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Abstract: To mitigate the noise effects without information loss at the edges of the radiological 

images, a well-designed preprocessing algorithm is required to assist the Radiologists. This paper 

proposes a hybrid adaptive preprocessing algorithm that utilizes a Rudin_Osher_Fatemi (R_O_F) 

model for edge detection, Richardson_Lucy (R_L) Algorithm for Image Enhancement, and 

Block Matching 3D Collaborative filtering for denoising of image. The performance of the 

proposed method is assessed and estimated on two realistic datasets, one on chest X-ray images 

and the another on MRI/CT images. The proposed hybrid system verifies the data reliability of 

Gaussian noise affected medical images. The simulation results shows that the proposed adaptive 

method attains a high value of Peak Signal-to-Noise ratio of 47.4433 dB for chest X-Ray and 

46.8674 dB for MRI/CT datasets respectively at a standard deviation value of 2. Performance 

analysis of the proposed scheme is further carried out using various statistical parameters of Root 

Mean Square Error, Contrast – to – Noise ratio, Bhattacharya Coefficient and Edge Preservation 

Index. A comparative analysis on denoised image quality shows that the proposed system 

achieves better performance than several existing denoising methods. 

 

Keywords: Block Matching, Collaborative filtering, Contrast - to - Noise – Ratio, 

Richardson_Lucy Algorithm, Rudin_Osher_Fatemi model, Peak - Signal - to - Noise - Ratio  

 

1. Introduction 

Today image processing [1] is believed to be the most challenging, as images are rich at 

information in the fields like medicine, space, RADAR, machine vision, etc. Rapid growth in the 

computer technology enables the performance of the image processing methods by improving 

the quality of the images acquired by various medical imaging systems. Often, noise affects the 

images during image acquisition, storage, and transmission, which is undesirable. Denoising of 
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image aims at restoring the original image from noisy image by removing the noise, but at the 

same time retaining the quality of high frequency components like texture and edge. To diminish 

the noise effect in medical-images, researchers have implemented various denoising algorithms 

whose performance relies on various parameters like Peak – Signal – to – Noise ratio, Contrast – 

to – Noise ratio, Root Mean Square Error, Bhattacharya Coefficient, and Edge Preservation 

Index at various values of standard Deviation. Denoising of medical images [2] is generally 

grouped into four categories: filtering, transform domain denoising, machine learning based 

denoising and statistical domain based denoising. Denoising of medical images using filtering-

based methods is carried out using linear [3-4] and non-linear [5-6] filtering methods in spatial 

domain, which usually results in information loss at the edges. To overcome this drawback, 

transform domain based denoising approaches are considered. This category of techniques 

performs the denoising in various domains of wavelet [7], Curvelet [8], Contourlet [9] and Fast 

Fourier Transform [10]. As the image size increases, the performance of this domain decreases 

exponentially. This snag can be overcome by considering the machine learning based denoising 

approaches which includes bioinspired systems like Boltzmann Machines [11-12], autoencoders 

[13], Convolutional Neural Networks [14-15], Genetic algorithms [16-20], etc. The major 

mitigation of these techniques is the computational complexity, due to involvement of image 

processing globally. This drawback can be avoided with the help of statistical approaches [21-

27], which can be employed with a lesser amount of complexity and less computational time. 

Various drawbacks of these basic denoising methodologies can be resolved with adaptive 

methodologies like Block-Matching and 3D filtering (BM3D) algorithm. 

BM3D) algorithm, developed by Dabov, K., et al. [28] improved the denoising by enhancing the 

sparsity of the transform. The blocks are processed in a sliding manner in an image to search for 

the required similar blocks from a pile of blocks in order to arrange a 3D array. The noise is 

reduced by reducing the 3D-decorrelating unitary transform coefficients. All the matched blocks 

estimates are then obtained by applying inverse 3D transform. The capability of this method to 

preserve the textures is tested on the heavily noisy (Standard Deviation, 𝜎 = 100) Barbara 

image and found that this method can be applicable only for fixed-sized bocks. 

Dabov, K., et al. [29] enhanced the BM3D approach by combining it with Collaborative-filtering 

to improve the sparsity generated by grouping the matched blocks. Three steps are involved: 3D-

transform application on a group, the transform-spectrum shrinkage, application of inverse 3D-

transform. This results in 3D-estimate of image blocks that are jointly filtered. Collaborative-

filtering exposes finest-details of all the shared grouped-blocks and preserves features of all the 

individual blocks. Performance of this method is enhanced by considering the Wiener filtering.  

Later, to exploit non-local image modeling. Dabov K., et al. [30] implemented an adaptive 

BM3D approach using Principal-Component Analysis as well as local-Shape adaptive-

anisotropic estimation. The denoising method is performed using spectrum-shrinkage of a 3D-

transform that is applicable to these groups. The shrinkage effect mainly relies on transform 

capability to separate it from noise. Sparsity in the proposed method is enhanced by applying 

Principal-Component Analysis on neighborhoods that contains adaptive-data shape. Bases of this 
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Principal-Component Analysis are found by Eigen value-decomposition of matrices having 

empirical second moments. 

To improve the algorithm performance for high noise affected images, Chen, Q., et al. [31] 

introduced a two-folded bounded BM3D algorithm where in the image is first partitioned into 

multiple-regions to identify the boundaries among the regions. The block-matching is performed 

inside this template-block region. Secondly, to avoid the loss of edges by collaborative-filtering, 

a partial-block matching for various block-coherent segments of multiple regions is performed. 

Theis method enhanced PSNR value to 0.23 from 1.33 dB compared to the general BM3D. 

Lebrun, M. [32] improvised the transparency of the BM3D algorithm by considering the new 

notation which works with spatial dimensions along with the third dimension. This method is an 

adaptive BM3D algorithm in an open-source approach, where in the spatial dimensions are also 

considered to retrieve the lost details during edge contrasting. A low maximum-number of 

identical patches is stored to choose various parameter values. This model is improved by 

considering the weighting-contingent that depends on standard deviation of various 3D-estimated 

groups and also by applying ideal-Wiener filter. This method is slow, complex and less-flexible 

than the fundamental methods and also results in artifacts at high noise levels. 

 Burger, H. C., et al. [33] associated BM3D algorithm with a plain Multi-Layer Perceptron 

to apply the algorithm to large sized image patches. This approach is proposed for less-

extensively used noises. Large network capacity, large patch-size and large training-set are 

considered for this denoising approach. These parameters can be achieved by applying plain 

Multi-Layer Perceptrons on GPUs that are used to train as well as to apply various neural 

networks. But this approach can be applied only on single noise level when 𝜎 ≥ 25.  Zhong, H., 

et al. [34] performed non-local centralization prior to the usage of wavelet-coefficients local-

sparsity. The 1D-transformed inter-blocks are removed to establish a nonlocal-centralization 

based on grouped-blocks nonlocal-similarity as well as local-sparsity of different wavelet-

coefficients. Three nonlocal-shrinkage functions are introduced in this method by considering 

norm restrictions of inter-blocks of wavelet coefficients along with intra-blocks of wavelet 

coefficients.  

