the value 1 if the observation of the 289 

demand corresponds to holidays (Weekends included) and 0 otherwise, and yt is the 290 
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electricity demand due to weather fluctuations. The DED has been detrended by 291 

removing the deterministic part (time variable due to socio-economic development and 292 

dummy variable due to holidays effect). 293 

 294 

In addition, we used the Principal Components Analysis (PCA) to find the key weather 295 

variables that are highly correlated with the working-days demand deviations (WDDD, 296 

demand after removal of trend and seasonality). Then, we develop the MLR using the 297 

PCA results (WDDD is used as response variable and the climates variables are used 298 

as independent variables). Moreover, we check the basics linear models’ assumptions 299 

using the residual plots (homogeneity of the variance, and histogram of residuals) to 300 

find out whether or not the model complies with the basic assumptions of linear models. 301 

These methods have been already used in previous study to check linear model 302 

assumptions (Aranda et al., 2012; Bianco et al., 2009). In addition, the coefficient of 303 

determination R2, the Root Mean Square Error, and the Mean Bias Error are used to 304 

assess the accuracy of the model. 305 

Furthermore, to evaluate the performance of the simulation datasets, in reproducing the 306 

climate of Niger, we compared the simulated climate data for the period 1971-2000 307 

(hereafter, reference period) with the Princeton Global Forecasting (PGF) data for the 308 

same period. However, the evaluation focuses on the variables needed for building the 309 

model. Furthermore, to assess the impact of climate change at various global warming 310 

levels (GWL1.5, GWL2.0, GWL2.5, and GWL3.0), we subtract the climate data in the 311 

reference period from that in GWL periods. The GWL period is defined as 30-year 312 

period in which the climatology of global mean temperature is higher than that of the 313 

pre-industrial baseline period (1861-1890) (Nikulin et al., 2018). As observed in Table 314 

(2), this period varies with GCMs simulations. 315 

3 Results and discussions 316 

3.1 Relationship between DED and climate variables 317 

 318 
Table (3) provides the loading of the principal Component Analysis using the PC1 and 319 

PC2. As stated earlier, the PCA is used in this study to group the key climate variables 320 

that are highly correlated with the electricity demand. From these results it is noticeable 321 

that the PC1 is highly correlated with the energy, Temp, Tmin, Tmax, Radiation, and 322 

HI. In other words, there is a process that couples an increase of the energy demand 323 
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with these climate variables. Therefore, the PCA result suggests that the CDD, Tmax, 324 

Tmin, and HI are highly correlated with the DED. 325 

 326 

 327 

Table 3: Loadings of PCA results. 328 

 329 

 PC1 PC2 

Energy 0.817 -0. 363 

CDD 0.970 -0.188 

Temp 0.971 -0.190 

Humidity  -0.851 

Radiation 0.594  0.109 

Tmax 0.928  0.324 

Tmin 0.787 -0.580 

HI 0.816  0.491 

Wind  0.161 -0.367 

DTR   0.954 

Proportion of 

variance  

 0.469  0.243 

Cumulative 

variance  

 0.469 0.713 

 330 

 331 

3.2 Evaluation of Multiple Linear Regression (MLR) models 332 
 333 

Multiple Linear Regression (MLR) model was developed based on de-trend electricity 334 

and climate variables that highly correlate with the DED to establish the functional 335 

relationship between the DED and climate variables. The regression coefficients and 336 

their corresponding p-values are given in Table (4) while the resulting regression model 337 

in equation 6.  338 

 339 𝑦 = −599.2 + 77.27𝐶𝐷𝐷 + 3. .09𝑅𝐻 − 12.07𝐻𝐼 + 13.14𝑇𝑚𝑎𝑥 − 0.33𝑅𝑎𝑑 −340 37.38𝑊𝑖𝑛𝑑                                                                                                                  (5) 341 

 342 

The performance of the model is then assessed through its ability to estimate historical 343 

values of observed electricity demand. Following the approach of (Braun et al., 2014), 344 

we splitted the datasets into two set: The first part (80% of the data) was used to train 345 

the model while the second part (20% of the data) was used to validate the model. 346 

