1 De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209-215, doi:10.1038/nature13772 (2014).
2 Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268-273, doi:10.1038/s41586-021-04358-6 (2022).
3 Mariani, J. et al. FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell 162, 375-390, doi:10.1016/j.cell.2015.06.034 (2015).
4 Jourdon, A. et al. ASD modelling in organoids reveals imbalance of excitatory cortical neuron subtypes during early neurogenesis. bioRxiv, 2022.2003.2019.484988, doi:10.1101/2022.03.19.484988 (2022).
5 Villa, C. E. et al. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep 39, 110615, doi:10.1016/j.celrep.2022.110615 (2022).
6 Schafer, S. T. et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci 22, 243-255, doi:10.1038/s41593-018-0295-x (2019).
7 de Jong, J. O. et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun 12, 4087, doi:10.1038/s41467-021-24358-4 (2021).
8 Urresti, J. et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry 26, 7560-7580, doi:10.1038/s41380-021-01243-6 (2021).
9 Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568-584.e523, doi:10.1016/j.cell.2019.12.036 (2020).
10 Chen, H. J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895-904, doi:10.1016/s0896-6273(00)80471-7 (1998).
11 Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683-691, doi:10.1016/s0896-6273(00)81008-9 (1998).
12 Komiyama, N. H. et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22, 9721-9732 (2002).
13 Kim, J. H., Lee, H. K., Takamiya, K. & Huganir, R. L. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23, 1119-1124 (2003).
14 Zhu, J. J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443-455, doi:10.1016/s0092-8674(02)00897-8 (2002).
15 Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173-189, doi:10.1016/j.neuron.2014.12.023 (2015).
16 Walkup, W. G. et al. A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. Elife 5, doi:10.7554/eLife.16813 (2016).
17 Zeng, M. et al. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 166, 1163-1175.e1112, doi:10.1016/j.cell.2016.07.008 (2016).
18 Zeng, M., Bai, G. & Zhang, M. Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases 10, 296-304, doi:10.1080/21541248.2017.1320350 (2019).
19 Knuesel, I., Elliott, A., Chen, H. J., Mansuy, I. M. & Kennedy, M. B. A role for synGAP in regulating neuronal apoptosis. Eur J Neurosci 21, 611-621, doi:10.1111/j.1460-9568.2005.03908.x (2005).
20 Su, P. et al. Disruption of SynGAP-dopamine D1 receptor complexes alters actin and microtubule dynamics and impairs GABAergic interneuron migration. Sci Signal 12, doi:10.1126/scisignal.aau9122 (2019).
21 Berryer, M. H. et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat 34, 385-394, doi:10.1002/humu.22248 (2013).
22 Kilinc, M. et al. Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Mol Cell Neurosci 91, 140-150, doi:10.1016/j.mcn.2018.03.008 (2018).
23 Gamache, T. R., Araki, Y. & Huganir, R. L. Twenty Years of SynGAP Research: From Synapses to Cognition. The Journal of Neuroscience 40, 1596, doi:10.1523/JNEUROSCI.0420-19.2020 (2020).
24 Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379, doi:10.1038/nature12517 (2013).
25 Bershteyn, M. et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 20, 435-449.e434, doi:10.1016/j.stem.2016.12.007 (2017).
26 Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418-422, doi:10.1038/s41586-019-1654-9 (2019).
27 Klaus, J. et al. Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nat Med 25, 561-568, doi:10.1038/s41591-019-0371-0 (2019).
28 Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935-941, doi:10.1126/science.abb5390 (2020).
29 Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med 26, 1888-1898, doi:10.1038/s41591-020-1043-9 (2020).
30 Samarasinghe, R. A. et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci 24, 1488-1500, doi:10.1038/s41593-021-00906-5 (2021).
31 Tidball, A. M. et al. Self-organizing Single-Rosette Brain Organoids from Human Pluripotent Stem Cells. bioRxiv, 2022.2002.2028.482350, doi:10.1101/2022.02.28.482350 (2022).
32 Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48-53, doi:10.1038/nature22047 (2017).
33 Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523-527, doi:10.1038/s41586-019-1289-x (2019).
34 Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112, 15672-15677, doi:10.1073/pnas.1520760112 (2015).
35 Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, doi:10.1126/science.aay1645 (2020).
36 Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 24, 331-342, doi:10.1038/s41593-021-00802-y (2021).
37 Michaelson, S. D. et al. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat Neurosci 21, 1-13, doi:10.1038/s41593-018-0268-0 (2018).
38 Aceti, M. et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 77, 805-815, doi:10.1016/j.biopsych.2014.08.001 (2015).
39 Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci 24, 584-594, doi:10.1038/s41593-020-00794-1 (2021).