Sarjanoja, S., et al. [35] implemented the BM3D algorithm on heterogeneous computer-

platforms using CUDA and OpenCL methods and enhanced the calculation speed to a rate of 7.5 

times than the CPU implementation. This p method utilizes parallel processing in various 

heterogeneous platforms for implementing existing approaches of denoising. These 

implementations are tested on various testing images affected by synthetic or natural noise. This 

method mainly focused on improving the speed of implementation to 1.5 times. The challenges 

faced by this method are related to memory usage and serialization of accessed data. 

Li, Y., et al. [36] implemented BM3D along with the Total Variation method to perform self-

adaptation when the amount of noise is varied, and to reduce the implementation time. Total 

Variation based framework is proposed to estimate the noise to get the references to execute the 

self-adaptation. Another problem faced by BM3D during denoising is computational time 

required to search the similar blocks. This shortcoming is overcome by the hybrid denoising 
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approach that utilizes a novel Total_Variation based BM3D approach. Hasan, M., et al. [37] 

enhanced the BM3D performance by focusing on improvement of Structural Similarity Index 

value instead of reducing the Mean Square Error value. Wiener filtering is improved by 

achieving the maximum Structural Similarity amid estimated and true image, rather than 

minimizing the value of Mean Square Error. A 3D based zigzag thresholding is introduced to 

improve the DC only based BM3D profile.  

Existing methods to perform collaborative filtering used uncomplicated approximations for the 

transform of noise-power spectrum. These techniques do not consider the block matching which 

causes the inaccurate results while denoising the noise affected images. Mäkinen, Y., et al. [38] 

introduced a framework for effective approximations and exact computations. In this method, the 

noise variance in block is correlated with the other similar blocks to extract the accurate noise 

power spectrum inside shrinkage. This results in accurate values in block matching as well as in 

aggregation.  

Wang, H., et al. [39] introduced an adaptive local-similarity in BM3D method, which uses the 

redundant data on similar image-patches. General BM3D approach can be applied for 

conventional images only, but not for the images that are having complex structures. When 

BM3D is applied to these complex structures, the particulars about images are damaged, as well 

as it lessens the factor of reflected signal fidelity. These drawbacks can be overcome by the 

model, which recovers the signal energy leaking that is affected by noise. This model enhanced 

the performance of the denoising, by improving the Signal-to-Noise Ratio. 

Zhao, T., et al. [40] enhanced the Gaussian noise affected Computed Tomography images to 

thrust boundary of ALARA. The post thresholding signal in transform domain is applied by 

Wiener filtering to enhance the denoising. The Minimum-Mean Square Error criteria-based 

Wiener filter is considered to get the optimal transform domain coefficients, considering the 

noise/signal cross-spectrum and noise-spectrum. In this method, an ultra-low-dose and full-dose 

image datasets are considered to estimate the performance of denoising. Peak - Signal - to - 

Noise - Ratio along with Emphysema is considered as performance metrics of denoising. 

Yahya, A. A., et al. [41] proposed an adaptive filtering based BM3D approach to enhance the 

denoising capability without damaging the image details. Hard-Thresholding used in BM3D is 

replaced by adaptive filtering in this model to adapt and modify according to the amount of 

noise. In this algorithm, total variation-based method is validated to low-noise affected areas, 

while soft-thresholding is applicable to various areas in an image that are prone to high-noise. 

This method enhances the stability and self-adaptation by resulting in optimal noise reduction. 

An adaptive threshold is considered to avoid the noise due to lower thresholds and loss of image 

details due to higher threshold values. Additionally, an adaptive-weighted function is considered 

to evaluate the spatial distance among candidate patches and reference patch. If this distance is 

small, a dissimilarity measurement is evaluated, whereas, if the distance is large, a k-means 

clustering is computed.  

Hanchate, V., et al. [42] used Noise-Invalidation denoising method and Variance-Stabilization 

Transform along with BM3D to denoise the Magnetic Resonance Images. Hard-thresholding in 



Page | 5  

 

BM3D is replaced by Noise-Invalidation approach to give the automatic threshold based on the 

noise levels and image characteristics like image wavelet-coefficient. Prior to the denoising 

using BM3D, a Variance stabilization transform is applied to mitigate the noise-variance 

dependency. To improve the performance metrics further, the denoised image is subjected to 

Contrast-Limited-Adaptive-Histogram-Equalization. Esedoḡlu, S., et al. [43] introduced an 

anisotropic version for noise removal and edge preservation depending on Total Variation model 

developed by Rudin, Fatemi and Osher. Convex regions with desired shapes are considered to 

evaluate the model. Properties of various minimizers are studied to investigate anisotropic 

energies and indicator functions that can exhibit exact solutions and to identify the general 

conditions in isotropic case.  

Aubert, G., et al. [44] implemented a variational approach based on numerical study of noise 

reduction and preservation of image textures proposed by Rudin, Fatemi and Osher. The 

minimization of energy functions in this mode is by classifying an image into two components. 

The Binary Variation is the first component that is used to get the geometrical information of 

image, whereas, second component consists of signals with large oscillations like textures and 

noise. The functional analysis arguments based on harmonic analysis tools are considered in 

bounded regions, to study the energy functions that are used to retrieve the image components. 

Further, various numerical experimentations are executed to show the significance of this 

proposed model in both denoising of image and image decomposition methods.  

Haddad, A., et al. [45] improved the Rudin_Osher_Fatemi (R_O_F) based denoising methods of 

image by considering various mathematical properties, to split textures and image objects. The 

energy function in the proposed approach is minimized by considering the “dual norm” concept. 
Both the stability and invariance concepts are considered to characterize the simple class 

functions named as, extremal functions. In this model, Binary Variation is considered to improve 

the R_O_F method by cancelling all the texture components. These extremal functions are 

helpful in demonstrating the lack of uniqueness during optimal decomposition. Chambolle, A., et 

al. [46] discussed the mathematical analysis of image reconstruction based on Total_Variation in 

both practical and theoretical ways. Firstly, minimization functions based on theoretical 

approach is studied using perimeter minimization and R_O_F approach. Secondly, various 

applications are addresses based on Total_Variation like image deblurring and zooming; using 

data fidelity term; nonconvex data problems; and minimum partition problem. 

Getreuer, P [47] implemented the denoising of a Gaussian noise affected image by using a 

total_variation regularization approach. Bregman_Iteration is considered to solve constrained-

convex minimization problems, whereas Split-Bregman is considered for the non-differentiable-

convex minimization problems. Then a discrete-derivatives framework is applied to handle the 

uniformly sampled functions. To balance the denoising of image and to avoid image details, a 

tuning approach is considered to optimize the parameters. Said, A. B., et al. [48] proposed a total 

variation based denoising approach to preserve the image edges. General R_O_F model using 

gradient regularizer results in loss of image information and a staircasing-effect. To overcome 

this drawback, an adaptive edge detector is introduced along with non-local mean filter, structure 
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tensor and fuzzy component. This approach gives low denoising at edges, and high denoising at 

smooth regions. 