Figure 4a presents the time series of observed and estimated electricity demand while 347 

the Figure 4b shows the scatter plots between the observed and estimated DED. The 348 

model achieves a good correlation coefficient (r=0.899), high coefficient of 349 

determination (R2=0.808) and relatively low mean square error 350 
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(RMSE=140.87MWh/day). This indicates that the model performs well in estimating 351 

the DED based on the meteorological variables only and without including impact non-352 

meteorological variable of the DED. Table (4) indicates that all the model parameters 353 

are significant.  354 

 355 

 356 

Figure 4: Times series of observed and estimated DED (upper panel) and scatter plot 357 

of observed and estimated DED (Lower panel). CORR is the correlation coefficient 358 

between observed and estimated DED 359 

 360 
Table 4: Regression coefficients and P values of the MLR results 361 

 362 

Variables Coefficients P values 

Intercept  -599.2 0.000 

CDD (ᵒC) 77.27 0.000 

HI (ᵒC) -12.08 0.000 

Humidity (%) 3.09 0.000 

Rad (watt/m2) -0.33 0.000 

Wind (m/s) -37.38 0.000 

Tmax (ᵒC) 13.14 0.000 
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Regression statistics 

R2 RMSE MAE 

0.808 140.87 107.57 

 363 

Furthermore, we check the assumptions of linearity to find out whether the model 364 

complies with the basic assumptions of linear regression model. The residual error 365 

from the regression model is the different of the observed electricity demand and the 366 

fitted values.  The residuals error should be normally distributed to comply with the 367 

basic assumptions of regression models (Bianco et al., 2009; Aranda et al., 2012). 368 

Residuals plot show that there is no specific pattern or relationship between the residual 369 

and the fitted values (Figure 5a) and the distribution follows approximately the normal 370 

distribution (Figure 5b). Consequently, we can conclude that the models comply with 371 

the basic assumptions of regression models. Therefore, the model can be used to project 372 

the impact of climate change on DED. 373 

 374 

 375 

 376 

 377 
Figure 5: Scatter plot of the residuals versus the fitted values (left panel) and the 378 

histogram of the residuals plot (right panel) 379 

 380 

3.3 Evaluation of CORDEX simulations 381 

 382 
Figure 6 shows that the RCMs reproduce well the annual cycle of daily energy demand 383 

and the climate variables (CDD, Tmax, Heat Index, radiation, and wind). In most cases 384 

the observed annual cycles lie within the RCMs ensemble spread except for CDD for 385 

which the RCMs models fail in reproducing the peak value observed in May and 386 

October and also for wind where the RCMs fail in reproducing the minimum values of 387 

wind speed observed April. Furthermore, both observed and simulated cycles show 388 

high values of DED, CDD, HI, and Tmax in April-June and October, and high values 389 

of wind in June-July, reflecting the seasonal movement of the Inter-tropical 390 
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Discontinuity (ITD) and December-February, reflecting the prevailing harmattan 391 

conditions. In both the observed and simulated curves, the minimum values of solar 392 

radiation occur in August while the maximum values occur in March-April.  393 

 394 

 395 

 396 
 397 
Figure 6: annual cycle of daily energy demand and the relevant climate variables used to 398 
build the Multiple Linear Regression model in Niger as depicted by observation and 399 
CORDEX RCMs ensemble 400 
 401 
Despite, the good performance of the RCMs ensemble to reasonably reproduce the 402 

annual cycle of the climate variables (Figure 6), the models struggle to reproduce the 403 

spatial distributions of some climate variables (Figure 7). For instance, the observation 404 

features a maximum CDD (>8°C) over the southwestern part of the country. The RCMs 405 

ensemble mean fails to adequately reproduce this pattern (r≈0.51); instead it shows a 406 

relatively uniform distribution of the number of CDD across the country (2-6°C). Thus, 407 

the bias in simulating the CDD is up to -3°C Similarly, the same could be also observed 408 

for the Tmax and HI where the observation features a maximum value of Tmax (≈40°C) 409 

and HI (≈28°C) over the Southwestern part of the country. But the RCMs have not been 410 