40 Li, J. et al. Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci 20, 1150-1161, doi:10.1038/nn.4594 (2017).
41 Araki, Y. et al. SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. Elife 9, doi:10.7554/eLife.56273 (2020).
42 Knight, G. T. et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. Elife 7, doi:10.7554/eLife.37549 (2018).
43 Carlisle, H. J., Manzerra, P., Marcora, E. & Kennedy, M. B. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J Neurosci 28, 13673-13683, doi:10.1523/JNEUROSCI.4695-08.2008 (2008).
44 Tomoda, T., Kim, J. H., Zhan, C. & Hatten, M. E. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18, 541-558, doi:10.1101/gad.1151204 (2004).
45 Aaku-Saraste, E., Hellwig, A. & Huttner, W. B. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis. Dev Biol 180, 664-679, doi:10.1006/dbio.1996.0336 (1996).
46 Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci 7, 1928-1934 (1987).
47 Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33, 471-476, doi:10.1016/0006-8993(71)90119-3 (1971).
48 Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145, 61-83, doi:10.1002/cne.901450105 (1972).
49 Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54 Suppl 1, 25-40 (1978).
50 Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron 91, 1219-1227, doi:10.1016/j.neuron.2016.09.005 (2016).
51 Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631-641, doi:10.1016/0092-8674(95)90035-7 (1995).
52 Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31, 3683-3695, doi:10.1523/JNEUROSCI.4773-10.2011 (2011).
53 Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318-1323, doi:10.1126/science.aap8809 (2017).
54 Llamosas, N. et al. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons.
55 Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179-184, doi:10.1038/nature12929 (2014).
56 Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 19, 1433-1441, doi:10.1038/nn.4402 (2016).
57 Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17, 142-153, doi:10.1038/mp.2011.154 (2012).
58 O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43, 585-589, doi:10.1038/ng.835 (2011).
59 O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246-250, doi:10.1038/nature10989 (2012).
60 Peça, J. & Feng, G. Cellular and synaptic network defects in autism. Curr Opin Neurobiol 22, 866-872, doi:10.1016/j.conb.2012.02.015 (2012).
61 Kawaguchi, A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Frontiers in Cell and Developmental Biology 8 (2021).
62 Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304, 22-33, doi:10.1016/j.ydbio.2006.12.014 (2007).
63 Cappello, S. et al. A radial glia-specific role of RhoA in double cortex formation. Neuron 73, 911-924, doi:10.1016/j.neuron.2011.12.030 (2012).
64 Gil-Sanz, C., Landeira, B., Ramos, C., Costa, M. R. & Müller, U. Proliferative defects and formation of a double cortex in mice lacking Mltt4 and Cdh2 in the dorsal telencephalon. J Neurosci 34, 10475-10487, doi:10.1523/JNEUROSCI.1793-14.2014 (2014).
65 Yoon, K. J. et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15, 79-91, doi:10.1016/j.stem.2014.05.003 (2014).
66 Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7, 136-144, doi:10.1038/nn1172 (2004).
67 He, S., Li, Z., Ge, S., Yu, Y. C. & Shi, S. H. Inside-Out Radial Migration Facilitates Lineage-Dependent Neocortical Microcircuit Assembly. Neuron 86, 1159-1166, doi:10.1016/j.neuron.2015.05.002 (2015).
68 Coba, M. P. et al. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci Rep 8, 2281, doi:10.1038/s41598-018-20610-y (2018).
69 Li, J. et al. Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome. Sci Signal 9, rs8, doi:10.1126/scisignal.aaf6716 (2016).
70 Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458-466, doi:10.1002/stem.1293 (2013).
71 Klose, A. et al. Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum Mol Genet 7, 1261-1268, doi:10.1093/hmg/7.8.1261 (1998).
72 Wilkinson, B. et al. Endogenous Cell Type-Specific Disrupted in Schizophrenia 1 Interactomes Reveal Protein Networks Associated With Neurodevelopmental Disorders. Biol Psychiatry 85, 305-316, doi:10.1016/j.biopsych.2018.05.009 (2019).
73 Lippmann, E. S., Estevez-Silva, M. C. & Ashton, R. S. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32, 1032-1042, doi:10.1002/stem.1622 (2014).
74 Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14, 68-85, doi:10.1038/s41596-018-0082-x (2019).
75 Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 39, 229-244, doi:10.1002/mas.21540 (2020).
76 Brademan, D. R., Riley, N. M., Kwiecien, N. W. & Coon, J. J. Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications. Mol Cell Proteomics 18, S193-S201, doi:10.1074/mcp.TIR118.001209 (2019).
77 Boudaoud, A. et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat Protoc 9, 457-463, doi:10.1038/nprot.2014.024 (2014).