Phan, T. D. K [49] proposed an adaptive image-surface-mean curvature based R_O_F model to 

control the smoothing strength and has analytically studied the structure convergence. Further, 

numerical-realization is carried out by Split-Bregman approach. Gaussian noise elimination as 

well as the edge preservation is balanced and at every level of estimated images, a new formula 

is introduced to estimate the level of noise. The optimization problem is resolved using Split-

Bregman approach and is performance evaluated quantitatively and qualitatively with respect to 

existing variational based approaches. Fish, D. A., et al. [50] extended Richardson_Lucy (R_L) 

method based on blind-deconvolution and the algorithm performance was compared with the 

existing Wiener-filter based blind-deconvolution algorithms. Further, various Point_Spread 

functions based functional forms are considered to evaluate the parameters that are unknown. 

This algorithm has high noise tolerance levels compared to existing blind-deconvolution 

approaches.  

Dell'Acqua, F., et al. [51] introduced spherical deconvolution based damped version of R_L 

algorithm to denoise the diffused MRI images. General convolution approaches cannot avoid the 

degradation of the spherical-deconvolution results of the isotropic tissue. To avoid this 

drawback, an adaptive-regularization algorithm is introduced and is applied to both vivo and 

stimulated datasets and the obtained results are evaluated to match standard-negative-constrained 

framework. The R_L framework reduces the false fiber-orientations and also conserves the 

main-fibre orientations angular-resolution. The algorithm requires less scan-time and high-speed 

of processing. 

Yongpan, W., et al. [52] introduced an adaptive R_L algorithm to improve the ringing artifact 

present in image-deconvolution. A local-prior approach is considered in the R_L algorithm to 

avoid the ringing artifact obtained because of the failure of blur-kernel estimation. Firstly, the 

standard-deviation of the local-window pixels are evaluated to obtain the smooth-region. 

Secondly, a new mask is introduced to avoid the ringing-artifact at the image edges. This step 

plays a significant role if the image has a rigid foreground and smoothing background. Thirdly, if 

the boundary is smooth, then a boundary-constraint is applied.  

Tam, N. W., et al. [53] introduced a Haar-Wavelet transform based R_L technique to reinstate 

Positron Emitted Tomography images. The approach considers spatially variant Point Spread 

Functions to enhance the image quality. The Coefficient Variation and Contrast Recovery 

parameters are considered to estimate the proposed method performance. The resolution of the 

images is recovered in this approach without increase in the number of iterations and without 

increase in noise levels. Wu, J. L., et al. [54] introduced an edge-map based R_L algorithm to 

avoid the motion-blur artifacts in images. The noise affected image is divided into edge as well 

as smooth regions prior to the deconvolution process. Local-extrema filtering is utilized to extort 

the information of edge-map of the image that contains the smooth regions. Each iteration of this 

deconvolution process reduces the ringing-artifact gradually. This adaptive algorithm reduces the 

ringing-artifact while preserving the information of the image edges. 
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Similarly, Yang, H. L., et al. [55] proposed a Gradient-Attention based R_L algorithm and a 

bilateral-filtering based blur-kernel estimation in addition to non-blind-image deconvolution to 

reduce the blur due to motion in an image. In blur kernel estimation, an alternating kernel 

refinement course is considered to get an unclear image using quadratic-regularization based 

method. In this non-blind based image deconvolution process, image gradients and Gradient 

Attenuation R_L algorithm are considered to identify the ringing artifact in R_L algorithm. The 

performance of this adaptive framework is evaluated by different real datasets. 

Chen, D., et al. [56] implemented R_L algorithm along with Kirchhoff approximation and Multi-

Gaussian-Beam modeling to improve image restoration of simulated-C Scan images. This 

adaptive algorithm improves the Point Spread Functions that are obtained using Multi Gaussian 

Beam Model. The final iteration number is obtained by deriving a relation amid inclusion of size 

of an image and final iteration number. The effect of Electromechanical change and sound 

attenuation gives the correction factor size. The performance of this adaptive method is evaluated 

using optical micrograph results. 

From the literature [57-61], it is observed that while sparsity is much improved by BM3D 

algorithm, poor performance is resulted at textural regions and sharp edges, at high noise levels. 

Even though BM3D results in excellent denoising performance, it is not suitable for the images 

affected with high noise levels. To overcome this hitch, this paper proposed a hybrid denoising 

algorithm. The Gaussian noise affected Magnetic Resonance Image is applied to R_O_F 

algorithm for edge detection, followed by image denoising using BM3D approach. Later, the 

denoised image is applied to R_L algorithm for image enhancement.  

The rest of the article is ordered as follows. Section 2 provides the preliminaries, section 3 

proposes the hybrid denoising methodology, section 4 overviews the statistical parameters used 

for performance evaluation. Section 5 discusses the results generated by the proposed adaptive 

approach. Section 6 gives the conclusion along with the future scope of the paper. 

 

2. Preliminaries 

2.1. Hard-Thresholding 

Hard thresholding is an optimal threshold used to eliminate noise in images. This can be 

achieved by using a feedback to optimize the threshold value each time. Before applying the hard 

thresholding to gray-level medical images, consider log-based transformation to enhance the 

image quality.  𝑃 = 𝑐 ∗ log(1 + 𝑝)                                                           (1) 

 

where 𝑐 is the constant based on the amount of image enhancement, 𝑝 is the input pixel value 

and 𝑃 represents the output pixel value. After applying the threshold, perform the inverse log-

transformation. Before converting the image from gray-scale to binary, set threshold to each 

pixel. The algorithm for hard-thresholding is represented below 

Input:  Medical-image affected by Gaussian noise. 

Output: Denoised medical image 
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Step1: Consider a gray-scale image 

Step 2: Select an initial threshold value 𝑇ℎ. 𝑇ℎ = 𝜎2√2 log 𝑆                                                               (2) 

where 𝜎 is the noise standard deviation, 𝑆 is the image size. 

Step 3: Divide the image into two components 

Step 3.1: If the pixel value is less than or equal to threshold, then consider it as background. 

Step 3.2: If the pixel value is greater than threshold, then consider it as foreground. 

Step 4: Evaluate Mean value of foreground and background images. 

Step 5: Consider a new threshold value by performing the average of two mean values.  

Step 6: If the difference between old and new threshold values is less than a pre-assigned limit, 

 stop the procedure or else repeat steps 2 to 6. 

 

2.2. Wiener filtering 

Wiener filtering removes the Gaussian noise from the noise affected images, where its statistics 

of estimation depends on neighboring pixels. Wiener filter relies on the noise strength i.e. 

amount of noise contrast.  Amount of smoothing in Wiener filter linearly varies on the noise 

contrast. It can also be applied in the frequency band during image corruption due to noise. 