able to adequately reproduce these patterns (r=0.47 for HI and r=0.5 for Tmax). Hence, 411 

the bias in simulating the Tmax is up to -5 over the central part of the country while it 412 

is for HI +1°C over the Northern and -1°C over the southern part. Moreover, the RCMs 413 

ensemble mean completely fails in reproducing the spatial variability of the observed 414 

radiation and Wind (r≈0). While the observation features a maximum radiation over the 415 

northern part of up to 300W/m2, the RCMs ensemble mean shows a maximum value of 416 
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about 280W/m2 over a narrower area. The associated bias is up to -50W/ m2, suggesting 417 

that the models highly underestimate the solar radiation. Contrary, the models 418 

overestimate the wind speed with a bias up to 1.5m/s.  While these biases might result 419 

from the deficiency of RCMs, they may also come from the deficiency of the PGF data 420 

used for the validation. For instance, PGF data is a hybrid observation-reanalysis 421 

dataset created by combining global observation datasets and reanalysis datasets 422 

(NCEP-NCAR) (Sheffield et al. 2006). Hence because of the very low density of the 423 

observational network over the country, the PGF data might not be able to capture the 424 

spatial variability of the climate variables. Notwithstanding, it may capture the day-to-425 

day variation of most of the climate variables used in this study 426 

 427 

 428 
 429 
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Figure 7: spatial distribution of climate variables over Niger as depicted by PGFD and 430 
CORDEX RCMs ensemble mean in reference period (1971-2000). The climate variables are 431 
CDD (°C), HI (°C), Tmax (°C), Humidity (%), Radiation (Watt/m2) and Wind (m/s). r denotes 432 
the spatial correlation and asterisk (*) denotes significant at 95% confidence level. 433 
 434 

 435 

3.4 Projected changes 436 

 437 
The CORDEX ensemble models project an increase in daily electricity over the entire 438 

country for all the GWLs (Figure 8a-d). However, the magnitude of the increase varies 439 

across the country and grows with increasing of GWLs. For instance at GWL1.5, the 440 

changes are rather homogenous (between 4 and 8% increase in DED) over the entire 441 

country. In addition, the changes are robust (i.e. statistically significant at 99% 442 

confidence level). However, for GWL2.0, DED increase varies across the country, from 443 

4 to 8% in the central part of the country to 8-12% in the remaining part of the country. 444 

Compared with changes at GWL1.5, an additional increase (up to 3%) in DED is 445 

observed over most part of the country. Conversely, a further increase in warming level 446 

beyond 2° will enhance the DED over the entire country, such that, at GWL3.0, most 447 

part of the country becomes hotspots of increase in DED due to climate change. This 448 

suggests that failing to keep the global warming level below or at 2° (level set by the 449 

Paris agreement) may have serious consequences on DED over the entire country. 450 

Indeed, an additional increase (up to 9.5% compared to GWL1.5) could be over most 451 

part of the country, with the highest increase around Niamey. The increase in DED over 452 

the entire country is robust (i.e. statistically significant at 99% confidence level) at all 453 

the GWLs. These findings are consistent with the notion climate change will increase 454 

the electricity consumption in tropical countries (Santamouris et al., 2015; Scapin et 455 

al., 2015; Huang and Hwang, 2016; Ang et al., 2017 among others). 456 

Moreover, Figure 8 shows that the projected changes in DED are consistent with the 457 

changes in CDD, Tmax, HI and humidity variables. For instance the increase in DED 458 

may be attributed to the increase of CDD, Tmax, HI and humidity. This is expected 459 

since high CDD will require more DED for cooling purposes. In fact, Figure 5e-h 460 

indicates that the spatial correlation between the changes in DED and CDD is very high 461 

(>0.9) and significant (99% confidence level) at all the GWLs. Moreover, the increase 462 

in CDD is in agreement with the result of (Klutse et al., 2018) who found an increase 463 

in temperature over the region as a result of climate change. In the same way, DED 464 

increase is also followed by the increase in HI and Tmax. Indeed, high Tmax would 465 



 