Mathematical representation of Wiener filter is given as  𝐼(𝑚, 𝑛) = 𝑁(𝑚, 𝑛)𝑊(𝑚, 𝑛)                                                     (3) 

where  𝑁(𝑚, 𝑛) = 𝑃𝑊(𝑚,𝑛)𝑃𝑊(𝑚,𝑛)+𝜎2; 𝜎2 = 1𝑘2 ∑ ∑ 𝑁2(𝑚, 𝑛) − 𝜇2𝑘𝑛=1𝑘𝑚=1 ;𝜇 = 1𝑘 ∑ ∑ 𝑁(𝑚, 𝑛)𝑘𝑛=1𝑘𝑚=1  𝑊(𝑚, 𝑛) is the Fourier spectrum of Wiener filter, 𝐼(𝑚, 𝑛) is the original image spectrum, 𝑁(𝑚, 𝑛) is the noise affected image spectrum, and 𝑃𝑊(𝑚, 𝑛) is the noise power spectrum of the 

noise. 

Coefficients of Wiener filter are evaluated by minimizing the square of the distance between 

required signal and filter output. 

 

2.3. Rudin_Osher_Fatemi (R_O_F) Model 

R_O_F is a time-dependent Partial Differential Equation model that uses numerical algorithm 

based on constrained optimization of images. Traditional methods use simulated annealing 

approach to obtain the minimization, which is a computationally slow approach. To avoid this 

drawback, the R_O_F approach considers the local extrema that minimizes the image total 

variation depending on constraints like noise statistics. These constraints are imposed based on 

Lagrange multipliers. The solution of time dependent Partial Differential Equation is obtained by 

using an approach named gradient projection technique.  

A simple geometric description-based image is considered to apply the R_O_F algorithm, which 

contains the objects, a set of connected sets, smooth edges, or contours. The image contains 

jumps around the boundaries, and smooth inside the objects which are considered as bounded 

variation functions. These models which are dependent on total variation works poorly with the 

images containing oscillatory components like fine structures and textures. The mathematical 

evaluation of the R_O_F approach is as follows. 
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Let the image be 𝑖 and the noise affected image be 𝑑. The relation between these two images is 

given as in equation (4) 𝑑 = R𝑖 + n                                                                                    (4) 

where  R is a linear-operator that is used for modeling blur and n is the noise. Minimization of 

energy is a solution to this problem. Energy consists of two terms, namely, regularization of cost 

function as well as fidelity term. This model depends on the assumption of Bounded Variation (BVA(Ω)), where Ω is the domain. Reconstruction of the original image i is obtained by using 

conventional method of Least-Squares L2 fit leading to linear equations. The image is 

decomposed into a component i that belongs to BVA(Ω) and a noise component n which belongs 

to L2(Ω). In the two-dimensional continuous system, the constrained minimization problem is 

represented as in equation (5) inf(i,n)∈BVA(Ω)×L2(Ω)d =i+n (∫|∇i| + λ2 |Ri − d|2)                                         (5) 

for a positive value of LaGrange-Multiplier λ, subject to the constraints of mean ∫ RiΩ  and a 

standard deviation of  ∫ |Ri − d|2 = σ2
Ω . 

Limitations of this model rely on the boundary conditions. Consider functions (φ) in the space 

(C′) functions from Ω to M2 with the help of compact support i.e. [C0′ (Ω)]2
. Variance of this 

function i ∈ L′(Ω) is defined as in equation (6) |u|BVA = ∫ |∇i|Ω = sup
φ∈[C0′ (Ω)]2,|φ|≤1 Point−wise ∫ i Ω ∇. φ                      (6) 

The discrete energy of this minimize is given by equation (7) Em(i) = ∑ μa,b|(∇i)a,b| + 12λ
m−1a,b=0 ∑ μa,b(ia,b − da,b)2m−1a,b=0                     (7) 

where (∇i)a,b is a two-dimensional function that can be represented as in equation (8) (∇i)a,b = ((∇xi)a,b, (∇yi)a,b)                                                   (8)  

where (∇xi)a,b = ia+1,b−ia,bp  and (∇yi)a,b = ia,b+1−ia,bp , where p = 1/m 

This function satisfies the Neumann-Boundary conditions as represented in equation (9) i−1,b = i0,b im,b = im−1,bia,−1 = ia,0 ia,m = ia,m−1                                                                 (9) 

The R_O_F algorithm is summarized as below: 

Input:  Medical image affected by Gaussian noise. 

Output: Edge detected image 

Step 1: Consider a noise affected image ‘d’ assuming ‘i’ as input noise free image. 
Step 2: Minimize the energy equation represented using equation (3) and by equation (4) in 

 the discrete case depending on the Boundary_Variation. 

Step 3: If the minimized energy value does not satisfy the Neumann-Boundary conditions as 

 shown in equation (6), then repeat step 2. 



Page | 10  

 

Step 4: If the minimized energy value satisfies the Neumann-Boundary conditions, then the edge 

 of the region is obtained. 

Step 5: Repeat step 2 to detect image ‘i’ edges. 
 

2.4. Block Matching 3D Filtering (BM3D) 

BM3D [28] initially proposed by Dabov et al. [29] for denoising was improved by Lebrun [32] 

to enhance the performance for Additive-White Gaussian Noise. BM3D algorithm is a two-step 

process of finding identical patches, similar to performing Non-Local Means filtering approach 

with a variation in the component. While the first step uses Hard-Thresholding, Wiener-Filtering 

is utilized in second step. BM3D first divides the noisy image into multiple patches or blocks. 

For each block, it produces a window that contains reference patch at its center. Later, a 

threshold value is used to find patches identical to the reference patch. A 3D block is constructed 

on grouping all the identical patches. Various transforms are applied to convert from spatial-

domain to frequency-domain followed by hard-thresholding. The basic estimate is generated by 

converting the block coefficients into intensity values, by means of Inverse 3D transform. An 

aggregation is applied to the reference patch estimate to predict each pixel value. This basic 

estimate is applied to the BM3D second step as an oracle to perform 3D grouping. In this step, 

instead of Hard-Thresholding, the Wiener-filtering approach is used. The 3D group generated 

based on noisy affected image is considered as degraded image function and the 3D group which 

was constructed depending on basic estimate that is regarded as the degradation function. 

The procedure to implement BM3D approach is summarized as follows: 

Input:  Noisy image 

Output: Denoised medical image 

Step 1: Find Basic Estimate 

Step 1.1: Group Similar type of blocks as a 3D array 

Step1.2: Apply 3-dimensional transform is applied on the groups to transform from spatial 

domain to frequency domain. 

Step 1.3: Reduce the noise from the transformed coefficients using a Hard Thresholding 

approach. 

Step 1.4:  Apply Inverse 3D Transform to estimate the coefficients  

Step 1.5:  Obtain basic estimate by weighing the estimates of all the overlapping block-wise 

estimates. 

Step 2: Find Final Estimate 

Step 2.1:  Group similar type of blocks as a 3D array 

Step 2.2:  Apply 3-dimensional transform on the groups to transform from                               

spatial domain to frequency domain. 

Step 2.3:  Apply Collaborative Wiener Filtering on the basic estimate of noisy energy-spectrum 

with basic estimate as a pilot signal. 

Step 2.4:  Group the Estimates of the blocks by applying an inverse 3-Dimensional transform. 
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Step 2.5:  Compute original image final estimates by collecting local estimates with the help of a 

weighted average. 

The aggregated weight generated after the aggregation technique gives the working of Wiener-

filtering and is defined as follows:  

ωb(ε) = |τBMw Pba(P)(ε)|2|τBMw Pba(P)(ε)|2+σ2  . τBMw P(P)                                                (10) 

where Pba(P)(ε) is the basic image 3-dimensional block and P(P) is the noise image 3-

dimensional bock; τBMw  is the Wiener-filter phase 3-dimensional transformation and ωb(ε) gives 

the weighted-aggregation operation. 

 

2.5 Richardson-Lucy (R_L) Approach  

R_L algorithm or Expectation-Maximum approach is an iterative algorithm that uses Point 

Spread Functions (PSF) to compute the reflective function of an object in an image. PSF 

represents the system response and decides image quality. The PSF represents the spatial domain 

version of image transfer function. Convolution between PSF and original object symbolizes the 

image of an item. R_L algorithm converge the iteration result to obtain a maximum-likelihood 

solution. This algorithm is mainly related to the images that follow Poisson distribution. Two 

main properties of R_L algorithm are energy preserving and non-negativity, which enhances the 

performance of the approach. Non-negativity of R_L algorithm constrains the expected values 

and conserves the energy of an image during iteration. The performance of the R_L algorithm is 

also enhanced because it requires only two multiplications and two convolutions per iteration. As 

the number of iterations increases, both the ringing artifacts and signal magnitude increases. 

R_L algorithm begins with first estimate that consists of an observed image. It calculates a 

correction factor of every pixel that is multiplied with the pixel at every iteration. The value of 

the correction factor reaches to a value of ‘1’ at the desired deconvolved image. Images are 
formed from the correction factors of pixels by applying convolution between PSF and current 

estimate, and then partition the observed image pixel-by-pixel using blurred estimate.    

Richardson-Lucy algorithm is basically derived from Baye’s theorem and produces high quality 
images depending on the maximum-likelihood implementation in the presence of high noises. 

The statistical fluctuations in an image are considered as the conditional probability values in the 

Baye’s theorem as shown in equation (11) to reconstruct the noise affected images  P(a/b) = P(b/a)P(a)∫ P(b/a)P(a)da                                                       (11) 

where P(a/b)is the event a conditional-probability with respect to event b. P(a) gives the event a probability, and P(b/a)  gives the event b conditional-probability, with respect to event a. In 

R_L algorithm  P(a) is replaced by the object distribution O(a), P(b/a) by the Point_Spread 

Function centered around a, PSF(b, a), and P(b) by the degraded image d(b). The R_L iterative 

algorithm is then given as in equation (12) oi+1(a) = ∫ PSF(b,a)d(b)db∫ PSF(b,c)oi(a)dc oi(a)                                                 (12) 
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where i gives the number of iterations. Depending on the isoplanatic condition, equation (11) can 

be rewritten in terms of convolutions as in equation (13) oi+1(a) = {[ d(b)oi(a)⊗PSF(a)] ⊗ PSF(−a)} oi(a)                            (13) 

where ⊗ is the convolution operator. With a known PSF(a) value, oi+1(a) can be evaluated by 

convergence. R_L algorithm can be started by estimating the initial value of o0(a) and the value 

in the subsequent iterations is highly deviated from the true value. Convergence achieved by the 

R_L algorithm attains sparse solutions, which are positive in the spatial domain reconstruction. 

R_L method is applied directly to the sparse coefficients instead of the subsequent images, to 

improve the sparsity of the images. 

The R_L algorithm is summarized as below: 

Input:  Denoised medical image. 

Output: Enhanced medical image 

Step 1: Perform convolution of noise affected image with a known Point Spread Function (PSF) 

Step 2: Attain the convex loss function represented in equation (12) using the Baye’s theorem 
 represented in equation (11). 

Step 3: Minimize (or converge) the convex loss function to minimize the effect of noise on 

 image by considering PSF of the image to be convoluted with the blurred image in order 

 to obtain noise free image. 

Step 4: Repeat step 3 until the value of oi+1(a) equals to oi(a), i.e., oi+1(a) is a minimum value. 

 

3. Methodology 

Application of BM3D algorithm alone for noise removal results in poor performance at high 

noise levels and for DC-only profile while denoising of medical-images. To overcome this 

problem, this article proposes a hybrid adaptive preprocessing algorithm which is based on 

Rudin_Osher_Fatemi model for edge detection, Richardson_Lucy Algorithm for Image 

Enhancement, and Block Matching 3D Collaborative filtering for denoising of image. The 

flowchart for this hybrid algorithm is presented in Fig. 1, and the steps involved in the proposed 

hybrid model are listed below: 

Input:  Medical-image affected by Gaussian noise. 

Output: Denoised medical image 

Step 1: Apply Rudin_Osher_Fatemi model to smoothen the edges of the images using linear 

 soothing approach.  

Step 2: If the degree of smoothness is as per requirement, perform denoising of images, or else 

repeat Step 1. 

Step 3: Group the identical patches. 

Step 4: Apply 3-dimesional transform to the patches. 

Step 5: Start the denoising process by applying Hard thresholding to these patches. 

Step6: Convert the block coefficients into intensity values by applying a 3-dimensional inverse

 transform. 

Step 7: Aggregate by making reference patch estimate to estimate each pixel value 
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Step 8: Repeat Steps 3-7 in the final estimate, considering the output of basic estimate as oracle 

 in the final estimate and by replacing Hard thresholding with Wiener filtering. 

Step 9: Calculate the Point Spread Function and number of iterations of the output from Step8. 

Step 10: Apply R_L algorithm to denoise the outputs obtained from Step 9. 

To estimate the quality of the denoised images attained by the proposed adaptive algorithm, five 

classes of standard image quality measure have been used: Peak - Signal - to - Noise - Ratio, 

Contrast - to - Noise - Ratio, Root - Mean - Square - Error, Bhattacharya-Coefficient and Edge-

Preservation-Index at various Standard Deviation Values (2, 5, 10, 15, 20, 25, 30, 35, 40, 70, 50, 

and 100). 

 

4. Comparative Parameters 

4.1Peak - Signal - to - Noise - Ratio 

The Peak - Signal - to - Noise - Ratio articulates the ratio between the peak signal power that is 

achievable and the altering power of noise. PSNR in general is expressed as logarithmic scale 

due to the broad range as expressed in equation (14). 

     PSNR = 10 log ( M2MSE)                               (14) 

where M indicates the image maximum-pixel value that can diverge up to 2bits − 1, where bits= 

number of bits per sample. Peak - Signal - to - Noise - Ratio is an error-sensitivity metric that 

relies on the Mean-Square-Error value along with the image dynamic range. 
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Fig.1. Flowchart of the proposed hybrid algorithm 
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4.2 Root - Mean - Square - Error 

Root - Mean - Square - Error (R-MSE) indicated in equation (15) is the section value of standard 

deviation for various diversities along with experimental as well as expected values called as 

residuals. R-MSE evaluates the accuracy to identify errors generated by various models for a 

meticulous-data. 