18 

 

result to increase the electricity demand peaks, hence contributing to increase the 466 

overall DED. So the Tmax is an important factor that influences the DED. For instance 467 

the spatial correlation between the changes in DED and CDD is high (>0.9) and 468 

significant (99% confidence level) at all the GWLs. Finally, the changes in DED are 469 

also in agreement with the changes of humidity since our previous work has established 470 

that the humidity and DED are negatively correlated (Bonkaney et al., 2019). So a 471 

decrease in relative humidity will lead to an increase in DED, which is observed in 472 

Figure 8a-d. Nonetheless, for both of radiation and wind, the projected changes are not 473 

consistent with changes observed in DED. For instance, one might have expected a 474 

decrease in radiation result in a decrease in DED, because of the positive relationship 475 

between DED and radiation (Table 3). But the reverse is the case. This might be due to 476 

fact that the impact of the other climate variables (CDD, Tmax, HI, and humidity) 477 

overwhelms the impact of radiation on DED. Indeed, the spatial correlation between 478 

DED and the radiation is weak (r<0.5) and not significant. Similarly, an increase in 479 

wind speed could also have resulted to a decrease of DED because of the negative 480 

relationship between DED and wind (Table 3), but this is not the case. This can also be 481 

explained by the fact the wind has weak influence on electricity demand. The spatial 482 

correlation between wind and DED is weak (r<0.3) and not statistically significant. 483 

  484 

 485 

 486 

   487 
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 488 
 489 
Figure 8: Projected changes in DED (panel: a-d), CDD (e-h), humidity (i-l), HI (m-p), DTR (q-490 
t), Radiation (u-x), and wind (y-ab) at different global warming level (GWL1.5, GWL2.0, 491 
GWL2.5, and GWL3.0). The dots indicate where at least 85% of the simulations agree on the 492 
sign of the changes and the changes are statistically significant. 493 

 494 
However, it is worth studying the impact of global warming on DED for individual 495 

months are considered. Figure 9 shows that the impact of climate change differs from 496 

one month to another. Positive values indicate an increase while negative values depict 497 

a decrease. Some variables such as DED, CDD, HI would have a net increase for all 498 

the months at all the GWLs. The highest increase in DED and CDD are observed during 499 

the hot period (March-June and October-November) where the lowest are in cold period 500 

(December-February and august). Hence, the impacts of global warming may be more 501 
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severe in hot periods than the cold period.  However, for the HI, the highest increase is 502 

rather observed in April-June whereas the lowest increase is in December-February. 503 

Conversely, for the variables such as humidity, radiation and wind, both positive and 504 

negative values can be observed depending on the months considered and the specific 505 

GWL. For example, the highest decrease in relative humidity is observed in May-July 506 

with the magnitude of decrease increasing with GWLs. But an increase is observed in 507 

September for all the GWLs and August for the GWL1.5 and GWL2.0.  Regarding the 508 

radiation, a general decrease can be observed except in July where the changes are 509 

positive. However, in June, the projections show a decrease for GWL1.5 and GWL2.0 510 

and a slightly increase for GWL2.5 and GWL3.0. Looking at the wind, projections 511 

show an increase for April-October and slightly decrease in November-February.  512 

 513 

 514 

 515 
 516 
Figure 9: Projected changes in a-) DED, b-) CDD, c-) HI, d-) Humidity, e-) radiation, f-) Wind 517 
under different GWLs considering individual months.  518 

 519 
The level of agreement among the models on the projection (a measure of robustness 520 

in the projected changes in the electricity demand over Niger), depends on the GWLs 521 

and the various variables (Figure 10). In general, agreement among simulations is better 522 

for the projections of Tmax, DED, CDD, and HI than RH, Radiation and Wind 523 

projections. For instance, almost all the simulations agree on the projections of the 524 

Tmax, DED, CDD, and HI for all the GWLs. This indicates that the projections of DED, 525 

CDD, and HI are robust at all the GWLs. The ensemble median of DED indicates an 526 
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increase of about 5%, 7%, 12% and 15% for GWL1.5, GWL2.0, GWL2.5, and GWL3.0 527 

respectively. The least agreement among the simulations is observed for the Radiation 528 

where the simulations do not agree on the projections of these variables for any of the 529 