   R − MSE(θ̂) = √MSD(θ̂) = √E(θ̂ − θ)2
   (15) 

Where θ̂ represents the estimator of an estimated parameter θ. 

4.3 Contrast - to - Noise - Ratio 

Contrast - to - Noise - Ratio (C − NR) expressed in equation (16) describes the image quality-

metric, which is analogous to Signal-to-noise ratio but it subtracts a term before taking a ratio.  

     C − NR = |SA−SB|
σ0      (16) 

where SA and SB are the signal intensities formed in the region A and region B correspondingly, 

and σ0 signifies the standard deviation of the Bhattacharya Coefficient noise present in an image. 

4.4 Bhattacharya-Coefficient 

Bhattacharya-Coefficient (BC) assess the relative proximity among two diverse probability-

distributions x as well as y over a domain D, i.e., D ∈ [0,255] for an 8-bit data as indicated in 

equation (17).  

    BC(x, y) = ∑ √x(p)y(p)p∈D      (17) 

Bhattacharya-Coefficient evaluates the closeness amid two various discrete probability-

distributions p and q over same domain X (for example, X∈ [0,255] for the 8-bit accurate data). 

4.5 Edge-Preservation-Index 

Edge-Preservation-Index (EPI) assesses the ability to preserve image details. Laplacian-kernel is 

utilized to generate the image binary-edge maps by detecting the weak edges.  The mathematical 

computation of EPI is as represented in equation (18) EPI = 𝐸(Δr−Δr̅̅̅̅ ,Δr̂−Δr̂̅̅̅̅ )√𝐸(Δr−Δr̅̅̅̅ ,Δr̂−Δr̅̅̅̅ ).𝐸(Δr̂−Δr̂̅̅̅̅ ,Δr̂−Δr̂̅̅̅̅ )                                     (18) 

Where 𝐸(r1, r2) as shown in equation (19) 𝐸(r1, r2) = ∑ r1(i, j). r2(i, j)i,j∈R                                           (19) 

where Δr(i, j) and Δr̂(i, j) represents the high-pass-filter Region-of-Interest (R) in the reference 

of r(i, j). Δr̅̅ ̅ and Δr̂̅̅ ̅ are the Region-of-Interest means of Laplacian filter. 

 

5. Results and Discussion 

In this section, the experimentation and results obtained are detailed. In addition, relative 

performance of the proposed model is compared with the existing methodologies. 

5.1. Experimentation 
In this segment the results acquired with the help of the proposed adaptive method are presented 

and evaluated for its performance and are compared with the existing methodologies The 

proposed algorithms are implemented in the MATLAB platform. Two open-accesses datasets 
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containing chest X-ray images [62] and MRI/CT cancer images [64] are considered to evaluate 

the denoising performance of proposed adaptive method. From the first dataset a total of 500 

chest X-ray images are considered randomly and resized to obtain uniform data. From the second 

dataset 400 slices of MRI and 350 slices of CT DICOM (Digital-Imaging and Communications 

in medicine) format images are considered. For implementation, at first, all the input images 

from datasets are corrupted by Gaussian noise at various standard deviations (2, 5, 10, 15, 20, 25, 

30, 35, 50, 70, and 100). All these corrupted images are denoised by the proposed hybrid 

algorithm and the performance of the proposed algorithm is tested using various statistical 

parameters like PSNR, C-NR, R-MSE, BC and EPI.  

Peak - Signal - to - Noise Ratio: The output image quality increases with the increase in the 

value of PSNR. Generally, the PSNR of the lossy image varies from 30 dB to 50 dB when a 

pixel is represented with 8 bits per sample. Fig 2 represents the variation of PSNR value with the 

change of standard deviation value of noise from 2 dB to 100 dB for chest X-Ray and MRI/CT 

datasets respectively. The value of PSNR is decreasing with the raise in the level of noise. The 

proposed adaptive method achieves a PSNR value of 47.44 dB for chest X-Ray dataset, and 

46.86 dB for MRI/CT dataset at a standard deviation value of σ = 2 dB. PSNR value decreases to 

a value of 28.45 dB for chest X-Ray and 26.46 dB for MRI/CT dataset at a standard deviation 

value of σ = 100 dB respectively. 

 

    

(a) Chest X-Ray Dataset                  (b) MRI/CT Dataset 

Fig.2. Peak - Signal - to - Noise Ratio (PSNR) at various Standard Deviations 

Contrast - to - Noise Ratio (CNR): CNR access the probability of detecting lesion in medical 

images. CNR is a positive value that ranges from a value of ‘1’ and ‘∞’. As the value of CNR 

increases, the objects can be more easily visualized in the background. Fig 3 shows the variation 

of CNR with respect to the change of standard deviation of noise from 2 dB to 100 dB for chest 
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X-Ray and MRI/CT datasets respectively. The proposed adaptive method achieves a CNR value 

of 24.06 dB for chest X-Ray dataset and 20.660 dB for MRI/CT dataset at a standard deviation 

value of σ = 2 dB. CNR value varies to a value 36.43 dB for chest X-Ray and 20.574 dB for 

MRI/CT dataset at a standard deviation value of σ = 100 dB respectively. 

   

(a) Chest X-Ray Dataset                  (b) MRI/CT Dataset 

Fig.3. Contrast - to - Noise Ratio (CNR) at various Standard Deviations 

Root Mean Square Error (RMSE): The quality of output is high when the lossy image has low 

value of RMSE. A relatively low RMSE value indicates the accuracy of the model. A perfect fit 

to data achieves a value of ‘0’ RMSE. As the amount of noise increases the value of RMSE also 

increases resulting in loss of data. Fig 4 represents the variation of RMSE value with the change 

of standard deviation value of noise from 2 dB to 100 dB for chest X-Ray and MRI/CT datasets 

respectively. The proposed adaptive method achieves a RMSE value of 10.651732 dB for chest 

X-Ray dataset and 10.655123 dB for MRI/CT dataset at a standard deviation value of σ = 2 dB 

respectively. RMSE value changes to a value 11.769128 dB for chest X-Ray and 11.748757 dB 

for MRI/CT dataset at a standard deviation value of σ = 100 dB respectively. 
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(a) Chest X-Ray Dataset                             (b) MRI/CT Dataset 

Fig.4. Root Mean Square Error (RMSE) at various Standard Deviations 

Bhattacharya Coefficient (BC): The quality of output is high when the lossy image has low 

value of BC. A perfect match between two distributions results in a value of BC as ‘0’. As the 
amount of overlap increases, the value of BC also increases. Fig 5 represents the variation of BC 

value with the change of standard deviation value of noise from 2 dB to 100 dB for chest X-Ray 

and MRI/CT datasets. The proposed adaptive method achieves a BC value of 1.6610 dB for 

chest X-Ray dataset and 2.5017 dB for MRI/CT dataset at a standard deviation value of σ = 2 
dB. BC value changes to a value 1.5266 dB for chest X-Ray and 1.8802 dB for MRI/CT dataset 

at a standard deviation value of σ = 100 dB respectively. 
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Fig.5. Bhattacharya Coefficient (BC) various Standard Deviations 

Edge Preservation Index (EPI): The EPI is a positive value that ranges between ‘0’ and ‘1’. If 
the value of EPI is closer to ‘1’, then the edge is well preserved. As the levels of noise increases, 
the value of EP linearly decreases. Fig 6 represents the variation of BC value with the change of 

standard deviation of noise from 2 dB to 100 dB for chest X-Ray and MRI/CT datasets. The 

proposed adaptive method achieves a BC value of 0.4398 dB for chest X-Ray dataset and 0.5030 

dB for MRI/CT dataset at a standard deviation value of σ = 2 dB. BC value changes to a value 

0.2984 dB for chest X-Ray and 0.2887 dB for MRI/CT dataset at a standard deviation value of σ 

= 100 dB respectively. 

  

(a) Chest X-Ray Dataset                  (b) MRI/CT Dataset 

Fig.6. Edge Preservation Index (EPI) at various Standard Deviations 
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(a) Chest X-Ray Dataset                           (b) MRI/CT Dataset 

Fig.7. Elapsed Time (Seconds) of MRI Image at various Standard Deviations 

 

Table 1 and Table 2 present the quantitative outcomes of the proposed system for chest X-ray 

dataset and MRI/CT dataset using various statistical parameters at different standard 

deviations (σ)respectively.  

Table 1. Average Statistical parameters for Chest X-Ray image dataset 

Standard 

deviation 

(σ) 

Peak Signal – to Noise 

Ratio (PSNR) 

Contrast – 

to – Noise 

Ratio 

(CNR) 

Root Mean 

Square Error 

(RMSE) 

Bhattachar

ya 

Coefficient 

(BC) 

Edge 

Preservati

on Index 

(EPI) 

Elapsed 

Time 

(Seconds) Before 

Denoising 

After 

Denoising 

2 42.088 47.4433 24.06 10.651732 1.6610 0.4398 2.235768 

5 34.129 42.9890 23.60 10.651765 2.0139 0.4824 2.369741 

10 28.108 39.8848 22.75 10.652133 2.1445 0.4973 2.115846 

15 24.586 37.9942 21.81 10.652524 2.1832 0.4773 2.371193 

20 22.088 36.5408 21.17 10.653165 2.2148 0.4495 2.368134 

25 20.149 35.4237 19.98 10.653873 2.2798 0.4246 2.196733 

30 18.566 34.4751 19.10 10.653101 2.3033 0.4648 2.353988 

35 17.277 33.6664 18.02 10.654884 2.3168 0.4085 2.270163 

40 16.067 32.9897 17.23 10.653038 2.3806 0.4356 2.251937 

50 14.129 32.0585 18.24 10.654638 2.3903 0.4211 2.250507 

70 11.206 30.3681 17.01 10.653887 2.4379 0.4665 2.364166 

100 8.108 28.4598 36.43 10.655123 2.5017 0.5030 2.179279 

 

Table 3 and Table 4 shows the quantitative outcomes of the proposed system displaying the 

images of the noisy chest X-ray dataset and MRI/CT dataset, edge detected images, energy per 

iterations and denoised images at various σ values respectively. Figures (2-7) represent the 

comparison of various performance metrics at various σ values. 

 

Table 2. Average Statistical parameters for MRI/CT image dataset 

Standard 

deviation 

(σ) 

Peak Signal – to Noise 

Ratio (PSNR) 

Contrast – 

to – Noise 

Ratio 

(CNR) 

Root Mean 

Square 

Error 

(RMSE) 

Bhattacharya 

Coefficient 

(BC) 

Edge 

Preservation 

Index (EPI) 

Elapsed 

Time 

(Seconds) Before 

Denoising 

After 

Denoising 

2 42.083 46.8674 20.660 11.769128 1.5266 0.2984 1.961876 

5 34.124 41.6632 20.733 11.769207 1.6566 0.3017 1.846779 

10 28.104 37.7228 20.791 11.768276 1.6907 0.3287 1.785858 

15 24.582 35.4842 20.868 11.767747 1.6755 0.2993 1.715549 

20 22.083 33.9441 20.936 11.767856 1.6838 0.3217 1.798439 

25 20.145 32.7913 20.087 11.768507 1.6671 0.2960 1.800863 

30 18.561 31.8603 20.030 11.768359 1.6779 0.2948 1.982480 

35 17.222 31.1270 20.255 11.764582 1.6938 0.3019 1.710677 

40 16.062 30.3427 20.977 11.761428 1.7009 0.3179 1.819741 

50 14.124 29.4090 20.923 11.759235 1.8789 0.3233 1.815613 
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70 11.202 27.9855 20.659 11.753124 1.8704 0.3010 1.750690 

100 8.104 26.4645 20.574 11.748757 1.8802 0.2887 1.752613 

 

Table.3. Qualitative Results of Chest X-Ray image dataset at various Standard Deviations 
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Table.4. Qualitative Results of MRI/CT image dataset at various Standard Deviations 
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deviation 
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The average PSNR value of proposed approach for both the datasets are recorded in Table 5 and 

compared with the existing methods. This shows that the adaptive technique proposed achieves 

high PSNR value of 47.44 dB for Chest X-ray images and 46.86 dB for MRI/CT images 

compared to the previous approaches. Table 6 represents the comparison of the R-MSE values of 

the proposed approach with the previous approaches. The proposed approach attains a value of 

10.65 dB and 11.76 dB for chest X-ray and MRI/CT images respectively. By comparing the 

approaches, a conclusion can be drawn that the proposed approach results in minimum error 

value compared to the previous approaches. Table 7 represents the comparison of the proposed 

approach with the existing methods using C-NR value. The proposed scheme attains a high C-

NR value of 24.06 dB and 20.66 dB for chest X-ray and MRI/CT images respectively compared 

to the earlier approaches. From the computed numerical values of the statistical parameters, it is 

concluded that the adaptive methodology proposed effectively removes the noise without loss of 

the useful information of the medical image. 