GWLs. Nevertheless, the ensemble median of radiation indicates a decrease for this 530 

variable, with the magnitude of the decrease increasing with global warming level. 531 

However, for the humidity and wind, more than 75% of the simulations agree on the 532 

projections at GWL2.5 and GWL3.0. Hence, this indicates that changes in both wind 533 

and humidity are only robust for the warming level above 2°. It may also be noted that 534 

for all the variables, the spread among simulations increases with increasing global 535 

warming (Figure 10). 536 

 537 

 538 

 539 

 540 
 541 
Figure 10: Projected changes in a-) DED, b-) CDD, c-) HI, d-) DTR, e-) RH, f-) Radiation, and 542 
g-) Wind at specific GWLs in Niamey. 543 
 544 

 545 

 546 

 547 

4 Conclusion 548 

 549 

As part of the efforts to understand and quantify the impact of climate change on key 550 

economic sectors, this study has investigated the potential impacts of gradually global 551 

warming on electricity demand in Niger.  The Principal Component analysis (PCA) 552 

was utilized to group the key climate parameters that influence the electricity demand. 553 
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Then the Multiple Linear Regression (MLR) model has been developed to predict the 554 

electricity demand based on the PCA results. Moreover, for the projections, 14 multi-555 

model regional climate simulations from the Coordinated Regional Climate 556 

Downscaling Experiment (CORDEX) at four specific Global Warming Levels 557 

(GWL1.5, GWL2.0, GWL2.5 and GWL3.0) have been analyzed. The results are 558 

summarized below: 559 

 560 

● The principal component analysis (PCA) result revealed that the climates 561 

variables such as the air temperature, maximum and minimum temperature, 562 

relative humidity (RH), heat index (HI), cooling degree-days (CDD), radiation 563 

and wind are highly correlated with the detrended electricity demand. 564 

● The stepwise regression results suggest that only the variables such CDD, 565 

humidity, heat index, radiation, wind and Tmax are statistically significant at 566 

99% confidence level. The accuracy of the regression results shows high value 567 

of coefficient of determination R2 (0.808) and a reasonable root mean square 568 

error (140.87MWh/day). Moreover, the residual plots indicated that the 569 

residuals from the regression model are normally distributed, suggesting that 570 

the model comply with the assumptions of regression models. 571 

● The CORDEX simulations realistically reproduce the annual cycle of the DED 572 

and climate variables used in this study and in most cases; the observed annual 573 

cycle is within the RCMs ensemble spread. However, discrepancies do exist 574 

between the individual simulations. 575 

● The CORDEX simulations project an increase in DED, Tmax, HI, CDD, and 576 

Wind and a decrease in humidity, and radiation at all GWLs. The highest 577 

increase in DED is projected in hot period (Mach-June) and October-November.  578 

● The simulations agree on the projections of DED, HI, CDD at all GWLs. 579 

Conversely, there is no agreement among simulations for the radiation at any of 580 

the global warming levels. However, more than 75% of the simulations agree 581 

on the projections of wind and humidity at GWL2.5 and GWL3.0. 582 

 583 

To provide more robust information for policymakers, the results of this study can be 584 

improved in different ways. First, besides the factors related to climate, other factors 585 

such as population, GDP, policy, consumer’s behavior, urbanization and so on may also 586 

determine the future electricity demand. For instance, climate influences the electricity 587 
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demand through the response of people to weather (Valor et al., 20 01).  In other 588 

words, depending on the weather conditions, people will increase or decrease the 589 

demand. Secondly, the current study used aggregated electricity demand including the 590 

residential, commercial and industrial sectors since disaggregated data were not 591 

available. So, future may look on the impacts of the global warming on different 592 

sectors. Thirdly, conducting biases corrections on GCMs and RCMs simulations may 593 

further reduce the disagreement among the models for the projections of humidity, 594 

radiation, and wind. Such considerations will make the results more relevant for policy 595 

makers. Nevertheless, the present study has demonstrated the capability of the 596 

CORDEX models in reproducing the annual cycle of the climate variables used in this 597 

study and showed the impacts of climate change on electricity demand in Niamey at 598 

various global warming levels. 599 

 600 
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