 

Table.5. Comparison of medical image denoising techniques with respect to PSNR 

Denoising Technique 
PSNR 

(dB) 

Dataset Noise Limitations 

Linear_filter [66] 20.07 Cyst dataset Gaussian Blurs the image edges 

Anisotropic_Diffusion [67] 25.3 

1. T2 3-D MRI 

volume 

2. 3-D SPoiled 

Gradient Recalled MR 

Rician Applicable only for Gaussian 

assumption 
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data set 

Fourth-order_Partial-

Differential Equation [68] 
17.20 

MRI data by Siemens 

Vision 1.5 Tesla MR 

scanner 

Gaussian Results in the unavoidable 

speckles 

Non-Local Means [69] 34.42 

MRI images of the 

brain 

Fractiona

l 

Brownian 

motion 

noise 

Increases computational 

complexity due to the 

quadratic nature of pixels 

Bilateral filter [70] 20.77 

BrainWeb image data 

of T1-weighted 1mm 

and 5mm MR image 

volumes 

Gaussian Time consuming 

and monotonic process 

Trilateral filter [71] 26.70 

2D and 3D 

biomedical datasets, 

3D-numerical 

phantoms, 3D MRI 

phantom 

Additive 

White 

Gaussian 

Loss of 

sparsity 

Wavelet Transform [72] 22.31 

Gray-Scale MRI 

images 

Rician, 

Gaussian, 

Salt & 

pepper 

High number of coefficients 

Wavelet Shrinkage [73] 37.32 
MRI images Gaussian Does not deal with local 

smoothness 

Curvelet transform [74] 27.40 
MRI images White 

noise 

Leads to curve shaped 

artifacts  

Contourlet transform [75] 25.88 
MRI slicing Image Gaussian high computational 

complexity 

BM3D-NIDe-VST [76] 31.86 

Alzheimer’s Disease 
Neuroimaging 

Initiativedatabase  

Gaussian efficiently works in 

homogeneous regions only 

Anisotropic_Diffusion + 

Laplacian Kernel [77] 
26.28 

MRI images Random 

noise 

High computational time 

Deep CNN [78] 23.88 
MRI images Gaussian efficient in homogeneous 

regions only 

Maximum Likelihood 

Estimation [79] 
36.02 

MRI images Rician Leads to tradeoff when the 

system is affected by Rician 

noise 

Linear_Mean-Square Error 

Estimation [80] 
41.06 

MRI images Rician 3D MR data redundancy 

cannot be considered as 

advantage 

Non-Local_Maximum 

Likelihood Estimation [81] 
34.28 

MRI images Gaussian less adaptive  

 

Block-Matching_4-

Dimensional Filtering [82] 
40.38 

MRI images Gaussian less adaptive to unpredictable 

image contents  
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MR-image denoising with 

the help of 

Kolmogorov_Smirnov 

distance [83] 

28.7 

MRI images Gaussian extremely sensitive to the 

noise 

deviations 

Chi-Square Unbiased Risk 

Estimation [84] 
21.55 

MRI images Gaussian Lack of sparsity and hence is 

limited to small sample size 

Adaptive_Decision Based 

Median Filter [85] 
35.12 

Medical Images Gaussian Only used in complex domain 

Local-Polynomial based 

Intersection-

Confidence_Interval Filter 

+ Genetic-Algorithm [86] 

19.59 

MRI brain images Rician 

noise 

Leads to stripe artifacts at 

homogeneous regions 

Complex-Valued 

Convolutional Neural 

Network-Based Model [63] 

37.20 

chest X-ray images additive 

white 

Gaussian 

noise 

may be tried out for better 

compactness and 

generalizability 

Unsupervised Deep 

Learning Approach [65] 
42.74 

MRI/CT images Poisson Have to overcome any 

degradation in the medical 

imagery along with the noise 

Proposed Adaptive 

Algorithm – Chest X-Ray 

Dataset 

47.44 

   

Proposed Adaptive 

Algorithm – MRI/CT 

Dataset 

46.86 

   

 

Table.6. Comparison of various medical-image denoising techniques with respect to R-

MSE 

Denoising Technique R-MSE Dataset Noise Limitations 

Wavelet based denoising of image 

[87] 
14.3454 

Gray-

Scale 

MRI 

images 

Rician, 

Gaussian, Salt 

& pepper 

High number of 

coefficients 

Filtering based denoising of image 

[88] 
11.4815 

ultrasound 

medical 

images 

Poisson noise, 

amplifier 

noise, Salt 

and Pepper 

Noise, 

Speckle Noise 

Time consuming 

and monotonic 

process 

Optimal bilateral filter and 

convolutional neural network [89] 
11.25 

MRI and 

CT 

medical 

images 

Rician Limited to small 

sample sizes 

Fuzzy Based Denoising [90] 14.9663 medical Poisson Computationally 
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images complex 

Non-Local Means [91] 10.83 

MRI 

images of 

the brain 

Fractional 

Brownian 

motion noise 

enhance 

computational 

complexity due to the 

pixels quadratic 

nature 

Multi-stage Directional Median 

Filtering [92] 
22.75 

MRI 

images 

Gaussian High time 

requirement 

Gaussian Filtering [93] 21.56 

Gray-

Scale 

MRI 

images 

Rician, 

Gaussian, Salt 

& pepper 

Blurs the image edges 

Entropy paramounted linear 

regression filter [94] 
8.256 

normal 

heart 

Apical 

four 

chamber 

view 

image  

speckle noise less adaptive to 

variable 

image contents  

Unsupervised Deep Learning 

Approach [65] 
16.557 

MRI/CT 

images 

Poisson Have to overcome 

any degradation in 

the medical imagery 

along with the noise 

Proposed Adaptive Algorithm – 

Chest X-Ray Dataset 
10.65 

   

Proposed Adaptive Algorithm – 

MRI/CT Dataset 
11.76 

   

 

Table.7. Comparison of various medical-image denoising methods with respect to C-NR  

Denoising Technique 
CNR 

(dB) 

Dataset Noise Limitations 

Deep convolutional neural networks [95] 11.71 

3D brain phan- 

tom from 

BrainWeb 

statistical 

image 

noise 

may be tried 

out for better 

compactness 

and 

generalizability 

BM3D [96] 7.73 
X-ray 

microtomography 

Gaussian Loss of 

Sparsity 

Context-based BM3D [97] 2.48 

low-dose CT 

images 

Gaussian Does not deal 

with local 

smoothness 

Two-dimensional Curvelet-based 

dictionary learning [98] 
5.12 

100 publically 

available OCT B-

scans with and 

speckle 

noise 

Leads to curve 

shaped 

artifacts  
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without non-

neovascular age-

related macular 

degeneration 

(AMD) 

Deep learning image reconstruction [99] 11.58 

portal venous 

phase abdominal 

CT 

Gaussian efficient in 

homogeneous 

regions only 

Proposed Adaptive Algorithm – Chest 

X-Ray Dataset 
24.06 

   

Proposed Adaptive Algorithm – 

MRI/CT Dataset 
20.66 

   

 

6. Conclusion and Future scope 

A novel hybrid adaptive approach using Block Matching, Richardson_Lucy (R_L) Algorithm, 

Rudin_Osher_Fatemi (R_O_F) preprocessing is proposed in this paper for medical image 

denoising. While R_O_F model is used to detect the edges of the medical image, BM3D and 

R_L algorithms are utilized to denoise the medical images. Two realistic datasets, one on chest 

X-ray and another on MRI/CT are considered and simulated to evaluate the performance indices 

at various noise intensities. The performance of the proposed adaptive technique is compared 

with the state-of-the-art denoising methods in terms of various statistical parameters of PSNR, 

CNR, RMSE, BC and EPI. It is observed that the proposed methodology outperforms all the 

existing methods with a considerable margin at all the noise levels. From the quantitative and 

qualitative performance analysis, it is observed that the proposed method reduced the noise and 

restored the images more effectively than the existing methods. Further this approach can be 

improvised in future by extending the approaches to the video frameworks for live images in the 

medical fields. 
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